JP2003332546A - Solid-state image pickup element and imaging device - Google Patents

Solid-state image pickup element and imaging device

Info

Publication number
JP2003332546A
JP2003332546A JP2002140898A JP2002140898A JP2003332546A JP 2003332546 A JP2003332546 A JP 2003332546A JP 2002140898 A JP2002140898 A JP 2002140898A JP 2002140898 A JP2002140898 A JP 2002140898A JP 2003332546 A JP2003332546 A JP 2003332546A
Authority
JP
Japan
Prior art keywords
light
solid
liquid crystal
incident
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002140898A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujita
博明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002140898A priority Critical patent/JP2003332546A/en
Publication of JP2003332546A publication Critical patent/JP2003332546A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state image pickup element which can efficiently converge incident light in an optical sensor and can eliminate light shielding for other places than the optical sensor, and also to provide an imaging device using the same. <P>SOLUTION: In a pixel section 16, the optical sensor 6, and a liquid crystal lens 30 which controls the refracting direction of the light incident into the optical sensor 6 by means of an applied voltage are disposed in this order in the light progressing direction. A top electrode applied with the applied voltage is split into electrodes 10a and 10b. By applying different voltages to the electrodes 10a and 10b of the top electrode, a tilting angle of a liquid crystal molecule is changed, thereby controlling the light incidence to the optical sensor section 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、光感知部
への集光に好適な固体撮像素子及び撮像装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device and an image pickup device, which are suitable for focusing light on a light sensing portion.

【0002】[0002]

【従来の技術】先ず、図7に示すように、従来の2次元
固体撮像素子69の構造及び電荷転送過程を表すと下記
のようになる。
2. Description of the Related Art First, as shown in FIG. 7, the structure and charge transfer process of a conventional two-dimensional solid-state image pickup device 69 are as follows.

【0003】即ち、固体撮像素子69のイメージエリア
中心部57及びイメージエリア周辺部58等を成す光セ
ンサー部56に入射した入射光によって、光センサー部
56内に電荷が生じ、この電荷がセンサー部56から垂
直レジスタ部(VCCD:Vertical Charge Coupled De
vise:以下、同様とする。)55へと転送され、更に電
荷は垂直レジスタ部55から水平レジスタ部(HCC
D:Holizontal ChargeCoupled Devise:以下、同様と
する。)67へと転送される。
That is, the incident light that is incident on the optical sensor portion 56 which forms the image area central portion 57 and the image area peripheral portion 58 of the solid-state image pickup element 69 generates an electric charge in the optical sensor portion 56, and the electric charge is generated in the sensor portion. 56 to vertical register section (VCCD: Vertical Charge Coupled De
vise: The same applies hereinafter. ) 55 to the horizontal register unit (HCC).
D: Horizontal Charge Coupled Devise: The same applies hereinafter. ) 67.

【0004】次に、この水平レジスタ部67において、
例えば、1極おきに同じパルスとなる2相の異なる転送
パルス電圧が交互に印加されることにより、水平レジス
タ部67内の基板表面付近において電荷の転送制御がな
されて、電荷の進行と停止とが繰り返され、順次整然と
かつ速やかに増幅器出力端子68に向かって転送され
る。
Next, in the horizontal register section 67,
For example, by alternately applying two-phase different transfer pulse voltages having the same pulse every other pole, charge transfer is controlled in the vicinity of the substrate surface in the horizontal register section 67, and the progress and stop of the charge are stopped. Are repeated, and the signals are sequentially and promptly transferred to the amplifier output terminal 68.

【0005】次に、図8に示すように、従来の固体撮像
素子69上には光センサー部56における光の感度を向
上させる手段(集光手段)として、各画素部66上にオ
ンチップレンズ51を形成するものがある(特開平5−
326903号公報参照)。ここで、半導体基板70上
には、図7に示すように、イメージエリア中心部57及
びイメージエリア周辺部58を構成する複数の画素部6
6が形成されているが、図8においては、代表して1つ
の画素部66付近の構造を説明する。
Next, as shown in FIG. 8, on the conventional solid-state image pickup device 69, an on-chip lens is provided on each pixel portion 66 as a means (light condensing means) for improving the light sensitivity of the optical sensor portion 56. There is one forming 51 (Japanese Patent Laid-Open No. 5-
326903). Here, on the semiconductor substrate 70, as shown in FIG. 7, a plurality of pixel portions 6 forming an image area central portion 57 and an image area peripheral portion 58.
6 is formed, the structure in the vicinity of one pixel portion 66 will be described as a representative in FIG.

【0006】この画素部66は、SiからなるP型の半
導体基板70に、N型の導電領域である電荷転送路領域
72と光センサー部56とが形成されており、この上に
ゲート絶縁膜71及び転送電極55が形成され、垂直レ
ジスタ部の転送ゲートが構成されている。転送電極55
上には、電荷転送領域へ光を入射させないための遮光膜
54が絶縁膜64上に設けられ、更にその上に、凸部9
0(凹レンズ部)及び凹部91(凸レンズ部)の組み合
わせで構成される層内レンズ53、透明絶縁層73、カ
ラーフィルタ52、及び凸部90(凸レンズ部)の集合
体で入射光の集光率向上を目的としたオンチップレンズ
51が形成されている。なお、チャンネルストッパ等の
図示は省略する。
In the pixel portion 66, a charge transfer path region 72, which is an N-type conductive region, and an optical sensor portion 56 are formed on a P-type semiconductor substrate 70 made of Si, and a gate insulating film is formed thereon. 71 and the transfer electrode 55 are formed, and the transfer gate of the vertical register portion is configured. Transfer electrode 55
A light-shielding film 54 for preventing light from entering the charge transfer region is provided on the insulating film 64, and the convex portion 9 is further provided thereon.
0 (concave lens portion) and concave portion 91 (convex lens portion) are combined to form an in-layer lens 53, a transparent insulating layer 73, a color filter 52, and a convex portion 90 (convex lens portion). An on-chip lens 51 for the purpose of improvement is formed. Illustration of the channel stopper and the like is omitted.

【0007】[0007]

【発明が解決しようとする課題】この時に、各オンチッ
プレンズ51は、例えば樹脂等の材質で形成されていて
容易に変形することができないために、オンチップレン
ズ51の形状や屈折率を入射光の状態に対応させたり、
画素毎に区別して適宜に変化させること等は困難であ
る。
At this time, since each on-chip lens 51 is made of a material such as resin and cannot be easily deformed, the shape and refractive index of the on-chip lens 51 are incident. Depending on the light condition,
It is difficult to distinguish each pixel and change it appropriately.

【0008】そのために、図10(a)に示すように、
複数の画素部66からなるイメージエリア中心部57及
び周辺部58に対して光源65が十分に離れている場合
には、光源65からの入射光がイメージエリア中心部5
7及び周辺部58からなる面に対してほぼ垂直に入射す
る垂直入射光となり、図7の固体撮像素子69のA−
A’断面図である図8に示すように、この垂直入射光
が、オンチップレンズ51の凸部90によって層内レン
ズ53の凹部91に集光され、その凸レンズ作用で光セ
ンサー部56の方向に十分に屈折され、比較的効率よく
光センサー部56に集光される。
Therefore, as shown in FIG.
When the light source 65 is sufficiently distant from the image area central portion 57 and the peripheral portion 58, which are composed of a plurality of pixel portions 66, the incident light from the light source 65 is emitted from the image area central portion 5.
7 and the peripheral portion 58, and becomes normal incident light that is incident almost perpendicularly to the surface, and the solid-state imaging device 69 of FIG.
As shown in FIG. 8 which is a sectional view taken along the line A ′, the vertically incident light is condensed by the convex portion 90 of the on-chip lens 51 into the concave portion 91 of the intralayer lens 53, and the convex lens action causes the direction of the optical sensor portion 56. The light is sufficiently refracted and is relatively efficiently focused on the optical sensor unit 56.

【0009】これに対して、図10(b)に示すよう
に、複数の画素部66からなるイメージエリア中心部5
7及び周辺部58に対して光源65が近づく場合には、
光源65からの入射光が、イメージエリア中心部57に
おいてほぼ垂直に入射することになるが、周辺部58に
対しては斜め方向から入射する斜め入射光となり、図7
の固体撮像素子69のA−A’断面図である図9に示す
ように、イメージエリア周辺部58において、斜め入射
光の入射位置によっては、オンチップレンズ51の凸部
90及び層内レンズ53の凸部90又は凹部91によっ
て屈折させても、光センサー部56に集光し難い状態が
生じる。
On the other hand, as shown in FIG. 10B, the image area central portion 5 including a plurality of pixel portions 66.
When the light source 65 approaches the 7 and the peripheral portion 58,
The incident light from the light source 65 is incident on the central portion 57 of the image area substantially perpendicularly, but is obliquely incident on the peripheral portion 58 in an oblique direction.
9, which is a sectional view taken along the line AA ′ of the solid-state imaging device 69, the convex portion 90 of the on-chip lens 51 and the in-layer lens 53 in the image area peripheral portion 58, depending on the incident position of oblique incident light. Even if the light is refracted by the convex portion 90 or the concave portion 91, it is difficult to collect the light on the optical sensor portion 56.

【0010】そのため、斜め入射光の入射角度又は入射
位置等の条件によっては、集光し易いイメージエリア中
心部57と、集光しにくい周辺部58とで、それぞれの
光センサー部56への集光量に差が生じてしまい、画素
部66毎のそれぞれの光センサー部56の感度(画像に
有効利用される割合である転送率を示す。)又はスミア
(非転送率を示す。)等の特性にばらつきが生じてしま
う。
Therefore, depending on the conditions such as the incident angle or the incident position of the obliquely incident light, the central portion 57 of the image area where it is easy to collect light and the peripheral portion 58 where it is difficult to collect light are collected to the respective optical sensor parts 56. A difference occurs in the amount of light, and the characteristics of each photosensor unit 56 for each pixel unit 66, such as the sensitivity (indicating a transfer rate that is a ratio that is effectively used for an image) or smear (indicating a non-transfer rate). Variation will occur.

【0011】更に、光センサー部56に集光できない入
射光は、光センサー部56の側方に設けられている電荷
転送電極55等に入射すると、半導体基板に電荷を生じ
させて電荷転送機能に支障をもたらすために、電荷転送
電極55の露出面には光を入射させないための遮光膜5
4を設ける必要が生じ、画素部66の作製工程を増加さ
せてしまう。
Further, when the incident light which cannot be condensed on the optical sensor portion 56 is incident on the charge transfer electrode 55 or the like provided on the side of the optical sensor portion 56, electric charge is generated in the semiconductor substrate to have a charge transfer function. The light-shielding film 5 for preventing light from entering the exposed surface of the charge transfer electrode 55 in order to cause troubles.
4 is required, which increases the number of manufacturing steps of the pixel portion 66.

【0012】本発明は上記のような状況に鑑みてなされ
たものであって、その目的は、光感知部に効率よく入射
光を集光でき、更には光感知部以外の箇所の遮光処置を
省くことができる固体撮像素子、及びこれを用いた撮像
装置を提供することにある。
The present invention has been made in view of the above situation, and an object thereof is to efficiently collect incident light on a photo-sensing section and to perform a light-shielding treatment on a portion other than the photo-sensing section. An object of the present invention is to provide a solid-state imaging device that can be omitted, and an imaging device using the same.

【0013】[0013]

【課題を解決するための手段】即ち、本発明は、光感知
部と、印加電圧によって前記感知部への入射光の屈折方
向を制御する集光手段とを光の進行方向に沿って順次配
置した固体撮像素子において、前記印加電圧を印加する
電極が複数に分割されており、これらの電極に互いに異
なった電圧が印加されることによって、前記光感知部へ
の光入射が制御される領域を有する固体撮像素子、及び
この固体撮像素子を具備する撮像装置に係わるものであ
る。
That is, according to the present invention, a light sensing portion and a light collecting means for controlling a refraction direction of light incident on the light sensing portion by an applied voltage are sequentially arranged along a light traveling direction. In the solid-state image sensor described above, the electrodes to which the applied voltage is applied are divided into a plurality of areas, and by applying different voltages to these electrodes, a region where light incidence on the photo-sensing unit is controlled is defined. The present invention relates to a solid-state image pickup device having the image pickup device and an image pickup apparatus including the solid-state image pickup device.

【0014】本発明は又、光感知部と、印加電圧によっ
て前記感知部への入射光の屈折方向を制御する集光手段
とを光の進行方向に沿って順次配置した固体撮像素子に
おいて、前記光感知部に対応して前記集光手段の電極の
形状が変化している領域を有する固体撮像素子、及びこ
の固体撮像素子を具備する撮像装置に係わるものであ
る。
The present invention also provides a solid-state image pickup device in which a light sensing portion and a light condensing means for controlling a refraction direction of incident light on the sensing portion by an applied voltage are sequentially arranged along a light traveling direction. The present invention relates to a solid-state image sensor having a region in which the shape of the electrode of the light-collecting means is changed corresponding to a light-sensing unit, and an image-capturing apparatus including the solid-state image sensor.

【0015】本発明によれば、集光手段の印加電圧を印
加する電極が複数に分割されており、これらの電極に互
いに異なった電圧が印加されることによって、光の進行
方向に沿って順次配置した固体撮像素子毎の光感知部へ
の入射光の屈折方向が、それぞれの電極に対応する領域
毎に最適に制御されるために、前記固体撮像素子に対し
て斜め方向も含む任意の角度で入射してくる前記入射光
を、効率よく前記光感知部に集光できる。
According to the present invention, the electrodes to which the voltage applied to the light converging means is applied are divided into a plurality of electrodes, and by applying different voltages to these electrodes, the electrodes are sequentially moved along the light traveling direction. In order to optimally control the refraction direction of the incident light to the light sensing unit for each of the arranged solid-state image sensors, the angle is arbitrary with respect to the solid-state image sensor, including an oblique direction. The incident light coming in can be efficiently condensed on the light sensing portion.

【0016】また、光感知部に対応して集光手段の電極
の形状が変化している領域を有することによって、この
電極を分割して互いに同一の電圧を印加しても、光の進
行方向に沿って順次配置した固体撮像素子毎の光感知部
への入射光の屈折方向が、それぞれの電極に対応する領
域毎に最適に制御されるために、前記固体撮像素子に対
して斜め方向も含む任意の角度で入射してくる前記入射
光を効率よく前記光感知部に集光できる。
Further, by providing a region in which the shape of the electrode of the light collecting means is changed corresponding to the light sensing portion, even if the electrodes are divided and the same voltage is applied to them, the traveling direction of the light In order to optimally control the refraction direction of the incident light to the photo-sensing section for each solid-state image sensor sequentially arranged along the direction, the oblique direction with respect to the solid-state image sensor is also set so as to be optimally controlled for each region corresponding to each electrode. It is possible to efficiently collect the incident light entering at any angle including the light sensing portion.

【0017】また、光の進行方向に沿って順次配置した
固体撮像素子毎の光感知部への入射光の屈折方向が、そ
れぞれの電極に対応する領域毎に最適に制御されるため
に、前記光感知部以外の箇所に入射光が入射し難くなる
ので、前記光感知部以外の箇所に遮光膜を形成する遮光
措置を省くことができる。
Further, since the refraction direction of the incident light to the light sensing portion of each solid-state image pickup element sequentially arranged along the light traveling direction is optimally controlled for each region corresponding to each electrode, Since it becomes difficult for the incident light to enter the portion other than the light sensing portion, it is possible to omit the light shielding measure for forming the light shielding film on the portion other than the light sensing portion.

【0018】[0018]

【発明の実施の形態】また、前記集光手段の高速度及び
高精度制御のために、前記集光手段が液晶素子によって
構成されているのが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In order to control the light converging means at a high speed and with high accuracy, it is desirable that the light condensing means is composed of a liquid crystal element.

【0019】また、前記集光手段の高精度制御のため
に、前記液晶素子を構成する一対の透明電極のうち、光
入射側又は光出射側の電極が前記光感知部に対して分割
されているのが望ましい。
Further, in order to control the light converging means with high accuracy, of the pair of transparent electrodes forming the liquid crystal element, the light incident side or the light emitting side electrode is divided with respect to the light sensing portion. Is desirable.

【0020】また、前記液晶素子を構成する液晶が負又
は正の誘電率異方性を有するのが望ましい。
Further, it is desirable that the liquid crystal constituting the liquid crystal element has a negative or positive dielectric anisotropy.

【0021】また、前記集光手段の補助手段として、前
記集光手段と前記光感知部との間に集光用のレンズ手段
(例えば層内レンズ)が付加されているのが望ましい。
Further, it is desirable that a lens means (for example, an intralayer lens) for condensing is added between the condensing means and the light sensing portion as an auxiliary means of the condensing means.

【0022】また、前記光感知部で生じる電荷の転送の
ために、前記光感知部の側方に電荷転送部が設けられて
いるのが望ましい。
In addition, it is preferable that a charge transfer unit is provided at a side of the light sensing unit in order to transfer charges generated in the light sensing unit.

【0023】また、前記固体撮像素子からなる撮像装置
がCCDカメラとして構成され、或いは一眼レフタイプ
のカメラの受光部として構成されるのが望ましい。
Further, it is desirable that the image pickup device comprising the solid-state image pickup device is constructed as a CCD camera or as a light receiving part of a single lens reflex type camera.

【0024】以下に、本発明の好ましい実施の形態を図
面の参照下に詳しく説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】第1の実施の形態 本実施の形態における電圧無印加時(初期設定時)の画
素部16の構造は、図1(a)に示すように、Siから
なるP型の半導体基板20に、N型の導電領域である転
送路領域22と光センサー部6とが形成されており、こ
の上にゲート絶縁膜21、垂直レジスタ部の転送電極5
が設けられている。そして、必要に応じて遮光膜4が絶
縁膜14上に設けられ、更にその上に、凹部41(凸レ
ンズ部)及び凸部40(凹レンズ部)の組み合わせで構
成される層内レンズ3、透明絶縁層23、カラーフィル
タ2及び液晶レンズ30が設けられている。なお、チャ
ンネルストッパ等の図示は省略してある。
First Embodiment As shown in FIG. 1A, the structure of the pixel section 16 when no voltage is applied (at the time of initial setting) in the present embodiment is a P-type semiconductor substrate 20 made of Si. A transfer path region 22 which is an N-type conductive region and an optical sensor portion 6 are formed on the gate insulating film 21 and the transfer electrode 5 of the vertical register portion.
Is provided. Then, if necessary, a light-shielding film 4 is provided on the insulating film 14, and on top of that, an in-layer lens 3 composed of a combination of a concave portion 41 (convex lens portion) and a convex portion 40 (concave lens portion), a transparent insulating film. The layer 23, the color filter 2, and the liquid crystal lens 30 are provided. The channel stopper and the like are not shown.

【0026】ここで、集光レンズの役割を果たす液晶レ
ンズ30は、誘電率異方性が負のネガ型の液晶分子31
(実際には多数の液晶分子の集合体であるが、この集合
体を1つとみなしてそのダイレクタを表わす。)をホモ
ジニアス配向させた液晶層13、この液晶層13に電圧
を印加するための透明上部(分割)電極10a、10
b、透明下部(共通)電極11、及び一定の偏光方向を
持った光のみを透過させる偏光フィルタ12等から構成
されている。
Here, the liquid crystal lens 30 which plays the role of a condenser lens is a negative type liquid crystal molecule 31 having a negative dielectric anisotropy.
A liquid crystal layer 13 in which (a collection of a large number of liquid crystal molecules is actually regarded as one, and the director thereof is represented) is homogeneously aligned, and transparent for applying a voltage to the liquid crystal layer 13. Upper (split) electrodes 10a, 10
b, a transparent lower (common) electrode 11, a polarization filter 12 that transmits only light having a certain polarization direction, and the like.

【0027】下部電極11はカラーフィルタ2上を覆う
ように連続して形成されているが、上部電極10aと1
0bとはそれぞれの間に開口部32が設けられていて光
センサー部6の両側に分離して形成されている。この開
口部32の位置は光センサー部6のほぼ真上である。
The lower electrode 11 is continuously formed so as to cover the color filter 2, but the upper electrodes 10a and 1a
0b is provided with an opening 32 between them and is formed separately on both sides of the optical sensor unit 6. The position of the opening 32 is almost directly above the optical sensor unit 6.

【0028】また、電圧可変電源9は、透明上部電極1
0a、10bと透明下部電極11との間に接続されてい
る。電圧可変電源9の極性及びその大きさは電極10
a、10b毎に可変(又は一定)であり、本実施の形態
においては、特に断らない限り、電圧無印加時には液晶
分子31が下部電極11に対して直交して静止してお
り、電圧印加時には液晶分子31が、印加電圧の大きさ
に対応して下部電極11に対して斜めに、かつ光センサ
ー部6に対し左右逆方向に傾斜するものとする。
The variable voltage power supply 9 is composed of the transparent upper electrode 1
0a, 10b and the transparent lower electrode 11 are connected. The polarity and size of the variable voltage power supply 9 are determined by the electrode 10
It is variable (or constant) for each a and 10b, and in the present embodiment, unless otherwise specified, the liquid crystal molecules 31 are stationary at right angles to the lower electrode 11 when no voltage is applied, and when a voltage is applied. It is assumed that the liquid crystal molecules 31 are tilted obliquely with respect to the lower electrode 11 and in the left-right opposite direction with respect to the photosensor portion 6 in accordance with the magnitude of the applied voltage.

【0029】また、図7に示したように、既述したと同
様の構造の画素部16が複数組み合わされてイメージエ
リアを構成するが、ここでは1つの画素部16を代表例
として構造を説明する。
Further, as shown in FIG. 7, a plurality of pixel portions 16 having the same structure as described above are combined to form an image area. Here, the structure will be described with one pixel portion 16 as a representative example. To do.

【0030】この画素部16では液晶レンズ30を集光
レンズとして形成しているが、電圧を印加する上部電極
10aと10bとの間に開口部32を設ける構造である
ため、上部電極10aと10b及び下部電極11にそれ
ぞれ電圧を印加すると不均一な電場が液晶層13内に生
じる。
In this pixel portion 16, the liquid crystal lens 30 is formed as a condenser lens, but since the opening 32 is provided between the upper electrodes 10a and 10b to which a voltage is applied, the upper electrodes 10a and 10b are formed. When a voltage is applied to each of the and lower electrodes 11, a non-uniform electric field is generated in the liquid crystal layer 13.

【0031】この時に、この誘電率異方性が負の液晶分
子31の向きは、上部電極10aの下部35、上部電極
10aと開口部32との境界下部36、開口部32の下
部37、開口部32と上部電極10bとの境界下部3
8、上部電極10bの下部39等の領域において、均一
又は不均一に変化して液晶層13内に屈折率分布が生じ
るため、液晶層13を集光レンズとして用いることがで
きる。
At this time, the orientation of the liquid crystal molecules 31 having a negative dielectric anisotropy is as follows: the lower part 35 of the upper electrode 10a, the lower part 36 of the boundary between the upper electrode 10a and the opening 32, the lower part 37 of the opening 32, and the opening. Lower part 3 of the boundary between the part 32 and the upper electrode 10b
8, in the region such as the lower portion 39 of the upper electrode 10b, the liquid crystal layer 13 can be used as a condenser lens because the refractive index distribution is generated in the liquid crystal layer 13 uniformly or nonuniformly.

【0032】即ち、それぞれの液晶層13内の液晶分子
31の傾斜角度等の状態は印加する電圧の値によって自
由に調節することができるために、入射光の入射角度又
は入射位置等の状態に応じて最適の屈折率分布を形成す
ることができる。
That is, since the state of the tilt angle or the like of the liquid crystal molecules 31 in each liquid crystal layer 13 can be freely adjusted by the value of the applied voltage, the state of the incident angle or the incident position of the incident light can be changed. Accordingly, the optimum refractive index distribution can be formed.

【0033】ここで、図1(a)は、電圧無印加時の画
素部16に斜め入射光が入射した時の状態を表し、液晶
素子31は全て下部電極11に対して直交しているため
に、上部電極10aの下部35、境界下部36、境界下
部38及び上部電極10bの下部39においては、斜め
入射光がこれらの領域の各液晶素子31に反射して光セ
ンサー部6に対してほぼ垂直に入射し、その後に層内レ
ンズ3の凸部40の作用によって光センサー部6側に向
けて屈折する。但し、層内レンズ3の凸部40への入射
位置が光センサー部6から比較的離れていてかつ入射角
が深い場合、光センサー部6にまで届かず遮光膜4等に
入射して反射され、光センサー部6に集光されない。
Here, FIG. 1A shows a state when obliquely incident light is incident on the pixel portion 16 when no voltage is applied, and all the liquid crystal elements 31 are orthogonal to the lower electrode 11. In the lower portion 35 of the upper electrode 10a, the lower boundary portion 36, the lower boundary portion 38, and the lower portion 39 of the upper electrode 10b, the oblique incident light is reflected by each liquid crystal element 31 in these regions and is almost equal to the optical sensor unit 6. The light enters vertically and then refracts toward the optical sensor portion 6 side by the action of the convex portion 40 of the intralayer lens 3. However, when the incident position of the in-layer lens 3 on the convex portion 40 is relatively far from the optical sensor unit 6 and the incident angle is deep, it does not reach the optical sensor unit 6 and is incident on the light-shielding film 4 and is reflected. , Is not focused on the optical sensor unit 6.

【0034】これに対し、図1(b)に示すように、開
口部32の下部37は光センサー部6のほぼ真上に位置
するために、斜め入射光がこの領域内の各液晶分子31
によって光センサー部6へ屈折され、更に層内レンズ3
によってほぼ垂直に入射すると共に、各電極10a、1
0bに互いに異なる電圧を印加するので、光センサー部
6から離れた遮光膜4上においては傾斜した液晶分子3
1によって内向きに屈折され、更に層内レンズ3によっ
て光センサー部6に対して効率よく屈折することができ
る。
On the other hand, as shown in FIG. 1B, since the lower portion 37 of the opening 32 is located almost directly above the optical sensor portion 6, the obliquely incident light causes each liquid crystal molecule 31 in this region to be inclined.
The light is refracted by the optical sensor unit 6 by the inner lens 3
Is incident almost vertically by each of the electrodes 10a, 1 and
Since different voltages are applied to 0b, the tilted liquid crystal molecules 3 are provided on the light-shielding film 4 which is away from the optical sensor section 6.
It can be refracted inward by 1 and can be efficiently refracted by the in-layer lens 3 with respect to the optical sensor section 6.

【0035】即ち、図1(b)は、電圧印加時の画素部
16を示し、電極10aの下部35においては、電圧可
変電源9の極性を逆にすることによって、各液晶素子3
1を下部電極11に対して左に傾斜させ、また境界下部
36においては電極10aの下部35と同様の強い電場
がかからないために、この領域の各液晶分子31の傾斜
角度は開口部32の下部37の直交角度と電極10aの
下部35の傾斜角度との中間の角度に傾斜する。
That is, FIG. 1B shows the pixel portion 16 at the time of applying a voltage, and in the lower portion 35 of the electrode 10a, the polarities of the voltage variable power source 9 are reversed so that each liquid crystal element 3 is formed.
1 is tilted to the left with respect to the lower electrode 11, and since the same strong electric field as that of the lower portion 35 of the electrode 10a is not applied to the lower portion 36 of the boundary, the inclination angle of each liquid crystal molecule 31 in this region is lower than that of the opening 32. It is inclined at an angle intermediate between the orthogonal angle of 37 and the inclination angle of the lower portion 35 of the electrode 10a.

【0036】また、電極10bの下部39においては、
通常の極性で電圧を印加し、各液晶素子31を下部電極
11に対して右に傾斜させ、また境界下部38において
は、電極10bの下部39と同様の強い電場が掛らない
ために、この領域の液晶素子31の傾斜角度は開口部3
2の下部37の角度と電極10bの下部35の傾斜角度
との中間の角度となる。
In the lower part 39 of the electrode 10b,
By applying a voltage with a normal polarity, each liquid crystal element 31 is tilted to the right with respect to the lower electrode 11, and at the boundary lower part 38, the same strong electric field as that of the lower part 39 of the electrode 10b is not applied. The tilt angle of the liquid crystal element 31 in the region is the opening 3
2 is an intermediate angle between the angle of the lower portion 37 of 2 and the inclination angle of the lower portion 35 of the electrode 10b.

【0037】そして、電極10a、10bの下部35、
39及び境界下部36、38の領域に入射する斜め入射
光は、各液晶分子31によって屈折され、層内レンズ3
の凸部40及び凹部41のレンズ作用で光センサー部6
の方向に進行するので、遮光膜4等によって反射するこ
となく光センサー部6に集光し易くなる。
Then, the lower portions 35 of the electrodes 10a and 10b,
The obliquely incident light incident on the region of 39 and the lower portions 36 and 38 of the boundary is refracted by each liquid crystal molecule 31, and the in-layer lens 3
The optical function of the optical sensor unit 6 by the lens action of the convex portion 40 and the concave portion 41
Since the light travels in the direction of, the light can be easily focused on the optical sensor unit 6 without being reflected by the light shielding film 4 or the like.

【0038】開口部32の下部37においては、図1
(a)で述べたと同様に、光センサー部6に対して入射
する。
In the lower part 37 of the opening 32, FIG.
As in the case of (a), the light is incident on the optical sensor unit 6.

【0039】なお、図2に示すように、入射光が垂直に
入射する場合も、入射する垂直入射光は、各液晶分子3
1によって屈折され、層内レンズ3を経て光センサー部
6に集光し易くなることは、容易に理解されよう。
As shown in FIG. 2, even when the incident light is vertically incident, the vertically incident light is incident on each liquid crystal molecule 3
It will be easily understood that the light is refracted by 1 and is easily condensed on the optical sensor portion 6 through the intralayer lens 3.

【0040】上述のように、本実施の形態によれば、液
晶レンズ30の印加電圧を印加する上部電極が10aと
10bとに分割されており、これらの電極10a及び1
0bに互いにそれぞれ異なった電圧が印加されることに
よって、画素部16毎の光センサー部6への斜め入射光
の屈折方向が、それぞれの上部電極毎に最適に制御され
るために、個々の画素部16に対して任意の角度で入射
してくる斜め入射光を効率よく光センサー部6に集光で
き、画素部16毎の光感度特性のばらつきを改善するこ
とができる。
As described above, according to the present embodiment, the upper electrode for applying the voltage applied to the liquid crystal lens 30 is divided into 10a and 10b, and these electrodes 10a and 1b are divided.
Since different voltages are applied to 0b, the refraction direction of the obliquely incident light to the photosensor unit 6 for each pixel unit 16 is optimally controlled for each upper electrode, so that each pixel is controlled. The oblique incident light that enters the portion 16 at an arbitrary angle can be efficiently focused on the photosensor portion 6, and the variation in the photosensitivity characteristic of each pixel portion 16 can be improved.

【0041】また、集光レンズを液晶レンズ30で構成
したことにより、この液晶レンズ30の上部電極への印
加電圧により液晶分子31の傾斜角及び傾斜方向等を制
御して屈折率を変化させることができるために、任意の
角度からの入射光に応じた最適な光屈折率を有する集光
レンズを形成できると共に、液晶レンズ30の光屈折制
御をより細かく行うことができる。
Since the condenser lens is composed of the liquid crystal lens 30, the tilt angle and the tilt direction of the liquid crystal molecules 31 are controlled by the voltage applied to the upper electrode of the liquid crystal lens 30 to change the refractive index. Therefore, it is possible to form a condenser lens having an optimum light refractive index according to incident light from an arbitrary angle, and it is possible to perform finer light refraction control of the liquid crystal lens 30.

【0042】また、斜め入射光の屈折方向が最適に制御
されるために、光センサー部6以外の箇所に入射光が当
たり難くなり、光センサー部6以外の箇所での遮光膜4
を省略若しくは減らすことができる。
Further, since the refraction direction of the obliquely incident light is optimally controlled, it becomes difficult for the incident light to hit the portion other than the optical sensor portion 6, and the light shielding film 4 in the portion other than the optical sensor portion 6 becomes difficult.
Can be omitted or reduced.

【0043】また、上記の画素部16からなる固体撮像
素子69をカメラ等に組み込んで使用した場合には、絞
り値に対応した受光量で光センサー部6に光入射するこ
とができるため、被写体を適正な露出状態下で撮影する
ことができる。
Further, when the solid-state image pickup device 69 composed of the pixel portion 16 is used by incorporating it in a camera or the like, light can be incident on the optical sensor portion 6 with an amount of light received corresponding to the aperture value. Can be taken under the proper exposure condition.

【0044】第2の実施の形態 本実施の形態では、図3(a)に示すように、開口部3
2の位置が光センサー部6の上から左側に所定の距離ず
れるように、上部電極10aと10bの幅(又は形状)
を変更する、即ち、この開口部32の大きさや位置を個
々の画素部16に対する斜め入射光の入射角度に応じて
予め最適化することが、第1の実施の形態と異なってい
るが、その他は基本的に同様である。
Second Embodiment In the present embodiment, as shown in FIG.
Width (or shape) of the upper electrodes 10a and 10b so that the position of 2 shifts from the top of the optical sensor unit 6 to the left by a predetermined distance.
Is changed, that is, the size and position of the opening 32 are optimized in advance in accordance with the incident angle of the oblique incident light with respect to each pixel unit 16, which is different from the first embodiment. Is basically the same.

【0045】即ち、光センサー部6に対応して液晶レン
ズ部30の上部電極10a及び10bの形状を変化させ
ることによって、各電極10a、10bにそれぞれ同一
の極性及び大きさの電圧を印加しても、画素部16毎の
光センサー部6への入射光の屈折方向が最適に制御され
るために、画素部16に対して任意の角度で入射してく
る入射光を効率よく光センサー部6に集光できる。この
屈折のメカニズムは、第1の実施の形態で述べたと同様
である。
That is, by changing the shape of the upper electrodes 10a and 10b of the liquid crystal lens unit 30 corresponding to the optical sensor unit 6, voltages of the same polarity and magnitude are applied to the electrodes 10a and 10b, respectively. Also, since the refraction direction of the incident light on the optical sensor unit 6 for each pixel unit 16 is optimally controlled, the incident light incident on the pixel unit 16 at an arbitrary angle can be efficiently used. Can be focused on. The mechanism of this refraction is the same as that described in the first embodiment.

【0046】従って、図3(b)及び図7に示すよう
に、イメージエリア中心部57付近の画素部66の光屈
折率とイメージエリア周辺部58付近の画素部66の光
屈折率とを、斜め入射光に対してそれぞれ最適化してお
けるので、総ての画素部66上の液晶層13に印加する
電圧の値を同一にした場合でも、画素部66毎に液晶レ
ンズ30の屈折率分布を変えなくても、斜め入射光が光
センサー部6へ確実に入射し、画素部66毎の感度特性
等のばらつきを改善することができる。
Therefore, as shown in FIGS. 3B and 7, the light refractive index of the pixel portion 66 near the image area central portion 57 and the light refractive index of the pixel portion 66 near the image area peripheral portion 58 are Since it can be optimized for each of the obliquely incident lights, even when the value of the voltage applied to the liquid crystal layer 13 on all the pixel portions 66 is the same, the refractive index distribution of the liquid crystal lens 30 is different for each pixel portion 66. Even if it is not changed, the obliquely incident light surely enters the optical sensor unit 6, and it is possible to improve the variations in the sensitivity characteristics and the like among the pixel units 66.

【0047】また、それぞれの上部電極10a及び10
bに同一の電圧を印加するので、光屈折率の制御操作を
比較的簡易に行うことができる。
Further, the upper electrodes 10a and 10
Since the same voltage is applied to b, the control operation of the photorefractive index can be performed relatively easily.

【0048】その他、本実施の形態においても、上述し
た第1の実施の形態と同様の作用効果が生じることは言
うまでもない。
In addition, it goes without saying that the same operational effects as those of the above-described first embodiment also occur in this embodiment.

【0049】第3の実施の形態 本実施の形態では、図4に示すように、上部電極10a
と10bとの長さが第2の実施の形態と同じであるが、
上部電極10aと10bとの間にわずかな間隔を設けて
上部電極10cを付加する以外は、第2の実施の形態と
同様である。
Third Embodiment In the present embodiment, as shown in FIG. 4, the upper electrode 10a is formed.
And 10b have the same length as in the second embodiment,
The second embodiment is the same as the second embodiment except that the upper electrode 10c is added with a slight gap provided between the upper electrodes 10a and 10b.

【0050】即ち、上部電極10cが設けられているた
めに、液晶層13内のほぼ総ての領域に電場がかかるこ
とになり、電圧可変電源9から上部電極10a、10
b、10cに同一の電圧を印加して、各液晶素子31を
下部電極11に対して右に傾斜させる。これによって、
液晶層13内に入射する斜め入射光は、各液晶分子31
によって屈折され、層内レンズ3を経て光センサー部6
に集光し易くなる。
That is, since the upper electrode 10c is provided, an electric field is applied to almost the entire area of the liquid crystal layer 13, so that the variable voltage power supply 9 causes the upper electrodes 10a, 10a and 10b.
The same voltage is applied to b and 10c to tilt each liquid crystal element 31 to the right with respect to the lower electrode 11. by this,
The obliquely incident light that enters the liquid crystal layer 13 receives each liquid crystal molecule 31.
Is refracted by the optical sensor unit 6 through the inner lens 3
It becomes easier to focus light on.

【0051】そして、上部電極がほぼ全面に設けられて
いるので、総ての液晶分子31を駆動させることがで
き、液晶レンズ30を全域に亘って屈折率制御すること
ができる。
Since the upper electrode is provided on almost the entire surface, all the liquid crystal molecules 31 can be driven, and the refractive index of the liquid crystal lens 30 can be controlled over the entire area.

【0052】その他、本実施の形態においても、上述し
た第1又は第2の実施の形態と同様の作用効果が生じる
ことは言うまでもない。
In addition, it goes without saying that the same operational effects as those of the above-described first or second embodiment also occur in this embodiment.

【0053】第4の実施の形態 本実施の形態では、第3の実施の形態と同様に上部電極
10cも設けるが、図5(a)に示すように、電圧無印
加時に下部電極11に対して平行し、電圧印加時には直
交するポジ型液晶素子を液晶素子31に使用している以
外は、第1の実施の形態と同様である。
Fourth Embodiment In the present embodiment, the upper electrode 10c is also provided as in the third embodiment, but as shown in FIG. 5A, the lower electrode 11 is not applied to the lower electrode 11 when no voltage is applied. The liquid crystal element 31 is the same as that of the first embodiment except that a positive type liquid crystal element which is parallel to the liquid crystal and is orthogonal to the voltage application is used for the liquid crystal element 31.

【0054】従って、図5(b)に示すように、電圧を
印加することによって各液晶分子31を傾斜又は直立さ
せて、上部電極10a、10b及び10c下の液晶分子
31を第1の実施の形態(図1(b)参照)とほぼ同じ
角度にできるために、斜め入射光の入射状況等は同様に
なり、集光効果が良好となる。
Therefore, as shown in FIG. 5B, the liquid crystal molecules 31 under the upper electrodes 10a, 10b, and 10c are tilted or erected by applying a voltage, so that the liquid crystal molecules 31 under the upper electrodes 10a, 10b, and 10c are removed from the first embodiment. Since the angle can be made almost the same as that of the form (see FIG. 1B), the incident state of the obliquely incident light is similar, and the light collecting effect is good.

【0055】本実施の形態においては、電圧無印加時に
液晶素子31が下部電極11に対して平行している状態
なので、複数の画素部16からなる固体撮像素子の非駆
動時に光センサー部6内への光の入射を防ぎ易くなる。
In this embodiment, since the liquid crystal element 31 is in parallel with the lower electrode 11 when no voltage is applied, the inside of the optical sensor section 6 is not driven when the solid-state image pickup element including the plurality of pixel sections 16 is not driven. It becomes easy to prevent the incidence of light on the.

【0056】また、上部電極10cに対応する液晶分子
31を駆動させることができるので、液晶レンズ30の
より細かい屈折率制御を行うことができる。
Since the liquid crystal molecules 31 corresponding to the upper electrode 10c can be driven, a finer refractive index control of the liquid crystal lens 30 can be performed.

【0057】その他、本実施の形態においても、上述し
た第1の実施の形態と同様の作用効果が生じることは言
うまでもない。
In addition, it goes without saying that the same operational effects as those of the above-described first embodiment also occur in this embodiment.

【0058】第5の実施の形態 本実施の形態は、図6(a)に示すように、図1に示し
たと同様に構成された固体撮像素子69を筐体内に配し
た一眼レフタイプのカメラに関するものである。この固
体撮像素子69は、図6(b)に示すように、上部電極
10cを設けてもよい液晶レンズ30を有している。
Fifth Embodiment In this embodiment, as shown in FIG. 6A, a single-lens reflex type camera in which a solid-state image pickup device 69 having the same structure as that shown in FIG. It is about. As shown in FIG. 6B, this solid-state image pickup device 69 has a liquid crystal lens 30 which may be provided with an upper electrode 10c.

【0059】最近、コンパクトカメラのみならず、図6
(a)に概略的に示すように、交換式レンズ28、シャ
ッター26等を設けた一眼レフタイプのカメラ27にも
固体撮像素子が使われているが、こうした一眼レフタイ
プのカメラ27においては、被写体29等に対応してレ
ンズ28を交換する時に射出瞳距離が変わる。即ち、焦
点距離が比較的長いレンズでは図中に破線に示すように
光束の周辺部での入射光は平行光に近いが、焦点距離の
短いレンズでは同周辺部での入射光は実線で示すように
斜め入射が多くなり、このために光センサー部への入射
光が既述したように減少してしまう。そのために、シェ
ーディング特性を改善するためのオンチップレンズを設
けようとしても、その設計が非常に困難となり、また一
旦オンチップレンズを作り込むと、その変更は非常に困
難である。
Recently, not only compact cameras but also FIG.
As shown schematically in (a), a solid-state image sensor is also used in a single-lens reflex camera 27 provided with an interchangeable lens 28, a shutter 26, etc., but in such a single-lens reflex camera 27, The exit pupil distance changes when the lens 28 is exchanged for the subject 29 or the like. That is, in a lens with a relatively long focal length, the incident light in the peripheral portion of the light flux is close to parallel light as shown by the broken line in the figure, but in a lens with a short focal length the incident light in the peripheral portion is shown by the solid line. As described above, the oblique incidence is increased, which reduces the incident light on the optical sensor unit as described above. Therefore, even if it is attempted to provide an on-chip lens for improving the shading characteristics, its design becomes very difficult, and once the on-chip lens is built, its change is very difficult.

【0060】そこで、図6(b)に示すように、液晶レ
ンズ30を用い、被写体29からの斜め入射光が液晶レ
ンズ30に入射する際に、液晶素子31の状態を第1の
実施の形態と同様にして印加電圧に応じて屈折させ、光
センサー部6に集光させることができ、また、レンズ交
換後の焦点の変化に対しても(即ち、入射角の異なる入
射光に対しても)、液晶レンズ30の印加電圧等の条件
を変化させることにより、上部電極10a及び10b下
の液晶分子31の傾斜角度を変更して常に光センサー部
6に集光できるようになる。
Therefore, as shown in FIG. 6B, when the liquid crystal lens 30 is used and the oblique incident light from the subject 29 is incident on the liquid crystal lens 30, the state of the liquid crystal element 31 is set to the first embodiment. In the same manner as described above, the light can be refracted in accordance with the applied voltage and condensed on the optical sensor unit 6. Moreover, even when the focus is changed after the lens is exchanged (that is, even for incident light with different incident angles). ), By changing conditions such as the voltage applied to the liquid crystal lens 30, the tilt angle of the liquid crystal molecules 31 under the upper electrodes 10a and 10b can be changed so that the light can be always focused on the optical sensor unit 6.

【0061】それゆえに、レンズ交換により焦点位置
(射出瞳距離)が変化しても、液晶レンズ30の印加電
圧の変化のみによって、入射光を屈折させて常に効率良
く光センサー部6に入射させることが可能となる。しか
も、これは液晶レンズ30の印加電圧の変化のみによっ
て容易に実現することができる。
Therefore, even if the focal position (exit pupil distance) changes due to lens replacement, the incident light is refracted only by changing the voltage applied to the liquid crystal lens 30 so that the light always enters the optical sensor unit 6 efficiently. Is possible. Moreover, this can be easily realized only by changing the voltage applied to the liquid crystal lens 30.

【0062】その他、本実施の形態においても、上述し
た第1の実施の形態と同様の作用効果が得られる。
In addition, also in this embodiment, the same operational effect as in the above-described first embodiment can be obtained.

【0063】以上に説明した実施の形態は、本発明の技
術的思想に基づいて更に変形が可能である。
The embodiment described above can be further modified based on the technical idea of the present invention.

【0064】例えば、上部電極10a、10b、10
c、下部電極11及び開口部32の形状、位置、それぞ
れの電極に印加する電圧の電圧値、極性等は、任意に選
択してよい。また、上部電極は共通とし、下部電極を分
割してもよい。
For example, the upper electrodes 10a, 10b, 10
c, the shape and position of the lower electrode 11 and the opening 32, the voltage value of the voltage applied to each electrode, the polarity, etc. may be arbitrarily selected. Further, the upper electrode may be common and the lower electrode may be divided.

【0065】また、本実施の形態の固体撮像素子をCC
Dカメラ等に応用してもよい。上述の液晶レンズ30に
代えて、やはり印加電圧で光の進行方向を変化可能な、
例えばBBO(Beta Barium Borate)等の電気光学素子
等を用いてよい。
Further, the solid-state image pickup device of the present embodiment is CC
It may be applied to a D camera or the like. Instead of the liquid crystal lens 30 described above, the traveling direction of light can be changed by an applied voltage.
For example, an electro-optical element such as BBO (Beta Barium Borate) may be used.

【0066】[0066]

【発明の作用効果】上述したように、本発明によれば、
集光手段の印加電圧を印加する電極が複数に分割されて
おり、これらの電極に互いに異なった電圧が印加される
ことによって、光の進行方向に沿って順次配置した固体
撮像素子毎の光感知部への入射光の屈折方向が、それぞ
れの電極に対応する領域毎に最適に制御されるために、
前記固体撮像素子に対して任意の角度で入射してくる前
記入射光を効率よく前記光感知部に集光できる。
As described above, according to the present invention,
The electrodes to which the voltage applied by the light converging means is applied are divided into a plurality of electrodes. By applying different voltages to these electrodes, the light sensing of each solid-state imaging device sequentially arranged along the light traveling direction is performed. In order for the refraction direction of the incident light to the section to be optimally controlled for each region corresponding to each electrode,
The incident light incident on the solid-state image sensor at an arbitrary angle can be efficiently focused on the light sensing unit.

【0067】また、光感知部に対応して集光手段の電極
の形状が変化している領域を有することによって、この
電極を分割して互いに同一の電圧を印加しても、光の進
行方向に沿って順次配置した固体撮像素子毎の光感知部
への入射光の屈折方向が、それぞれの電極に対応する領
域毎に最適に制御されるために、前記固体撮像素子に対
して任意の角度で入射してくる前記入射光を効率よく前
記光感知部に集光できる。
Further, by providing a region where the shape of the electrode of the light collecting means is changed corresponding to the light sensing portion, even if the electrodes are divided and the same voltage is applied to them, the light traveling direction In order to optimally control the refraction direction of the incident light to the light-sensing unit for each solid-state imaging device sequentially arranged along the The incident light coming in can be efficiently condensed on the light sensing portion.

【0068】また、光の進行方向に沿って順次配置した
固体撮像素子毎の光感知部への入射光の屈折方向が、そ
れぞれの電極に対応する領域毎に最適に制御されるため
に、前記光感知部以外の箇所に入射光が入射し難くなる
ので、前記光感知部以外の箇所の遮光措置を省くことが
できる。
Further, since the refraction direction of the incident light to the light sensing portion of each solid-state image pickup element sequentially arranged along the traveling direction of light is optimally controlled for each region corresponding to each electrode, Since it becomes difficult for the incident light to enter the portion other than the light sensing portion, it is possible to omit the light shielding measure in the portion other than the light sensing portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態において斜め入射光
が入射した時の電圧無印加時の画素部の断面図(a)及
び電圧印加時の画素部の断面図(b)である。
FIG. 1 is a sectional view (a) of a pixel portion when no voltage is applied when obliquely incident light is incident and a sectional view (b) of a pixel portion when voltage is applied in the first embodiment of the present invention. .

【図2】同、垂直入射時の電圧印加時の画素部の断面図
である。
FIG. 2 is a sectional view of the pixel portion when a voltage is applied at the time of vertical incidence.

【図3】本発明の第2の実施の形態における電圧無印加
時の画素部の断面図(a)及び電圧印加時の画素部の断
面図(b)である。
FIG. 3 is a sectional view (a) of a pixel portion when no voltage is applied and a sectional view (b) of a pixel portion when a voltage is applied according to a second embodiment of the present invention.

【図4】本発明の第3の実施の形態における電圧印加時
の画素部の断面図である。
FIG. 4 is a sectional view of a pixel portion when a voltage is applied according to a third embodiment of the present invention.

【図5】本発明の第4の実施の形態における電圧無印加
時の画素部の断面図(a)及び電圧印加時の画素部の断
面図(b)である。
5A and 5B are a sectional view (a) of a pixel portion when no voltage is applied and a sectional view (b) of a pixel portion when a voltage is applied according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施の形態における一眼レフカ
メラの断面図(a)及び電圧印加時の画素部の断面図
(b)である。
FIG. 6 is a sectional view (a) of a single-lens reflex camera according to a fifth embodiment of the present invention and a sectional view (b) of a pixel portion when a voltage is applied.

【図7】従来例における固体撮像素子の部分平面図であ
る。
FIG. 7 is a partial plan view of a solid-state image sensor according to a conventional example.

【図8】同、画素部に垂直入射光が入射した時の図7の
A−A’断面図である。
8 is a sectional view taken along line AA ′ of FIG. 7 when vertically incident light is incident on the pixel portion.

【図9】同、画素部に斜め入射光が入射した時の同様の
断面図である。
FIG. 9 is a similar sectional view when obliquely incident light is incident on the pixel portion.

【図10】同、イメージエリアに垂直入射光が入射する
時の概略斜視図(a)、及びイメージエリアに斜め入射
光が入射する時の概略斜視図(b)である。
FIG. 10 is a schematic perspective view (a) when vertically incident light is incident on the image area and a schematic perspective view (b) when obliquely incident light is incident on the image area.

【符号の説明】[Explanation of symbols]

1…オンチップレンズ、2…カラーフィルタ、3…層内
レンズ、4…遮光膜、5…電荷転送電極、6…光センサ
ー部、7…イメージエリア中心部、8…イメージエリア
周辺部、9…電圧可変電源、10a、10b、10c…
上部電極、11…下部電極、12…偏光フィルタ、13
…液晶層、14…絶縁膜、16…画素部、20…半導体
基板、21…ゲート絶縁膜、22…転送路領域、23…
透明絶縁層、26…シャッター、27…一眼レフカメ
ラ、28…レンズ、29…被写体、30…液晶レンズ、
31…液晶素子、32…開口部、35…上部電極10a
の下部、36…上部電極10aと開口部32との境界下
部、37…開口部32の下部、38…開口部32と上部
電極10bとの境界下部、39…上部電極10bの下
部、40…凸部、41…凹部
DESCRIPTION OF SYMBOLS 1 ... On-chip lens, 2 ... Color filter, 3 ... In-layer lens, 4 ... Light-shielding film, 5 ... Charge transfer electrode, 6 ... Photosensor part, 7 ... Image area center part, 8 ... Image area peripheral part, 9 ... Variable voltage power supplies, 10a, 10b, 10c ...
Upper electrode, 11 ... Lower electrode, 12 ... Polarization filter, 13
... liquid crystal layer, 14 ... insulating film, 16 ... pixel portion, 20 ... semiconductor substrate, 21 ... gate insulating film, 22 ... transfer path region, 23 ...
Transparent insulating layer, 26 ... Shutter, 27 ... Single-lens reflex camera, 28 ... Lens, 29 ... Subject, 30 ... Liquid crystal lens,
31 ... Liquid crystal element, 32 ... Opening part, 35 ... Upper electrode 10a
, 36 ... Lower part of boundary between upper electrode 10a and opening 32, 37 ... Lower part of opening 32, 38 ... Lower part of boundary between opening 32 and upper electrode 10b, 39 ... Lower part of upper electrode 10b, 40 ... Convex Part, 41 ... concave part

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 光感知部と、印加電圧によって前記感知
部への入射光の屈折方向を制御する集光手段とを光の進
行方向に沿って順次配置した固体撮像素子において、前
記印加電圧を印加する電極が複数に分割されており、こ
れらの電極に互いに異なった電圧が印加されることによ
って、前記光感知部への光入射が制御される領域を有す
る固体撮像素子。
1. A solid-state imaging device in which a photo-sensing section and a condensing means for controlling a refraction direction of incident light to the sensing section by an applied voltage are sequentially arranged along a traveling direction of light, and the applied voltage is A solid-state imaging device having an area to which an electrode to be applied is divided and a region in which light incidence on the photo-sensing unit is controlled by applying different voltages to these electrodes.
【請求項2】 光感知部と、印加電圧によって前記感知
部への入射光の屈折方向を制御する集光手段とを光の進
行方向に沿って順次配置した固体撮像素子において、前
記光感知部に対応して前記集光手段の電極の形状が変化
している領域を有する固体撮像素子。
2. A solid-state image sensor in which a light-sensing unit and a light-collecting unit that controls the refraction direction of light incident on the sensing unit according to an applied voltage are sequentially arranged along the traveling direction of light. The solid-state image sensor having a region in which the shape of the electrode of the light condensing unit is changed in accordance with.
【請求項3】 前記電極が複数に分割されていて、互い
に同一の電圧が印加される、請求項2に記載の固体撮像
素子。
3. The solid-state imaging device according to claim 2, wherein the electrodes are divided into a plurality of parts, and the same voltage is applied to each other.
【請求項4】 前記入射光が前記光感知部に対して斜め
入射する、請求項1又は2に記載の固体撮像素子。
4. The solid-state imaging device according to claim 1, wherein the incident light is obliquely incident on the light sensing unit.
【請求項5】 前記集光手段が液晶素子によって構成さ
れている、請求項1又は2に記載の固体撮像素子。
5. The solid-state image sensor according to claim 1, wherein the light condensing unit is composed of a liquid crystal element.
【請求項6】 前記液晶素子を構成する一対の透明電極
のうち、光入射側又は光出射側の電極が前記光感知部に
対して分割されている、請求項5に記載の固体撮像素
子。
6. The solid-state imaging device according to claim 5, wherein, of the pair of transparent electrodes forming the liquid crystal element, a light incident side electrode or a light emitting side electrode is divided with respect to the light sensing unit.
【請求項7】 前記液晶素子を構成する液晶が負又は正
の誘電率異方性を有する、請求項5に記載の固体撮像素
子。
7. The solid-state image sensor according to claim 5, wherein the liquid crystal forming the liquid crystal element has a negative or positive dielectric anisotropy.
【請求項8】 前記集光手段と前記光感知部との間に集
光用のレンズ手段が付加されている、請求項1又は2に
記載の固体撮像素子。
8. The solid-state image sensor according to claim 1, further comprising a lens unit for collecting light between the light collecting unit and the light sensing unit.
【請求項9】 前記光感知部の側方に電荷転送部が設け
られている、請求項1又は2に記載の固体撮像素子。
9. The solid-state imaging device according to claim 1, wherein a charge transfer unit is provided on the side of the light sensing unit.
【請求項10】 請求項1〜9の何れか1項に記載した
固体撮像素子を具備する、撮像装置。
10. An image pickup apparatus comprising the solid-state image pickup device according to claim 1.
【請求項11】 CCDカメラとして構成された、請求
項10に記載の撮像装置。
11. The imaging device according to claim 10, configured as a CCD camera.
【請求項12】 一眼レフタイプのカメラとして構成さ
れた、請求項10に記載の撮像装置。
12. The image pickup apparatus according to claim 10, which is configured as a single-lens reflex type camera.
JP2002140898A 2002-05-16 2002-05-16 Solid-state image pickup element and imaging device Pending JP2003332546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140898A JP2003332546A (en) 2002-05-16 2002-05-16 Solid-state image pickup element and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140898A JP2003332546A (en) 2002-05-16 2002-05-16 Solid-state image pickup element and imaging device

Publications (1)

Publication Number Publication Date
JP2003332546A true JP2003332546A (en) 2003-11-21

Family

ID=29701627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140898A Pending JP2003332546A (en) 2002-05-16 2002-05-16 Solid-state image pickup element and imaging device

Country Status (1)

Country Link
JP (1) JP2003332546A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324934A (en) * 2005-05-18 2006-11-30 Nikon Corp Solid state imaging device
US7777796B2 (en) 2006-06-30 2010-08-17 Fujitsu Semiconductor Limited Solid-state image pickup apparatus including a global shutter function and control method therefor
CN113196376A (en) * 2018-12-18 2021-07-30 三星电子株式会社 Electronic device and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324934A (en) * 2005-05-18 2006-11-30 Nikon Corp Solid state imaging device
US7777796B2 (en) 2006-06-30 2010-08-17 Fujitsu Semiconductor Limited Solid-state image pickup apparatus including a global shutter function and control method therefor
CN113196376A (en) * 2018-12-18 2021-07-30 三星电子株式会社 Electronic device and control method thereof
US11601581B2 (en) 2018-12-18 2023-03-07 Samsung Electronics Co., Ltd. Electronic apparatus and control method thereof

Similar Documents

Publication Publication Date Title
KR101832094B1 (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
KR100733853B1 (en) Solid-state image sensing element and its design support method, and image sensing device
JP5537905B2 (en) Imaging device and imaging apparatus
JP6812969B2 (en) Solid-state image sensor, image sensor, and method for manufacturing solid-state image sensor
WO2010122702A1 (en) Solid-state imaging device and electronic camera
KR100693927B1 (en) Method of manufacturing microlens, method of manufacturing microlens array and method of manufacturing image sensor
US11282882B2 (en) Focus detecting device and electronic device
JP5157436B2 (en) Solid-state imaging device and imaging apparatus
CN107924929B (en) Solid-state imaging device, electronic apparatus, and method for manufacturing solid-state imaging device
WO2011158567A1 (en) Solid-state image capture element and digital camera
US20140001589A1 (en) Image sensor and imaging device
JP7071055B2 (en) Image sensor and image sensor
JP2005303409A (en) Solid state imaging device
KR20140120467A (en) Auto focus system of camera device, and camera device using the same
US9402041B2 (en) Solid-state image sensor and imaging apparatus using same
JP2023159224A (en) Imaging element and imaging apparatus
JP2011171749A (en) Backside-irradiation-type image sensor and image pickup apparatus
JP2021170792A (en) Imaging device and imaging apparatus
CN105826341B (en) A kind of liquid crystal base imaging detection chip of addressable chromatography visual field
JP2003332546A (en) Solid-state image pickup element and imaging device
JP2006032713A (en) Solid-state imaging element
JP2010192604A (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
JP5060216B2 (en) Imaging device
JP4011710B2 (en) Imaging device
JP2003018476A (en) Imaging apparatus