JP2003329817A - Prism and method for producing the same - Google Patents

Prism and method for producing the same

Info

Publication number
JP2003329817A
JP2003329817A JP2003056494A JP2003056494A JP2003329817A JP 2003329817 A JP2003329817 A JP 2003329817A JP 2003056494 A JP2003056494 A JP 2003056494A JP 2003056494 A JP2003056494 A JP 2003056494A JP 2003329817 A JP2003329817 A JP 2003329817A
Authority
JP
Japan
Prior art keywords
prism
light
base material
glass
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003056494A
Other languages
Japanese (ja)
Inventor
Hirokazu Takeuchi
宏和 竹内
Nagaharu Nakajima
長晴 中嶋
Sunao Seto
直 瀬戸
Mitsutaka Nakae
光孝 仲江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003056494A priority Critical patent/JP2003329817A/en
Publication of JP2003329817A publication Critical patent/JP2003329817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small glass prism capable of corresponding to having high precision and high strength and capable of corresponding to large-capacity optical recording and high-speed optical communication and a method for producing a prism with high production efficiency. <P>SOLUTION: This prism is made of transparent glass, surfaces of corner parts 1d, 1e and 1f linking with incident light surfaces 1a, 1b and 1c are a fire-working surface, and a compressed stress layer 2 having a stress value of 0.1 to 10 MPa is formed on the surfaces of the corner parts 1d, 1e and 1f. In this method for producing the prism, a glass preform material having a predetermined size ratio, wherein the Ra value of a surface that serves as a light incidence surface after forming is less than the value corresponding to #170, is gripped by a feed means and fed into a furnace, where the glass preform material is heated to a temperature such that the lowest viscosity is not less than 10<SP>4</SP>Pa.s but less than 10<SP>6</SP>Pa.s, the lower portion being stretch- formed by a stretch means and cut into long bodies having a desired size and an incident light surface whose surface Ra value is not more than 1/4 of incident light wavelength, and the long bodies are then cut into pieces of desired length. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス製のプリズ
ム及び該プリズムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass prism and a method for manufacturing the prism.

【0002】[0002]

【従来の技術】近年、光記録及び光通信技術の発達によ
り、光ディスク装置用の光ヘッドや、光通信用の光スイ
ッチ等には、光信号を処理するため、透明性、低膨張、
量産性、及び適度な研磨性等の利点を有する多種類の小
型プリズムが使用されている。
2. Description of the Related Art In recent years, due to the development of optical recording and optical communication technologies, optical heads for optical disk devices, optical switches for optical communication, etc., are transparent, have a low expansion coefficient, and are required to process optical signals.
Many types of small prisms are used, which have advantages such as mass productivity and appropriate polishability.

【0003】プリズムは、第一面から入射した光を第二
面で全反射させ第三面から出射するものや、第一面から
入射した光を第二面で全反射した後に第三面でも全反射
して第一面から出射するもの等がある。このような光信
号を操作する機能を正確に発揮させるためには、第一面
〜第三面等の光信号が当たる当光面の互いの角度が精度
よく形成されており、かつ、当光面が高い表面精度を有
する鏡面である必要がある。
The prism is one that totally reflects the light incident from the first surface on the second surface and then emits it from the third surface, or a prism that totally reflects the light incident from the first surface on the second surface and then on the third surface. There is one that is totally reflected and emitted from the first surface. In order to accurately exhibit the function of operating such an optical signal, the mutual angles of the light-receiving surfaces on which the light signals such as the first surface to the third surface hit are accurately formed, and The surface needs to be a mirror surface having high surface accuracy.

【0004】一般に、ガラス製のプリズムは、上記のよ
うな要求を満たすために、加工代を設けて粗成形された
おおよそプリズム形状のガラス製加工材を準備し、当光
面を一面ずつ精密に研削した後に研磨仕上げし、所要の
高い当光面の互いの角度精度及び高い表面精度の鏡面に
仕上げることにより作製されている。
Generally, in order to meet the above requirements, a glass prism is prepared by preparing a roughly prism-shaped glass processed material that is roughly formed with a machining allowance, and precisely illuminates each light receiving surface one by one. It is manufactured by polishing after grinding and then finishing it into a mirror surface with a required high degree of mutual angle accuracy and high surface accuracy.

【0005】また、特許文献1のように、プレス成形に
よりガラス製のプリズムを作製する提案もなされてい
る。
Further, as in Patent Document 1, it has been proposed to manufacture a glass prism by press molding.

【0006】[0006]

【特許文献1】特開平10−1321号公報(第3−4
頁、第1−5図)
[Patent Document 1] Japanese Unexamined Patent Publication No. 10-1321 (No. 3-4)
Page, Fig. 1-5)

【0007】[0007]

【発明が解決しようとする課題】近年、光記録の大容量
化及び光通信の高速大容量化の進展により、このような
用途の光ディスク装置用光ヘッドや光通信用光スイッチ
等に対する需要が大きくなってきている。そのため安価
な樹脂製のプリズムも多用されてきているが、樹脂製の
プリズムでは光学特性の温度依存性、耐湿性等の信頼性
の点で使用できない場合がある。
In recent years, the demand for optical heads for optical disc devices and optical switches for optical communications for such applications has been great due to the progress of increasing the capacity of optical recording and increasing the speed of optical communication. It has become to. For this reason, inexpensive resin prisms are often used, but resin prisms may not be used in terms of reliability such as temperature dependence of optical characteristics and moisture resistance.

【0008】上記のような従来の製造方法で目的とする
ガラス製のプリズムを作製する場合、当光面を一面ずつ
精密に研削した後に研磨仕上げし、互いの当光面を所要
の高い角度精度、表面粗さ、平面度に仕上げる必要があ
るので、加工工数が多くかつ煩雑であり、良品率が上が
らずコスト高になる問題がある。
When the desired glass prism is manufactured by the conventional manufacturing method as described above, the light-receiving surfaces are precisely ground one by one and then polished, and the respective light-receiving surfaces are required to have a high angle accuracy. Since it is necessary to finish the surface roughness and the flatness, there is a problem that the number of processing steps is large and complicated, the yield rate is not increased, and the cost is increased.

【0009】また、各当光面と直交する断面の面積が1
00mm2以下である小型のプリズムや、各当光面と直
交する断面の外接円直径をD、当光面に平行な長さ寸法
をLとするとき、L≧1.5D/20.5の関係となるよ
うな細長い形状を有するプリズムを作製する場合には、
ガラス製の加工材の取り扱いが困難であり、研磨などの
作業中の破損、互いの当光面を所要の高い角度精度に仕
上げられない、当光面が均質な表面精度を有する鏡面に
仕上げられない等の難点ばかりでなく、せっかく労力を
かけて仕上がった当光面を、加工中やその後の洗浄工程
中に傷つけてしまう場合もあり、さらに当光面に連接す
るコーナー部に研磨工程等でクラックが入ると抗折強度
が小さくなり、特に細長形状のプリズムを取り扱う場合
には、しばしば加工材が破損して歩留まりが低下し、生
産効率が低くなって大量生産に不適であるという問題も
ある。
Further, the area of the cross section orthogonal to each light-illuminating surface is 1
Letting D be the circumscribed circle diameter of the cross section orthogonal to each light-incident surface and a small prism of 00 mm 2 or less, and L be the length dimension parallel to the light-incident surface, the relation of L ≧ 1.5D / 2 0.5 When manufacturing a prism having an elongated shape such that
It is difficult to handle glass processing materials, it is damaged during work such as polishing, the illuminated surfaces of each other cannot be finished with the required high angular accuracy, and the illuminated surfaces are finished as mirror surfaces with uniform surface precision. Not only is it difficult to do, but the finished light surface may be damaged during processing and the subsequent cleaning process, and the corners connected to the light surface may be damaged during the polishing process. If cracks occur, the bending strength decreases, and especially when handling elongated prisms, the processed material often breaks, yield decreases, and there is also the problem that production efficiency decreases and it is not suitable for mass production. .

【0010】上記の問題に対応するため、例えば、特許
文献1には、ガラス丸棒を延伸してロッド状ガラス素材
を得、このガラス素材を再加熱してプレス成形により多
面体の長尺成形体にした後、所定長さのプリズムを多数
個取りする提案がなされている。しかし、当光面の品位
を決定する成形型の管理が困難であり、成形型の寿命が
短いとコストがあまり下がらないという問題がある。
In order to address the above problems, for example, in Patent Document 1, a glass rod is stretched to obtain a rod-shaped glass material, and the glass material is reheated and press-molded to form a polyhedral elongated molded body. After that, it has been proposed to take a large number of prisms of a predetermined length. However, there is a problem that it is difficult to control the molding die that determines the quality of the illuminated surface, and if the molding die has a short life, the cost does not decrease so much.

【0011】本発明は、上記の問題点を解決し、大容量
光記録及び高速大容量光通信用途に対応可能な高精度及
び高強度を有するガラス製の小型プリズム、及び生産効
率が高く大量生産に適するプリズムの製造方法を提供す
ることを目的とする。
The present invention solves the above-mentioned problems, and a small glass prism having high precision and high strength, which can be used for large-capacity optical recording and high-speed large-capacity optical communication applications, and mass production with high production efficiency. It is an object of the present invention to provide a method for manufacturing a prism suitable for.

【0012】[0012]

【課題を解決するための手段】本発明に係るプリズム
は、透明なガラスからなり、光が当たる当光面に連接す
るコーナー部の表面が火造り面であり、かつ該コーナー
部の表面に応力値が0.1〜10MPaの圧縮応力層が
形成されてなることを特徴とする。
The prism according to the present invention is made of transparent glass, and the surface of the corner portion connected to the light-exposed surface on which light is applied is a fire-making surface, and stress is applied to the surface of the corner portion. A compression stress layer having a value of 0.1 to 10 MPa is formed.

【0013】本発明で、光信号等の光が当たる当光面に
連接するコーナー部とは、入射光が透光する表面と反射
する表面とが連接しているライン状の角部を意味してお
り、本発明のプリズムは、好ましくは、加熱・延伸成形
されてコーナー部の断面が略R形状になっており、その
表面が、熱間加工により形成されたファイヤポリッシュ
面等と呼ばれる火造り面からなっている。このような自
由表面からなる火造り面には、実質的に表面クラック等
の欠陥が存在せず、ガラス本来の強度に近い高強度にな
っている。
In the present invention, the corner portion connected to the light receiving surface on which light such as an optical signal strikes means a line-shaped corner portion where the surface through which the incident light transmits and the surface through which the incident light reflects are connected. Therefore, the prism of the present invention is preferably heated and stretched so that the cross section of the corner portion is substantially R-shaped, and the surface thereof is a fire-polished surface or the like formed by hot working. It is made up of faces. The fired surface composed of such a free surface has substantially no defects such as surface cracks, and has a high strength close to the original strength of glass.

【0014】コーナー部の表面に形成される圧縮応力層
の応力値が0.1MPa未満の場合、コーナー部が十分
に強化されておらず強度が低い状態である。一方、圧縮
応力層の応力値が10MPaを超えると、屈折率等の光
学特性に悪影響を及ぼすばかりでなく、取り扱い中に破
損させた際に、ガラス片が飛び散って周囲に悪影響を及
ぼす。コーナー部の表面に形成される圧縮応力層として
は、応力値が0.1〜10MPaであることが重要であ
る。
When the stress value of the compressive stress layer formed on the surface of the corner portion is less than 0.1 MPa, the corner portion is not sufficiently strengthened and the strength is low. On the other hand, when the stress value of the compressive stress layer exceeds 10 MPa, not only the optical characteristics such as the refractive index are adversely affected, but also when broken during handling, the glass pieces scatter and adversely affect the surroundings. It is important that the compressive stress layer formed on the surface of the corner has a stress value of 0.1 to 10 MPa.

【0015】また、本発明のプリズムは、各当光面と直
交する断面の面積が100mm2以下であることを特徴
とする。
Further, the prism of the present invention is characterized in that the area of a cross section orthogonal to each light incident surface is 100 mm 2 or less.

【0016】各当光面と直交する断面の面積が100m
2以下であるとは、直角プリズムの場合には、直角三
角形、直角二等辺三角形等の断面の面積が100mm2
以下となる小型のプリズムであることを意味している。
The area of the cross section orthogonal to each light-illuminating surface is 100 m.
The is m 2 or less, in the case of right-angle prism is a right triangle, 100 mm area of the cross section of such an isosceles right triangle 2
It means a small prism as follows.

【0017】また、本発明のプリズムは、各当光面と直
交する断面の外接円直径をD、当光面に平行な長さ寸法
をLとするとき、L≧1.5D/20.5の関係を満たす
ことを特徴とする。
Further, in the prism of the present invention, when a circumscribed circle diameter of a cross section orthogonal to each light incident surface is D and a length dimension parallel to the light incident surface is L, L ≧ 1.5D / 2 0.5 Characterized by satisfying a relationship.

【0018】外接円直径Dは、例えば、直角プリズムの
場合には、直角三角形、直角二等辺三角形等の断面に外
接する外接円の直径を意味しており、L≧1.5D/2
0.5の関係を満たすとは、長さ寸法Lが外接円直径Dの
1.06倍以上である長尺のプリズムを意味している。
The circumscribed circle diameter D means the diameter of the circumscribed circle circumscribing the cross section of a right-angled triangle, a right-angled isosceles triangle, or the like in the case of a right-angled prism, and L ≧ 1.5D / 2.
Satisfying the relationship of 0.5 means a long prism whose length dimension L is 1.06 times or more the circumscribed circle diameter D.

【0019】また、本発明のプリズムは、当光面に光学
膜を形成してなることを特徴とする。
Further, the prism of the present invention is characterized in that an optical film is formed on the light receiving surface.

【0020】当光面に形成する光学膜としては、フィル
タ膜、ビームスプリッタ等の偏光膜、反射防止膜、濃度
フィルタ膜、金属ミラー膜、これらを組み合わせた複合
膜等が使用可能である。
As the optical film formed on the light-incident surface, a filter film, a polarizing film such as a beam splitter, an antireflection film, a density filter film, a metal mirror film, or a composite film combining these can be used.

【0021】本発明に係るプリズムの製造方法は、透明
ガラスからなり、成形後に当光面となる表面の表面粗さ
のRa値が#170相当未満であり、かつ成形後に得ら
れるプリズムに対して所定範囲の寸法比を有するガラス
母材を作製し、該ガラス母材を送り込み手段の把持部に
把持し、該ガラス母材を加熱炉に送り込むことによりガ
ラス母材の最低粘度が104Pa・s以上で106Pa・
s未満となる所定の温度に加熱し、該ガラス母材の下方
を引張手段で延伸成形して所定長さに切断することによ
りガラス母材と略相似形で所望範囲の寸法及び表面粗さ
のRa値が入射光の波長の1/4以下である当光面を有
する長尺体を得、該長尺体を所望の長さに切断すること
を特徴とする。
The method for producing a prism according to the present invention is applied to a prism which is made of transparent glass and has a surface roughness Ra of less than # 170 and which is obtained after the molding. A glass base material having a dimensional ratio in a predetermined range is produced, the glass base material is held by a holding part of a feeding means, and the glass base material is fed into a heating furnace so that the minimum viscosity of the glass base material is 10 4 Pa. 10 6 Pa for s or more
The glass base material is heated to a predetermined temperature of less than s, the lower part of the glass base material is stretch-formed by a tensile means, and cut into a predetermined length to obtain a size and surface roughness in a desired range in a shape substantially similar to the glass base material. The present invention is characterized in that a long body having an equivalent surface whose Ra value is ¼ or less of the wavelength of incident light is obtained, and the long body is cut into a desired length.

【0022】成形後に当光面となるガラス母材表面の表
面粗さのRa値が#170相当よりも粗くなると、当光
面の表面粗さのRa値が入射光の波長の1/4以下であ
る長尺体を得られなくなる。本発明で使用するガラス母
材の成形後に当光面となる表面の表面粗さとしては、#
170相当よりも細かいことが重要である。また、#1
70相当の表面粗さのRa値であるとは、例えば、ホウ
珪酸系の光学ガラスを例にとると、#170相当の表面
粗さのRa値は1μm〜3μmであり2μm前後の場合
が多い。
When the Ra value of the surface roughness of the glass base material surface which becomes the light receiving surface after molding becomes rougher than that corresponding to # 170, the Ra value of the surface roughness of the light receiving surface is 1/4 or less of the wavelength of the incident light. It becomes impossible to obtain a long body. The surface roughness of the surface which becomes the light-incident surface after molding of the glass base material used in the present invention includes:
It is important to be finer than 170. Also, # 1
The Ra value of the surface roughness of 70 is, for example, in the case of borosilicate optical glass, the Ra value of the surface roughness of # 170 is 1 μm to 3 μm, and is often about 2 μm. .

【0023】また、加熱炉内のガラス母材の最低粘度が
104Pa・s未満では、延伸成形中のガラス母材が撓
んで所定の寸法の長尺体を真っ直ぐ引っ張ることができ
ず曲がってしまう。また、延伸成形して得た長尺体の形
状が表面張力により大きく変形してしまいガラス母材と
略相似形の長尺体が得られない。一方、最低粘度が10
6Pa・s以上では、延伸成形中のガラス管のレオロジ
ー的挙動から、引張速度を高めようとすると延伸に非常
に大きな力が必要となり、対応する成形設備の製作が困
難になるばかりでなく、延伸成形中の引張応力によりガ
ラス母材の破損が多々発生する。即ち、最低粘度が10
6Pa・s以上では、引張速度を一定値よりも高くする
ことができなくなり、成形スピードが非常に遅くなる。
本発明では、加熱炉内のガラス母材の最低粘度が104
Pa・s以上で106Pa・s未満の範囲にあることが
重要である。
When the minimum viscosity of the glass base material in the heating furnace is less than 10 4 Pa · s, the glass base material during the stretch forming bends and the long body of a predetermined size cannot be pulled straight and bends. I will end up. In addition, the shape of the elongated body obtained by stretch molding is greatly deformed by the surface tension, and an elongated body having a shape substantially similar to the glass base material cannot be obtained. On the other hand, the minimum viscosity is 10
At 6 Pa · s or more, due to the rheological behavior of the glass tube during stretch molding, an extremely large force is required for stretching when trying to increase the pulling speed, which not only makes it difficult to manufacture the corresponding molding equipment, The glass base material is often broken due to the tensile stress during stretch forming. That is, the minimum viscosity is 10
If it is 6 Pa · s or more, the tensile speed cannot be made higher than a certain value, and the molding speed becomes very slow.
In the present invention, the minimum viscosity of the glass base material in the heating furnace is 10 4
It is important to be in the range of Pa · s or more and less than 10 6 Pa · s.

【0024】さらに、当光面の表面粗さのRa値が入射
光の波長の1/4を超える長尺体であると、光が乱反射
されるので、大容量光記録及び高速大容量光通信等の用
途に対応することができないプリズムになる。本発明で
延伸成形して得る長尺体としては、表面粗さのRa値が
入射光の波長の1/4以下である当光面を有することが
重要である。
Furthermore, if the Ra of the surface roughness of the light receiving surface exceeds 1/4 of the wavelength of the incident light, the light is diffusely reflected, so that large-capacity optical recording and high-speed large-capacity optical communication are performed. It becomes a prism that cannot be used for such purposes. It is important for the elongated body obtained by stretch molding in the present invention to have a light-applied surface having a Ra value of surface roughness of ¼ or less of the wavelength of incident light.

【0025】また、本発明のプリズムの製造方法は、延
伸成形で得られた長尺体の当光面を研磨することを特徴
とする。
Further, the method for producing a prism of the present invention is characterized in that the light-incident surface of the elongated body obtained by stretch molding is polished.

【0026】延伸成形で得られた長尺体の当光面は、研
磨によって仕上げても良い。延伸成形で得られた長尺体
の当光面を研磨することにより、互いの当光面を僅かに
研磨するだけでさらに高い精度の角度精度、表面粗さ、
平面度に仕上げることが可能となる。
The illuminated surface of the elongated body obtained by stretch molding may be finished by polishing. By polishing the light-illuminating surface of the elongated body obtained by stretch molding, the angle accuracy of higher accuracy, surface roughness, by just slightly polishing the light-illuminating surface of each other,
It becomes possible to finish to flatness.

【0027】[0027]

【作用】本発明のプリズムは、透明なガラスからなり、
光が当たる当光面に連接するコーナー部の表面が火造り
面であり、かつ該コーナー部の表面に応力値が0.1〜
10MPaの圧縮応力層が形成されてなるので、欠けが
生じやすいコーナー部が物理的に強化されており、ガラ
ス製プリズムの破損が起こり難く、ガラス破片も発生し
難いので当光面を傷つけることが少なく、取り扱いが容
易となる。
The prism of the present invention is made of transparent glass,
The surface of the corner portion connected to the light-exposed surface is a fired surface, and the surface of the corner portion has a stress value of 0.1 to 0.1.
Since a compressive stress layer of 10 MPa is formed, the corners where chipping is likely to occur are physically strengthened, glass prisms are less likely to break, and glass fragments are less likely to occur, so that the light receiving surface can be damaged. Less and easier to handle.

【0028】また、本発明のプリズムは、各当光面と直
交する断面の面積が100mm2以下であるので、コー
ナー部が強化された小型のプリズムを提供することがで
きる。
Further, since the prism of the present invention has an area of a cross section perpendicular to each light incident surface of 100 mm 2 or less, it is possible to provide a small prism having a reinforced corner portion.

【0029】また、本発明のプリズムは、各当光面と直
交する断面の外接円直径をD、当光面に平行な長さ寸法
をLとするとき、L≧1.5D/20.5の関係を満たす
ので、コーナー部が強化されて折れ難くなっている細長
いプリズムを提供することができる。
Further, in the prism of the present invention, when the circumscribed circle diameter of the cross section orthogonal to each light receiving surface is D and the length dimension parallel to the light receiving surface is L, L ≧ 1.5D / 2 0.5 Since the relationship is satisfied, it is possible to provide an elongated prism in which the corner portion is strengthened and is difficult to break.

【0030】また、本発明のプリズムは、当光面に光学
膜を形成してなるので、フィルタ膜、ビームスプリッタ
等の偏光膜、反射防止膜、濃度フィルタ膜、金属ミラー
膜、これらを組み合わせた複合膜を形成することによ
り、大容量光記録及び高速大容量光通信用途に対応可能
なコーナー部が強化された種々のプリズムを提供するこ
とができる。
Further, since the prism of the present invention is formed by forming an optical film on the light receiving surface, a filter film, a polarizing film such as a beam splitter, an antireflection film, a density filter film, a metal mirror film, or a combination thereof. By forming the composite film, it is possible to provide various prisms having a reinforced corner portion which can be used for high-capacity optical recording and high-speed high-capacity optical communication.

【0031】本発明に係るプリズムの製造方法は、透明
ガラスからなり、成形後に当光面となる表面の表面粗さ
のRa値が#170相当未満であり、かつ成形後に得ら
れるプリズムに対して所定範囲の寸法比を有するガラス
母材を作製し、該ガラス母材を送り込み手段の把持部に
把持し、該ガラス母材を加熱炉に送り込むことによりガ
ラス母材の最低粘度が104Pa・s以上で106Pa・
s未満となる所定の温度に加熱し、該ガラス母材の下方
を引張手段で延伸成形して所定長さに切断することによ
りガラス母材と略相似形で所望範囲の寸法及び表面粗さ
のRa値が入射光の波長の1/4以下である当光面を有
する長尺体を得、該長尺体を所望の長さに切断するの
で、大容量光記録及び高速大容量光通信用途に対応可能
なコーナー部が強化されたプリズムを効率的に作製する
ことが可能となる。
The method for producing a prism according to the present invention is applied to a prism which is made of transparent glass, has a surface roughness Ra value of less than # 170 and which is obtained as a light-incident surface after the molding. A glass base material having a dimensional ratio in a predetermined range is produced, the glass base material is held by a holding part of a feeding means, and the glass base material is fed into a heating furnace so that the minimum viscosity of the glass base material is 10 4 Pa. 10 6 Pa for s or more
The glass base material is heated to a predetermined temperature of less than s, the lower part of the glass base material is stretch-formed by a tensile means, and cut into a predetermined length to obtain a size and surface roughness in a desired range in a shape substantially similar to the glass base material. For obtaining large-capacity optical recording and high-speed large-capacity optical communication since a long body having an equivalent surface whose Ra value is ¼ or less of the wavelength of incident light is obtained and the long body is cut into a desired length. It is possible to efficiently manufacture a prism having a reinforced corner portion that is compatible with the above.

【0032】また、本発明のプリズムの製造方法は、延
伸成形で得られた長尺体の当光面を研磨するので、延伸
成形で得られた所望範囲の寸法及び表面粗さのRa値が
入射光の波長の1/4以下である当光面を有する長尺体
の当光面を僅かに研磨するだけで、更に高い精度の角度
精度、表面粗さ、平面度に仕上げることが可能となる。
長尺体の当光面を僅かに研磨するだけであるので研磨作
業が短時間であり、かつ長尺体を研磨するのでプリズム
1個当たりに換算すると高効率に研磨を行うことができ
る。
Further, in the method for producing a prism of the present invention, since the light-illuminating surface of the elongated body obtained by stretch molding is polished, the Ra values of the dimensions and surface roughness in the desired range obtained by stretch molding are large. By slightly polishing the light-receiving surface of a long body having a light-receiving surface that is 1/4 or less of the wavelength of the incident light, it is possible to achieve even higher accuracy in angle accuracy, surface roughness, and flatness. Become.
Since the light-illuminating surface of the elongated body is only slightly polished, the polishing work is short, and since the elongated body is polished, it can be highly efficiently polished when converted into one prism.

【0033】[0033]

【発明の実施の形態】図1は本発明のプリズムの説明図
であり、図中、1はプリズムを、1a、1b、1cは光
が当たる当光面を、1d、1e、1fはコーナー部を、
2は圧縮応力層をそれぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a prism of the present invention, in which 1 is a prism, 1a, 1b, 1c are light-incident surfaces on which light is incident, and 1d, 1e, 1f are corner portions. To
Reference numerals 2 respectively indicate compressive stress layers.

【0034】まず、本発明のプリズムについて説明す
る。
First, the prism of the present invention will be described.

【0035】本発明のプリズム1は、図1に示すよう
に、透明な光学ガラス、例えば、BK−7からなり、形
状が直角二等辺三角形の直角プリズムであり、光信号等
の光が当たる当光面1a、1b、1c同士を連接する断
面が略R形状のコーナー部1d、1e、1fの表面が火
造り面であって表面粗さのRa値は30nmであり、か
つコーナー部1d、1e、1fの表面に、拡大図で示す
ように、応力値が約3MPaの圧縮応力層2が形成され
て物理的に強化されているものである。また、当光面1
a、1b、1cの表面粗さのRa値も30nmで、平面
度は入射光の波長λの1/4よりも良好であり、光を散
乱させることなく透過または反射させることができ、当
光面1bと当光面1cとがなす角度θ1は、90°±1
5″であり、当光面1aと当光面1bとがなす角度θ2
は45°±15″と非常に高精度に形成されているもの
である。
As shown in FIG. 1, the prism 1 of the present invention is made of transparent optical glass, for example, BK-7, is a right-angled prism having a right-angled isosceles triangle shape, and is exposed to light such as an optical signal. The surfaces of the corner portions 1d, 1e, 1f having a substantially R-shaped cross section connecting the light surfaces 1a, 1b, 1c are fire-polished surfaces, the Ra value of the surface roughness is 30 nm, and the corner portions 1d, 1e are also formed. As shown in an enlarged view, a compressive stress layer 2 having a stress value of about 3 MPa is formed on the surface of 1f to be physically reinforced. Also, the light side 1
The Ra values of the surface roughness of a, 1b, and 1c are also 30 nm, the flatness is better than ¼ of the wavelength λ of the incident light, and the light can be transmitted or reflected without being scattered. The angle θ1 formed by the surface 1b and the light receiving surface 1c is 90 ° ± 1
5 ″, and an angle θ2 formed by the light receiving surface 1a and the light receiving surface 1b.
Is formed with a very high accuracy of 45 ° ± 15 ″.

【0036】また、プリズム1は、一辺が0.5mmで
外接円直径Dは0.7mmの小型プリズムであり、当光
面1a、1b、1cに平行な長さ寸法Lが2mmであっ
て、L≧1.5D/20.5の関係を満たす細長い形状の
ものである。
Further, the prism 1 is a small prism having a side of 0.5 mm and a circumscribed circle diameter D of 0.7 mm, and a length L parallel to the light receiving surfaces 1a, 1b, 1c is 2 mm. It has an elongated shape that satisfies the relationship of L ≧ 1.5D / 2 0.5 .

【0037】プリズム1の3点曲げ試験評価を行ったと
ころ、曲げ応力値が120MPaと、同じ寸法を有する
研磨により作製された従来のプリズムに比べて約2.5
倍の値となった。
When the three-point bending test of the prism 1 was evaluated, the bending stress value was 120 MPa, which was about 2.5 as compared with the conventional prism made by polishing having the same dimensions.
It was double the value.

【0038】他の実施の形態に係るプリズム3は、図1
(B)に示すように、当光面3aに波長が1310nm
の光を95%以上透過し、1550nmの光を実質的に
透過せず全反射するフィルタ膜4が形成されており、光
スイッチ等に使用されるものである。
A prism 3 according to another embodiment is shown in FIG.
As shown in (B), the wavelength is 1310 nm on the light receiving surface 3a.
The filter film 4 which transmits 95% or more of the above light and totally reflects the light of 1550 nm without being transmitted is used for an optical switch or the like.

【0039】また、図1(C)に示すように、他の実施
の形態に係るプリズム5、6は、対向する当光面5a、
6a間にP偏光とS偏光を処理するビームスプリッタ機
能を有する偏光膜7が形成されており、光ディスク装置
の光ヘッド用光学系として使用されるものである。
Further, as shown in FIG. 1C, prisms 5 and 6 according to another embodiment are provided with opposing light-receiving surfaces 5a,
A polarizing film 7 having a beam splitter function for processing P-polarized light and S-polarized light is formed between 6a and is used as an optical system for an optical head of an optical disk device.

【0040】次に、本発明に係るプリズムの製造方法に
ついて説明する。
Next, a method of manufacturing the prism according to the present invention will be described.

【0041】図2は本発明のプリズムの製造方法を説明
する図であり、(A)はガラス母材を、(B)は延伸成
形の工程を、(C)は、長尺体から複数のプリズム1を
得る説明図である。
2A and 2B are views for explaining the method of manufacturing a prism of the present invention. FIG. 2A is a glass base material, FIG. 2B is a drawing step, and FIG. It is explanatory drawing which obtains the prism 1.

【0042】ガラス母材11は、図2(A)に示すよう
に、例えば、最低粘度が104Pa・sとなる温度が約
850℃であるホウ珪酸系光学ガラスのBK−7からな
り、成形後に当光面となる表面11a、11b、11c
を有する。ガラス母材11の横断面は、表面11aを底
辺とする直角二等辺三角形をなし、表面11b及び11
cの辺長さはそれぞれ10〜70mm程度であり、表面
11bと11cとのなす角度が90°±15″でのガラ
ス母材11を準備する。ガラス母材11の成形後にプリ
ズムの当光面となる表面11a、11b、11cの表面
粗さは、Ra値が2μm前後となる#170相当以下の
#600相当であって、Ra値は0.3μm〜0.5μ
m、例えば0.4μm程度である。
As shown in FIG. 2A, the glass base material 11 is made of, for example, BK-7, which is a borosilicate optical glass having a minimum viscosity of 10 4 Pa · s and a temperature of about 850 ° C. Surfaces 11a, 11b, 11c that become the light receiving surface after molding
Have. The cross section of the glass base material 11 is an isosceles right triangle whose base is the surface 11a.
Each side length of c is about 10 to 70 mm, and a glass base material 11 having an angle between the surfaces 11b and 11c of 90 ° ± 15 ″ is prepared. The surface roughness of the surfaces 11a, 11b, and 11c that correspond to # 600 is equal to or less than # 170, which corresponds to an Ra value of about 2 μm, and an Ra value of 0.3 μm to 0.5 μm.
m, for example, about 0.4 μm.

【0043】ガラス母材11を延伸成形する装置は、図
2(B)に示すように、基本的な構造部として、ガラス
母材11を把持する把持部12aを有する送り込み手段
12と、ガラス母材11をその最低粘度が104Pa・
s以上で106Pa・s未満となる所定の温度に加熱す
る加熱炉14と、ローラー15a、15bの対を有して
ガラス母材11の下方を延伸成形する引張手段15と、
延伸されたガラスを切断する切断手段16からなり、母
材11とほぼ相似形の所望範囲の寸法を有する長尺体1
7に成形するものである。
As shown in FIG. 2B, the apparatus for stretch-molding the glass base material 11 has, as a basic structural part, a feeding means 12 having a holding part 12a for holding the glass base material 11 and a glass base material. Material 11 has a minimum viscosity of 10 4 Pa
a heating furnace 14 for heating to a predetermined temperature of s or more and less than 10 6 Pa · s, and a pulling means 15 having a pair of rollers 15a and 15b for stretching and forming the lower part of the glass base material 11.
The elongated body 1 is composed of a cutting means 16 for cutting the drawn glass and has a size in a desired range which is substantially similar to the base material 11.
7 is to be molded.

【0044】加熱炉14は、図2(B)に示すように、
ガラス母材11をその最低粘度が104Pa・s以上で
106Pa・s未満となる所定の温度に加熱するための
ヒーター14aと、炉内温度を測定する熱電対14b
と、熱電対14bの電気信号を温度調節器14cに入力
して、目標温度に対して温度が低い場合に出力する電力
調節器14dとを備えている。電力調節器14dによ
り、ガラス母材11の最低粘度が104Pa・s以上で
106Pa・s未満となる所定の温度に安定させるよう
になっている。
The heating furnace 14 is, as shown in FIG.
A heater 14a for heating the glass base material 11 to a predetermined temperature at which the minimum viscosity is 10 4 Pa · s or more and less than 10 6 Pa · s, and a thermocouple 14b for measuring the furnace temperature.
And a power controller 14d for inputting an electric signal from the thermocouple 14b to the temperature controller 14c and outputting it when the temperature is lower than the target temperature. The power controller 14d stabilizes the glass base material 11 at a predetermined temperature at which the minimum viscosity is 10 4 Pa · s or more and less than 10 6 Pa · s.

【0045】本発明に係るプリズムの成形方法の一例を
上記成形装置を使用してガラス母材11からプリズム1
を製造する場合について説明する。
An example of the method of molding a prism according to the present invention is performed from the glass base material 11 to the prism 1 by using the above molding apparatus.
The case of manufacturing is explained.

【0046】まず、図2(B)に示すように、送り込み
手段12の把持部12aにガラス母材11を把持し、一
定速度で加熱炉14内に送り込む。この時、延伸成形時
のガラス母材11の送り込み速度を計測し、この送り込
み速度の信号を図示しない制御器に入力して送り込み手
段を操作することによりガラス母材11の送り込み速度
を高い精度で一定に制御することが可能である。
First, as shown in FIG. 2B, the glass base material 11 is held by the holding portion 12a of the feeding means 12 and fed into the heating furnace 14 at a constant speed. At this time, the feeding speed of the glass base material 11 at the time of stretch forming is measured, and a signal of the feeding speed is input to a controller (not shown) to operate the feeding means, so that the feeding speed of the glass base material 11 can be accurately adjusted. It can be controlled to be constant.

【0047】次に、加熱炉14内では、ガラス母材11
をその最低粘度が105Pa・sとなる温度である約8
00℃に加熱する。炉内温度を測定する熱電対14bの
電気信号を温度調節器14cに入力し、熱電対14bに
より測定される炉内温度が目標の約800℃よりも低い
場合は、電力調節器14dの作動により、ヒーター14
aの出力を高めて、ガラス母材11の最低粘度が正確に
105Pa・sになるように加熱炉14内温度を安定さ
せる。一方、熱電対14bにより測定される炉内温度が
目標の約800℃よりも高い場合には、ヒーター14a
の出力を小さくして、ガラス母材11の最低粘度が正確
に105Pa・sになるように加熱炉14内温度を安定
させる。なお、加熱炉4内の温度が目標の約800℃よ
りも高い場合には、ヒーター14aの出力を小さくする
ことで容易に加熱炉14内温度を下げることができる。
Next, in the heating furnace 14, the glass base material 11
About 8 which is the temperature at which the minimum viscosity is 10 5 Pa · s.
Heat to 00 ° C. When the electric signal of the thermocouple 14b for measuring the temperature in the furnace is input to the temperature controller 14c and the temperature in the furnace measured by the thermocouple 14b is lower than the target of about 800 ° C, the power controller 14d operates. , Heater 14
The output of a is increased and the temperature in the heating furnace 14 is stabilized so that the minimum viscosity of the glass base material 11 is exactly 10 5 Pa · s. On the other hand, when the furnace temperature measured by the thermocouple 14b is higher than the target temperature of about 800 ° C, the heater 14a
Is reduced to stabilize the temperature in the heating furnace 14 so that the minimum viscosity of the glass base material 11 is exactly 10 5 Pa · s. When the temperature inside the heating furnace 4 is higher than the target temperature of about 800 ° C., the temperature inside the heating furnace 14 can be easily lowered by reducing the output of the heater 14a.

【0048】次に、加熱炉4内のガラス母材11の下方
に延びてほぼ所定寸法になり実質的に固化したガラスを
ローラー15a、15b対の間に挟んで十分に摩擦力が
作用する押圧状態にし、ガラス母材の送り込み速度に対
して数百〜数千倍の一定の引張速度で引っ張ることで延
伸する。最後に、延伸されたガラスを切断手段16で切
断することにより、ガラス母材11とほぼ相似形の長尺
体17が得られる。
Next, the glass which extends below the glass base material 11 in the heating furnace 4 and has a substantially predetermined size and which is substantially solidified is sandwiched between the pair of rollers 15a and 15b and pressed so that a sufficient frictional force acts. In this state, the glass base material is stretched by pulling at a constant pulling speed of several hundred to several thousand times the feeding speed of the glass base material. Finally, the drawn glass is cut by the cutting means 16 to obtain a long body 17 having a shape substantially similar to the glass base material 11.

【0049】次いで、図2(C)に示すように、高い精
度の長尺体17を、例えば、全長Lが2mmになるよう
に精密切断装置により切断し、プリズム1を作製する。
この際、複数本の長尺体17を整列または立体的に並
べ、同時に切断すると、作業効率が高くなる。
Next, as shown in FIG. 2 (C), the high-precision long body 17 is cut by a precision cutting device so that the total length L becomes 2 mm, and the prism 1 is manufactured.
At this time, if a plurality of elongated bodies 17 are aligned or three-dimensionally arranged and cut at the same time, the work efficiency becomes high.

【0050】以上のように本発明では、光学ガラスから
なるガラス母材11を加熱して低い粘性で延伸成形する
ことにより、長尺体17を高い精度で安定して成形する
ことが可能になり、非常に少ない工数で上記本発明に係
るプリズム1を作製することができた。
As described above, according to the present invention, the elongated body 17 can be stably formed with high accuracy by heating the glass base material 11 made of optical glass and performing stretch forming with low viscosity. The prism 1 according to the present invention could be manufactured with a very small number of steps.

【0051】なお、上記発明の実施の形態では、光学ガ
ラス製のプリズムを示したが、一般的な工業用ガラス製
でもよく、耐熱性が必要な場合には、透明な結晶化ガラ
ス等を使用してもよい。
In the embodiment of the invention described above, the prism made of optical glass is shown, but it may be made of general industrial glass, and if heat resistance is required, transparent crystallized glass or the like is used. You may.

【0052】また、上記発明の実施の形態では、直角プ
リズムを示したが、これに限らず、鋭角、鈍角の三角プ
リズム、台形、菱形を含む四角形状プリズム、その他多
角形状プリズム、一部に曲線形状を有する特殊な形状の
プリズム等、種々のプリズムにも適用が可能である。
Further, in the embodiment of the present invention described above, the right angle prism is shown, but the present invention is not limited to this, and an acute angle, an obtuse angle triangular prism, a trapezoid, a quadrangular prism including a rhombus, other polygonal prisms, and some curved lines. It is also applicable to various prisms such as a prism having a special shape.

【0053】[0053]

【発明の効果】本発明に係るプリズムによれば、透明な
ガラスからなり、光が当たる当光面に連接するコーナー
部の表面が火造り面であり、かつ該コーナー部の表面に
応力値が0.1〜10MPaの圧縮応力層が形成されて
なるので、欠けが生じやすいコーナー部が物理的に強化
されており、ガラスの破片等により当光面を傷つけるこ
となく取り扱いが容易となり、大容量光記録及び高速大
容量光通信用途に対応可能な高精度及び高強度を有する
ガラス製の安価なプリズムを提供することができる。
EFFECTS OF THE INVENTION According to the prism of the present invention, the surface of the corner portion, which is made of transparent glass and is continuous with the light-incident surface on which the light strikes, is a fired surface, and the stress value on the surface of the corner portion is high. Since a compressive stress layer of 0.1 to 10 MPa is formed, the corners where chipping is likely to occur are physically strengthened, and it is easy to handle without damaging the illuminated surface with glass fragments, etc. It is possible to provide an inexpensive prism made of glass having high accuracy and high strength, which can be applied to optical recording and high-speed large-capacity optical communication applications.

【0054】また、本発明のプリズムは、各当光面と直
交する断面の面積が100mm2以下であるので、コー
ナー部が強化された安価な小型プリズムを提供すること
ができる。
Also, since the prism of the present invention has an area of a cross section perpendicular to each light-illuminating surface of 100 mm 2 or less, it is possible to provide an inexpensive small prism having a reinforced corner portion.

【0055】また、本発明のプリズムは、各当光面と直
交する断面の外接円直径をD、当光面に平行な長さ寸法
をLとするとき、L≧1.5D/20.5の関係を満たす
ので、コーナー部が強化されて折れ難くなっている細長
いプリズムを提供することができ、アレイ状光ファイバ
を用いた光信号を並列に処理する光デバイス等に適する
ものである。
Further, in the prism of the present invention, when the circumscribed circle diameter of the cross section orthogonal to each light incident surface is D and the length dimension parallel to the light incident surface is L, L ≧ 1.5D / 2 0.5 Since the relationship is satisfied, it is possible to provide an elongated prism having a corner portion that is hard to break and is suitable for an optical device or the like that uses an arrayed optical fiber to process optical signals in parallel.

【0056】また、本発明のプリズムは、当光面に光学
膜を形成してなるので、フィルタ膜、ビームスプリッタ
等の偏光膜、反射防止膜、濃度フィルタ膜、金属ミラー
膜、これらを組み合わせた複合膜を形成することによ
り、大容量光記録及び高速大容量光通信用途に対応可能
でコーナー部が強化された種々の光デバイスに適するこ
とが可能な種々のプリズムを提供することができる。
Further, since the prism of the present invention is formed by forming an optical film on the light receiving surface, a filter film, a polarizing film such as a beam splitter, an antireflection film, a density filter film, a metal mirror film, or a combination thereof. By forming the composite film, it is possible to provide various prisms that can be used for large-capacity optical recording and high-speed large-capacity optical communication applications and can be suitable for various optical devices with reinforced corner portions.

【0057】本発明に係るプリズムの製造方法によれ
ば、透明ガラスからなり、成形後に当光面となる表面の
表面粗さのRa値が#170相当未満であり、かつ成形
後に得られるプリズムに対して所定範囲の寸法比を有す
るガラス母材を作製し、該ガラス母材を送り込み手段の
把持部に把持し、該ガラス母材を加熱炉に送り込むこと
によりガラス母材の最低粘度が104Pa・s以上で1
6Pa・s未満となる所定の温度に加熱し、該ガラス
母材の下方を引張手段で延伸成形して所定長さに切断す
ることによりガラス母材と略相似形で所望範囲の寸法及
び表面粗さのRa値が入射光の波長の1/4以下である
当光面を有する長尺体を得、該長尺体を所望の長さに切
断するので、大容量光記録及び高速大容量光通信用途に
対応可能なコーナー部が強化されたプリズムを効率的に
作製することが可能となり、光デバイスを高効率かつ安
価に作製することができる。
According to the method of manufacturing a prism of the present invention, the surface roughness Ra value of the surface made of transparent glass, which becomes the illuminated surface after molding, is less than # 170, and the prism obtained after molding is On the other hand, a glass base material having a dimensional ratio in a predetermined range is produced, the glass base material is held by a holding part of a feeding means, and the glass base material is fed into a heating furnace, whereby the minimum viscosity of the glass base material is 10 4 1 above Pa · s
0 less than 6 Pa · s and heated to a predetermined temperature, the size of the desired range with a glass base material and shape similar by to stretch forming by pulling means to the lower of the glass preform is cut to a predetermined length and Since a Ra having a surface roughness Ra value of 1/4 or less of the wavelength of incident light is obtained and the elongated body is cut into a desired length, high-capacity optical recording and high-speed optical recording can be achieved. It is possible to efficiently manufacture a prism having a reinforced corner portion that can be used for capacitive optical communication applications, and it is possible to manufacture an optical device with high efficiency and at low cost.

【0058】また、本発明のプリズムの製造方法は、長
尺体の当光面を研磨するので、互いの当光面を延伸成形
では得ることのできない高い精度の角度精度及び表面精
度に仕上げることが可能となり、さらに大容量の光記録
及び高速大容量の光通信用途に対応することができるプ
リズムを作製することができる。
Further, in the method of manufacturing the prism of the present invention, since the light-emission surface of the elongated body is polished, the light-emission surface of each of them is finished with high accuracy of angle and surface which cannot be obtained by stretch molding. It is also possible to manufacture a prism that can be used for high-capacity optical recording and high-speed, high-capacity optical communication applications.

【0059】以上のように本発明のプリズム及びプリズ
ムの製造方法は、一本のガラス母材から高い寸法精度を
有する多数のプリズムが得られ、かつ得られたプリズム
が高い強度を兼ね備えているので、多数の高い信頼性を
有するプリズムを短期間で、かつ低コストで作製するこ
とが可能になり、これによりプリズムを使用する光デバ
イスを高効率かつ安価に作製することができる実用上優
れた効果を奏するものである。
As described above, according to the prism and the method for manufacturing the prism of the present invention, a large number of prisms having high dimensional accuracy can be obtained from one glass base material, and the obtained prisms also have high strength. , A large number of highly reliable prisms can be manufactured in a short period of time and at low cost, which makes it possible to manufacture optical devices using prisms with high efficiency and at low cost. Is played.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプリズムの説明図であって、(A)は
直角二等辺三角形の直角プリズムの説明図、(B)はフ
ィルタ膜が形成された直角プリズムの説明図、(C)は
ビームスプリッタ機能を有する偏光膜をはさんで対向配
置された直角プリズムの説明図。
1A and 1B are explanatory views of a prism of the present invention, in which FIG. 1A is an explanatory view of a right-angled isosceles triangular right-angled prism, FIG. 1B is an explanatory view of a right-angled prism having a filter film formed thereon, and FIG. Explanatory drawing of the right-angled prism which opposes on both sides of the polarizing film which has a beam splitter function.

【図2】本発明のプリズム製造方法の説明図であって、
(A)はガラス母材の説明図、(B)はガラス母材を延
伸成形して長尺体を得る工程の説明図、(C)は長尺体
から複数のプリズムを得る説明図。
FIG. 2 is an explanatory view of the prism manufacturing method of the present invention,
(A) is an explanatory view of a glass base material, (B) is an explanatory view of a process of stretching a glass base material to obtain a long body, and (C) is an explanatory view of obtaining a plurality of prisms from the long body.

【符号の説明】[Explanation of symbols]

1、3、5、6 プリズム 1a、1b、1c、3a、5a、6a 当光面 1d、1e、1f コーナー部 2 圧縮応力層 4 フィルタ膜 7 偏光膜 11 ガラス母材 11a、11b、11c 当光面となる表面 12 送り込み手段 12a 把持部 14 加熱炉 14a ヒーター 14b 熱電対 14c 温度調節器 14d 電力調節器 15 引張手段 15a、15b ローラー 16 切断手段 17 長尺体 1, 3, 5, 6 prism 1a, 1b, 1c, 3a, 5a, 6a Current surface 1d, 1e, 1f Corner part 2 Compressive stress layer 4 filter membrane 7 Polarizing film 11 Glass base material 11a, 11b, 11c Surface that becomes the light receiving surface 12 Delivery means 12a gripping part 14 heating furnace 14a heater 14b thermocouple 14c Temperature controller 14d Power controller 15 Pulling means 15a, 15b roller 16 cutting means 17 Long body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲江 光孝 滋賀県大津市晴嵐2丁目7番1号 日本電 気硝子株式会社内 Fターム(参考) 2H042 CA01 CA10 CA15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsutaka Nakae             2-7-1, Harashira, Otsu City, Shiga Prefecture             Air Glass Co., Ltd. F-term (reference) 2H042 CA01 CA10 CA15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明なガラスからなり、光が当たる当光
面に連接するコーナー部の表面が火造り面であり、かつ
該コーナー部の表面に応力値が0.1〜10MPaの圧
縮応力層が形成されてなることを特徴とするプリズム。
1. A compressive stress layer, which is made of transparent glass, has a fired surface on the surface of a corner portion connected to the light-exposed surface, and has a stress value of 0.1 to 10 MPa on the surface of the corner portion. A prism characterized by being formed.
【請求項2】 各当光面と直交する断面の面積が100
mm2以下であることを特徴とする請求項1に記載のプ
リズム。
2. The area of a cross section orthogonal to each light incident surface is 100.
The prism according to claim 1, wherein the prism has a size of not more than mm 2 .
【請求項3】 各当光面と直交する断面の外接円直径を
D、当光面に平行な長さ寸法をLとするとき、 L≧
1.5D/20.5の関係を満たすことを特徴とする請求
項1または請求項2に記載のプリズム。
3. When a circumscribed circle diameter of a cross section orthogonal to each light incident surface is D and a length dimension parallel to the light incident surface is L, L ≧
The prism according to claim 1 or 2, wherein the relationship of 1.5D / 2 0.5 is satisfied.
【請求項4】 当光面に光学膜を形成してなることを特
徴とする請求項1から3の何れかに記載のプリズム。
4. The prism according to claim 1, wherein an optical film is formed on the light surface.
【請求項5】 透明ガラスからなり、成形後に当光面と
なる表面の表面粗さのRa値が#170相当未満であ
り、かつ成形後に得られるプリズムに対して所定範囲の
寸法比を有するガラス母材を作製し、該ガラス母材を送
り込み手段の把持部に把持し、該ガラス母材を加熱炉に
送り込むことによりガラス母材の最低粘度が104Pa
・s以上で106Pa・s未満となる所定の温度に加熱
し、該ガラス母材の下方を引張手段で延伸成形して所定
長さに切断することによりガラス母材と略相似形で所望
範囲の寸法及び表面粗さのRa値が入射光の波長の1/
4以下である当光面を有する長尺体を得、該長尺体を所
望の長さに切断することを特徴とするプリズムの製造方
法。
5. A glass which is made of transparent glass and has a surface roughness Ra of less than # 170 on the surface which becomes a light-receiving surface after molding and has a dimensional ratio within a predetermined range with respect to a prism obtained after molding. The minimum viscosity of the glass base material is 10 4 Pa by preparing the base material, holding the glass base material in the holding part of the feeding means, and feeding the glass base material into the heating furnace.
· Desired in a substantially similar shape to the glass base material by heating to a predetermined temperature of s or more and less than 10 6 Pa · s, stretching the lower part of the glass base material with a tensioning means, and cutting to a predetermined length The size of the range and the Ra value of the surface roughness are 1 / wavelength of the incident light.
A method for producing a prism, comprising: obtaining a long body having an equivalent surface of 4 or less, and cutting the long body to a desired length.
【請求項6】 長尺体の当光面を研磨することを特徴と
する請求項5に記載のプリズムの製造方法。
6. The method for manufacturing a prism according to claim 5, wherein the light-incident surface of the elongated body is polished.
JP2003056494A 2002-03-08 2003-03-04 Prism and method for producing the same Pending JP2003329817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056494A JP2003329817A (en) 2002-03-08 2003-03-04 Prism and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-63571 2002-03-08
JP2002063571 2002-03-08
JP2003056494A JP2003329817A (en) 2002-03-08 2003-03-04 Prism and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003329817A true JP2003329817A (en) 2003-11-19

Family

ID=29713887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056494A Pending JP2003329817A (en) 2002-03-08 2003-03-04 Prism and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003329817A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069886A (en) * 2004-09-03 2006-03-16 Schott Ag Micro prism, micro rod lens and method and apparatus for producing them
WO2007058097A1 (en) * 2005-11-18 2007-05-24 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and illumination device that have the same, and method of producing prism
WO2007060835A1 (en) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and lighting device with the same, and method of producing prism
WO2013077153A1 (en) * 2011-11-24 2013-05-30 コニカミノルタ株式会社 Base material for optical element, optical element, light assisted magnetic recording head, and method for manufacturing optical element
WO2024048127A1 (en) * 2022-09-02 2024-03-07 日本電気硝子株式会社 Prism, glass article, and method for manufacturing prism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069886A (en) * 2004-09-03 2006-03-16 Schott Ag Micro prism, micro rod lens and method and apparatus for producing them
JP2013151423A (en) * 2004-09-03 2013-08-08 Schott Ag Micro-prism and micro-rod lens, and method and apparatus for producing them
WO2007058097A1 (en) * 2005-11-18 2007-05-24 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and illumination device that have the same, and method of producing prism
JPWO2007058097A1 (en) * 2005-11-18 2009-04-30 パナソニック株式会社 Prism, imaging device and illumination device including the same, and prism manufacturing method
US7859776B2 (en) 2005-11-18 2010-12-28 Panasonic Corporation Prism, imaging device and lighting device including the same, and prism manufacturing method
JP4653809B2 (en) * 2005-11-18 2011-03-16 パナソニック株式会社 Prism, imaging device and illumination device including the same, and prism manufacturing method
WO2007060835A1 (en) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and lighting device with the same, and method of producing prism
JPWO2007060835A1 (en) * 2005-11-24 2009-05-07 パナソニック株式会社 Prism, imaging device and illumination device including the same, and prism manufacturing method
US7589923B2 (en) 2005-11-24 2009-09-15 Panasonic Corporation Prism, imaging device and lighting device including the same, and prism manufacturing method
JP4524311B2 (en) * 2005-11-24 2010-08-18 パナソニック株式会社 Prism, imaging device and illumination device including the same, and prism manufacturing method
WO2013077153A1 (en) * 2011-11-24 2013-05-30 コニカミノルタ株式会社 Base material for optical element, optical element, light assisted magnetic recording head, and method for manufacturing optical element
WO2024048127A1 (en) * 2022-09-02 2024-03-07 日本電気硝子株式会社 Prism, glass article, and method for manufacturing prism

Similar Documents

Publication Publication Date Title
EP1872161B1 (en) Structured oriented films for use in displays
US3874783A (en) Numerical aperture expansion in fiber optic devices
Yin et al. Review of small aspheric glass lens molding technologies
WO2003076983A1 (en) Prism and method of producing the same
JPH03186809A (en) Achromatic fiber optic coupler and manufacture thereof
KR20100083992A (en) Method for menufacturing a photonic device using optical fibers, photonic device using optical fibers and optical tweezer
CN106291821B (en) Hollow-core photonic crystal fiber coupler
JP2003329817A (en) Prism and method for producing the same
JP2022541775A (en) Method for manufacturing hollow core fiber and method for manufacturing preform for hollow core fiber
TWI222540B (en) Optical signal altering lensed apparatus and method of manufacture
JP2022540682A (en) Method for manufacturing hollow core fiber and method for manufacturing preform for hollow core fiber
JP3973699B2 (en) Optical fiber fixing member, optical fiber fixing member manufacturing method, optical fiber array, and optical fiber array manufacturing method
US20160326041A1 (en) Systems and methods for producing robust chalcogenide optical fibers
CN112965159B (en) Ultrathin microprism flexible light guide plate and production process thereof
Kim et al. Fabrication and characterization of n× n plastic optical fiber star coupler based on fused combining
JP3805175B2 (en) Method for manufacturing article including plastic optical fiber
US7854143B2 (en) Optical fiber preform with improved air/glass interface structure
WO2003065099A1 (en) Optical device and method of manufacturing the optical device
Ma et al. Rerouting end-face-TIR capable rays to significantly increase evanescent wave signal power
CN112351959B (en) Additive manufacturing method for glass structure
JPS59456B2 (en) Manufacturing method of optical glass fiber
CN111801302B (en) Prism coupling method for characterizing stress in glass-based ion exchange articles having problematic refractive index profiles
Lin Characteristics of lensed fiber collimator with larger gradient‐index lens diameter
CN113366347A (en) Device for emitting light
JP2003029072A (en) Plane-of-polarization preservation type optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090306