JP2003329754A - Fixing structure of solid sample measuring probe used for nuclear magnetic resonance measuring apparatus - Google Patents

Fixing structure of solid sample measuring probe used for nuclear magnetic resonance measuring apparatus

Info

Publication number
JP2003329754A
JP2003329754A JP2002135264A JP2002135264A JP2003329754A JP 2003329754 A JP2003329754 A JP 2003329754A JP 2002135264 A JP2002135264 A JP 2002135264A JP 2002135264 A JP2002135264 A JP 2002135264A JP 2003329754 A JP2003329754 A JP 2003329754A
Authority
JP
Japan
Prior art keywords
probe
support plate
fixing
pedestal
solid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135264A
Other languages
Japanese (ja)
Other versions
JP3857952B2 (en
Inventor
Kouji Saito
公児 齋藤
Moriaki Hatakeyama
盛明 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002135264A priority Critical patent/JP3857952B2/en
Publication of JP2003329754A publication Critical patent/JP2003329754A/en
Application granted granted Critical
Publication of JP3857952B2 publication Critical patent/JP3857952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixing structure of a solid sample measuring probe capable of fixing a solid sample measuring probe of a nuclear magnetic resonance (NMR) measuring apparatus to an original position again. <P>SOLUTION: The fixing structure of a solid sample measuring probe used for the NMR apparatus is provided with a probe body comprising an upper support plate, an upper fixing screw, a probe, a probe movable guide post, a stopper, a lower support plate, a lower part fixing screw, a pedestal, and a probe lower pedestal support plate. The probe lower pedestal support plate is provided below the lower part support plate parallel to it, and the lower support plate and the probe lower pedestal support plate are connected together with the pedestal incorporating an elastic body. So, the probe lower pedestal support plate can be vertically moved relative to the floor surface while contacting to an NMR apparatus installation floor surface, and the height of the upper support plate can be adjusted through the elastic body with less impact when fixing the upper support plate to a fixing plate of the NMR apparatus body. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は核磁気共鳴測定装置
(以下、NMR装置と略記する)における、核磁気共鳴
信号検出用試料測定用プローブ(以下、プローブと記載
する)の固定構造に関し、詳しくはNMR装置のプロー
ブ装着口に設けられたプローブ固定板にプローブ支持板
を固定する構造に関するものである。
TECHNICAL FIELD The present invention relates to a structure for fixing a sample measuring probe (hereinafter referred to as a probe) for detecting a nuclear magnetic resonance signal in a nuclear magnetic resonance measuring apparatus (hereinafter abbreviated as an NMR apparatus). Relates to a structure for fixing a probe support plate to a probe fixing plate provided at a probe mounting port of an NMR apparatus.

【0002】[0002]

【従来の技術】NMR装置の測定部の磁場の中心には、
プローブと呼ばれる取り外し可能な検出装置が設けられ
ている。プローブは、化学物質の原子核の磁気モーメン
トを測定する検出装置であり、プローブに化学物質を入
れた試料管を装着し、強力な磁石で測定するため、磁場
の偏りのない場所に固定する必要がある。
2. Description of the Related Art At the center of the magnetic field of the measuring section of an NMR apparatus,
A removable detection device called a probe is provided. A probe is a detector that measures the magnetic moment of the nucleus of a chemical substance.A sample tube containing the chemical substance is attached to the probe, and a strong magnet is used for measurement.Therefore, it is necessary to fix the probe in a location where there is no magnetic field bias. is there.

【0003】プローブは各NMR装置に固有であり、そ
の構成はNMR装置の種類によって異なるが、通常、測
定用試料管を挿入するための垂直な円筒形のスペース、
2組の圧搾空気供給回路、プローブを一対の磁石の磁場
に固定するための固定用部品、RF発信および受信用コ
イル、LF用コイル、デカップリング用コイルならび
に、対応するRF回路およびLF回路への導線、シムコ
イル、およびRFプリアンプから構成される。ただし、
シムコイルはプローブと離して磁場に装備される場合も
ある。更に、固体試料測定プローブにおいては、特に重
要な構成部品に試料回転部がある。固体試料の測定にお
いては、固体試料中の双極子相互作用をキャンセルし、
吸収を先鋭化させるために、原理的に垂直磁場方向に対
して、54.7度(通称マジック角度と呼ばれている)
の角度で測定を行わなくてはならず、常に正確に前記角
度(54.7度)±0.025度を維持しなければなら
ない。
The probe is unique to each NMR apparatus, and the structure thereof varies depending on the type of the NMR apparatus, but normally, a vertical cylindrical space for inserting a sample tube for measurement,
Two sets of compressed air supply circuits, fixing parts for fixing the probe to the magnetic field of a pair of magnets, RF transmitting and receiving coils, LF coils, decoupling coils, and corresponding RF circuits and LF circuits. It consists of conductors, shim coils, and RF preamplifiers. However,
The shim coil may be mounted in the magnetic field separately from the probe. Further, in the solid sample measuring probe, the sample rotating part is a particularly important component. When measuring a solid sample, cancel the dipole interaction in the solid sample,
In order to sharpen absorption, in principle 54.7 degrees (commonly called magic angle) with respect to the vertical magnetic field direction.
The measurement must be performed at an angle of .theta., And the angle (54.7 degrees). +-. 0.025 degrees must always be maintained accurately.

【0004】図1は従来の一般的なNMR装置における
プローブ固定構造の模式図、図2は前記従来装置におけ
るプローブ固定構造の概略図を示す。プローブ8は管状
の本体と、上部支持板2、下部支持板5、およびプロー
ブ可動ガイド支柱6から成り、上部支持板2には上部固
定ネジ3が2個、下部支持板5には下部固定ネジ9が3
個配備されている。従来の一般的なNMR装置には、装
置本体19内に超電導磁石20が設けられ、超電導磁石
の磁場空間21は鉛直方向に形成されており、この磁場
の空間に測定時にプローブ8を挿入・固定する。装置本
体19の上端部には、溶液用プローブ装着時には試料管
の挿入口22となり、固体用プローブ装着時はエアーの
排気口22となる孔部が設けられている。
FIG. 1 is a schematic diagram of a probe fixing structure in a conventional general NMR apparatus, and FIG. 2 is a schematic diagram of a probe fixing structure in the conventional apparatus. The probe 8 is composed of a tubular body, an upper support plate 2, a lower support plate 5, and a probe movable guide column 6. The upper support plate 2 has two upper fixing screws 3 and the lower support plate 5 has a lower fixing screw. 9 is 3
Individually deployed. In a conventional general NMR apparatus, a superconducting magnet 20 is provided in an apparatus main body 19, a magnetic field space 21 of the superconducting magnet is formed in a vertical direction, and a probe 8 is inserted and fixed in this magnetic field space during measurement. To do. At the upper end of the apparatus main body 19, there is provided a hole that serves as an insertion port 22 for a sample tube when a solution probe is attached and serves as an air exhaust port 22 when a solid probe is attached.

【0005】プローブ8を装着する際には、超電導磁石
20の下部にある固定板1に上部支持板2を突き合わ
せ、次いで上部支持板2の上部固定ネジ3を固定板ネジ
穴4にねじ込む。これにより、プローブ8は超電導磁石
20の下部に固定され中吊り状態となる。次に下部支持
板5に3個配備されている下部固定ネジ9を床面に押し
つけることにより完全に装着される。このように、従来
のプローブ本体固定構造では、プローブをNMR装置の
NMR測定部に装着し、ネジによって固定する構造が採
用されてきた。
When mounting the probe 8, the upper support plate 2 is butted against the fixed plate 1 below the superconducting magnet 20, and then the upper fixing screw 3 of the upper support plate 2 is screwed into the fixed plate screw hole 4. As a result, the probe 8 is fixed to the lower portion of the superconducting magnet 20 and is suspended. Next, the three lower fixing screws 9 provided on the lower support plate 5 are pressed against the floor surface to be completely attached. As described above, in the conventional probe main body fixing structure, a structure in which the probe is attached to the NMR measurement unit of the NMR apparatus and fixed by the screw has been adopted.

【0006】NMR測定では、はじめに標準試料で1
13C−NMRの測定を行い、そのNMRスペクトルか
ら解像度(分解能)や感度の調整を行い、次にプローブ
を交換して試料の測定を行う。従って、その取り付け位
置がプローブが交換の前後で僅かでも違っていれば、均
一に調整した磁場に偏りが生じ、測定したスペクトルに
乱れが生ずる。しかし、磁場の再調整は単純ではなく、
磁場を調整してこれらの全てを満足させる事は容易なこ
とではない。また、プローブの着脱および交換による僅
かな振動や、衝撃によるプローブ内の精密部品への影響
により、測定したスペクトルに乱れが生じ、測定スペク
トルの解像度(分解能)や感度の低下が生ずる。さらに
は、プローブ交換時の衝撃の度合いによっては測定不能
になる場合がある。更に、固体試料測定プローブにおい
ては、特に重要な部分として、試料回転部があり、固体
試料中の双極子相互作用をキャンセルし、吸収を先鋭化
させるために、常に正確にマジック角度(54.7度)
±0.025度を維持しなければならず、該角度範囲か
らずれていると、測定ができない。さらには、プローブ
の固定位置が変わることにより、プローブの取り付けが
困難となる場合もあった。このためプローブ交換後に
は、再現性のある測定データを得るのが難しくなるばか
りか、故障の原因にもなりうるという問題点があった。
In the NMR measurement, first , 1 H was used for a standard sample.
Or 13 C-NMR is measured, the resolution and the sensitivity are adjusted from the NMR spectrum, and then the probe is replaced to measure the sample. Therefore, if the mounting position is slightly different before and after the replacement of the probe, the uniformly adjusted magnetic field is biased and the measured spectrum is disturbed. However, readjustment of the magnetic field is not simple,
Adjusting the magnetic field to satisfy all of these is not easy. In addition, slight vibration due to attachment / detachment and replacement of the probe, and impact on the precision parts in the probe due to impact cause disturbance in the measured spectrum, resulting in deterioration of the resolution (sensitivity) and sensitivity of the measured spectrum. Furthermore, depending on the degree of impact during probe replacement, measurement may not be possible. Furthermore, in the solid sample measuring probe, a particularly important part is a sample rotating part, and in order to cancel the dipole interaction in the solid sample and sharpen the absorption, the magic angle (54.7) is always accurate. Every time)
± 0.025 degrees must be maintained, and if it deviates from the angle range, measurement cannot be performed. Furthermore, the fixed position of the probe may change, which may make attachment of the probe difficult. Therefore, after replacing the probe, it is difficult to obtain reproducible measurement data, and there is a problem that it may cause a failure.

【0007】また、固体試料のNMR測定においては、
プローブ交換時に振動や衝撃による影響を受けて、プロ
ーブ交換前後で角度がずれる場合が多かったものの、こ
の影響をなくすための装置の改良は従来、特に行われて
おらず、正確な測定をするには、再度数時間かけて精密
に角度調整をしなければならなかった。
Further, in the NMR measurement of a solid sample,
Although the angle was often shifted before and after probe replacement due to the effects of vibration and shock when the probe was replaced, improvements to the device to eliminate this effect have not been made particularly in the past, and accurate measurement is not possible. Had to adjust the angle precisely over the next few hours.

【0008】特開2000−292515号公報には、
溶液試料用プローブを精度よく取り付けるための固定構
造が開示されている。これは、固定板と支持板の固定を
ノブと結合穴により行い、さらに前記ノブおよび結合穴
で固定した後、光学的コード検出素子により固定板と支
持板の精確な位置合わせを行う方法である。
Japanese Patent Laid-Open No. 2000-292515 discloses that
A fixing structure for accurately mounting a solution sample probe is disclosed. This is a method in which the fixing plate and the supporting plate are fixed by the knob and the coupling hole, and after the fixing by the knob and the coupling hole, the fixing plate and the supporting plate are accurately aligned by the optical code detecting element. .

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
2000−292515号公報のプローブ固定構造は、
溶液試料用プローブを精度よく取り付けるための固定構
造であり、液体試料用プローブを精確・迅速に取り付け
られるものの、取り付ける際のプローブの上下変動およ
び衝撃については何ら対策はとられていない。これに対
して、固体試料用プローブの固定構造はマジック角度を
厳密に維持しなくてはならないため、プローブ交換時の
振動やダメージ等の許容範囲が非常に厳しく、従って、
特開平2000−292515号公報の液体試料用プロ
ーブ固定構造を固体試料用プローブ固定構造に適用する
ことは困難である。
However, the probe fixing structure disclosed in Japanese Patent Laid-Open No. 2000-292515 is
This is a fixed structure for mounting the solution sample probe with high accuracy, and although the liquid sample probe can be mounted accurately and quickly, no measures have been taken against the vertical fluctuation and impact of the probe during mounting. On the other hand, the fixed structure of the probe for the solid sample must maintain the magic angle strictly, so the allowable range of vibration and damage when exchanging the probe is very strict, therefore,
It is difficult to apply the probe fixing structure for a liquid sample disclosed in Japanese Patent Laid-Open No. 2000-292515 to the probe fixing structure for a solid sample.

【0010】本発明のプローブ固定構造は、前記問題を
解決し、固体試料測定用プローブの交換前後でマジック
角度を再調整する必要がなく、振動や衝撃を与えずに前
記プローブを再び元の位置に正確かつ迅速に戻すことが
可能なNMR装置における固体試料測定用プローブ固定
構造を提供することを目的とする。
The probe fixing structure of the present invention solves the above-mentioned problems and does not require readjustment of the magic angle before and after replacement of the solid sample measuring probe, and the probe can be returned to its original position without vibration or impact. An object of the present invention is to provide a probe fixing structure for measuring a solid sample in an NMR apparatus that can be accurately and quickly returned to the above.

【0011】[0011]

【課題を解決するための手段】本発明は、以下の態様を
要旨とする。
SUMMARY OF THE INVENTION The present invention has the following aspects.

【0012】(1) NMR装置に用いる固体試料測定
プローブの上部支持板をNMR装置本体の固定板に固定
する構造であって、上部支持板、上部固定ネジ、プロー
ブ、プローブ可動ガイド支柱、ストッパー、下部支持
板、下部固定ネジ、台座、及びプローブ下部台座支持板
から構成されるプローブ本体は、下部支持板の下方に該
下部支持板と平行にプローブ下部台座支持板とが設置さ
れ、さらに該下部支持板と該プローブ下部台座支持板と
を、弾性体が内蔵した台座で連結した構造であることを
特徴とするNMR装置に用いる固体試料測定用プローブ
の固定構造。
(1) A structure in which an upper support plate of a solid sample measuring probe used in an NMR apparatus is fixed to a fixed plate of an NMR apparatus main body, and the upper support plate, an upper fixing screw, a probe, a probe movable guide column, a stopper, A probe main body including a lower support plate, a lower fixing screw, a pedestal, and a probe lower pedestal support plate has a probe lower pedestal support plate installed below the lower support plate in parallel with the lower support plate. A structure for fixing a probe for measuring a solid sample used in an NMR apparatus, characterized in that a support plate and a support plate for supporting the lower part of the probe are connected by a pedestal containing an elastic body.

【0013】(2) 前記弾性体がステンレス鋼のバネ
であり、前記台座1個当たりに該バネが2個設けられ、
該バネの長さが前記台座の高さを補間し、かつバネ効果
を発揮する縮み代を満たす長さであることを特徴とする
(1)に記載のNMR装置に用いる固体試料測定用プロ
ーブの固定構造。
(2) The elastic body is a stainless steel spring, and two springs are provided for each pedestal,
A probe for measuring a solid sample used in an NMR apparatus according to (1), characterized in that the length of the spring is a length that interpolates the height of the pedestal and satisfies a shrinkage margin that exerts a spring effect. Fixed structure.

【0014】[0014]

【発明の実施の形態】本発明のプローブ固定構造は、固
体試料測定用プローブの固定構造に関するが、液体試料
測定用プローブの固定構造としても用いることができ
る。以下、本発明の実施の形態を図面に基づいて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The probe fixing structure of the present invention relates to a fixing structure for a solid sample measuring probe, but it can also be used as a fixing structure for a liquid sample measuring probe. Embodiments of the present invention will be described below with reference to the drawings.

【0015】図3に本発明のプローブ固定構造の概略
図、図4に本発明の固体試料測定用プローブの固定構造
を示す。本発明のプローブ固定構造は、固体試料測定プ
ローブ固定用の上部固定板と該プローブの下部支持板と
の固定が、取付け時の衝撃を吸収する部品を介してなさ
れるものであり、具体的には、プローブ下部支持板の下
方に該支持板と平行にプローブ下部台座支持板を設け、
両者を弾性体を内蔵した台座で連結しているため、プロ
ーブ固定時の上下変動が少なくかつ衝撃を弾性体により
吸収できるというものである。本発明のプローブ固定構
造は、図1に示した従来の固定構造と異なり、磁石直下
での取り付けの際のプローブの上下変動が少なく、プロ
ーブへのダメージが大幅に軽減される。
FIG. 3 is a schematic view of the probe fixing structure of the present invention, and FIG. 4 shows the fixing structure of the solid sample measuring probe of the present invention. In the probe fixing structure of the present invention, the fixing between the upper fixing plate for fixing the solid sample measuring probe and the lower supporting plate of the probe is performed through a component that absorbs a shock during mounting. Is a probe lower pedestal support plate provided in parallel with the lower probe support plate,
Since both are connected by a pedestal containing an elastic body, there is little vertical fluctuation when the probe is fixed, and the impact can be absorbed by the elastic body. Unlike the conventional fixing structure shown in FIG. 1, the probe fixing structure of the present invention has little vertical fluctuation of the probe when mounted directly under the magnet, and the damage to the probe is significantly reduced.

【0016】本発明のプローブ固定構造の構成は、プロ
ーブ8は管状の本体と、上部支持板2、下部支持板5、
およびプローブ可動ガイド支柱6から成り、上部支持板
2には上部固定ネジ3が2個、下部支持板5には下部固
定ネジ9が3個配備されている。さらに下部支持板5の
下方には該支持板と平行にプローブ下部台座支持板10
が設けられており、下部支持板5とプローブ下部台座支
持板10は台座11を介して連結されている。弾性体1
5を内蔵した台座11を介して床面に下部支持板を押付
けられるため、プローブ本体は無理な傾きを与えること
なく垂直に上下でき、プローブ本体の固定をプローブ下
部台座支持板10が床面に接した状態で行えることか
ら、プローブ本体に衝撃、振動を与えずに取付け可能で
ある。
According to the structure of the probe fixing structure of the present invention, the probe 8 has a tubular body, an upper support plate 2, a lower support plate 5,
And a movable probe support column 6, and the upper support plate 2 is provided with two upper fixing screws 3 and the lower support plate 5 is provided with three lower fixing screws 9. Further, below the lower support plate 5, parallel to the lower support plate 5, the probe lower pedestal support plate 10 is provided.
Is provided, and the lower support plate 5 and the probe lower pedestal support plate 10 are connected via a pedestal 11. Elastic body 1
Since the lower support plate is pressed against the floor surface through the pedestal 11 having the built-in 5, the probe main body can be vertically moved up and down without giving an unreasonable inclination, and the probe main body is fixed on the floor surface by the probe lower pedestal support plate 10. Since it can be done in contact with each other, it can be attached without giving shock or vibration to the probe body.

【0017】図5に、本発明に用いる台座の一例を示
す。本発明に用いる台座11は、磁場下でも影響なく利
用できるように、台座構成部材およびネジ類の材質は非
磁性体が望ましく、具体的にはアルミが好ましく、ステ
ンレス鋼、チタンなども使用できる。
FIG. 5 shows an example of the pedestal used in the present invention. The pedestal 11 used in the present invention is preferably made of a non-magnetic material for the pedestal constituting member and screws so that it can be used under a magnetic field without any influence. Specifically, aluminum is preferable, and stainless steel, titanium and the like can also be used.

【0018】前記台座の幅および奥行きは、下部支持板
5およびプローブ下部台座支持板10の内径の曲率およ
び奥行きに影響を与えない程度が好ましく、一般的なN
MR装置においては前記幅は40mm前後、奥行きは3
0mm前後が好ましい。また、前記台座の高さは、プロ
ーブが受ける振動が最低になる程度が好ましく、一般的
なNMR装置においては前記高さは20mm前後が好ま
しい。台座構成部材である弾性体の材質および形状は、
磁場への影響を極力抑えられ、かつ繰返し使用に耐えう
る材質および形状が好ましく、ステンレス鋼のスプリン
グが特に好ましい。前記スプリングが安定に稼働するた
めには、1個の台座に対して最低2個のスプリングが取
付けられていることが好ましく、スプリングの長さは、
前記台座の高さを補間し、且つスプリングが効果を発揮
する縮み代を満たす長さが必要である。スプリングの径
は特に制限はないが、直径で5〜15mm程度が好まし
い。図6に、本発明の台座取付け位置詳細図を示す。前
記台座の個数は3個が好ましく、台座の取付け位置は下
部支持板を床面に対して水平に安定して保持できる角度
に取付ける。具体的には、3個の台座のうち1個をプロ
ーブ可動ガイド支柱6から等距離にプローブ下部台座支
持板10に設置し、残り2個を前記1個の台座に対して
磁場空間を中心線とした角度が相互に120度となるよ
うにプローブ下部台座支持板10に取付ける。
The width and depth of the pedestal are preferably such that they do not affect the curvature and depth of the inner diameters of the lower support plate 5 and the probe lower pedestal support plate 10.
In the MR device, the width is about 40 mm and the depth is 3 mm.
Around 0 mm is preferable. Further, the height of the pedestal is preferably such that the vibration received by the probe is minimized, and in a general NMR apparatus, the height is preferably around 20 mm. The material and shape of the elastic body that is the pedestal constituent member is
A material and a shape that can suppress the influence on the magnetic field as much as possible and can withstand repeated use are preferable, and a stainless steel spring is particularly preferable. In order for the spring to operate stably, it is preferable that at least two springs are attached to one pedestal, and the length of the spring is
It is necessary to have a length that interpolates the height of the pedestal and that satisfies the shrinkage margin in which the spring exerts its effect. The diameter of the spring is not particularly limited, but the diameter is preferably about 5 to 15 mm. FIG. 6 shows a detailed view of the pedestal mounting position of the present invention. The number of the pedestals is preferably three, and the pedestals are mounted at an angle where the lower support plate can be stably held horizontally with respect to the floor. Specifically, one of the three pedestals is installed on the probe lower pedestal support plate 10 at an equal distance from the probe movable guide column 6, and the remaining two pedestals are centered in the magnetic field space with respect to the one pedestal. Are attached to the probe lower pedestal support plate 10 so that the angles are 120 degrees relative to each other.

【0019】本発明のプローブ固定の手順は、図3に示
すように、固定前がAに示す高さであったプローブ本体
をBに示す高さに押し下げる。固定前の通常の状態であ
るAに示すプローブ本体の高さは、床面からプローブ本
体の上端すなわち上部支持板2までの高さが、床面から
固定板1までの高さより数ミリ高い位置にある。次に、
磁場空間21の真下にプローブを移動させた後、Cに示
す高さすなわちAと同じ高さに戻す。再び、Cに示す高
さにプローブ本体を戻すことにより、上部支持板2およ
び上部固定ネジ3が固定板1に押しつけられ、上部固定
ネジ3を固定板ネジ穴4にねじ込むことにより、簡単に
固定板1にプローブ本体を取り付けられる。A位置から
B位置及びC位置へと、プローブはほとんど上下移動な
く磁石下部まで移動される。その次に、下部支持板5に
3個配備されている下部固定ネジ9をプローブ下部台座
支持板10に押しつけることにより完全に装着される。
In the procedure for fixing the probe of the present invention, as shown in FIG. 3, the probe main body, which was at the height shown in A before being fixed, is pushed down to the height shown in B. The height of the probe body shown in A, which is the normal state before fixation, is such that the height from the floor surface to the upper end of the probe body, that is, the upper support plate 2 is several millimeters higher than the height from the floor surface to the fixation plate 1. It is in. next,
After moving the probe directly below the magnetic field space 21, the probe is returned to the height shown in C, that is, the same height as A. By returning the probe main body to the height shown in C again, the upper support plate 2 and the upper fixing screw 3 are pressed against the fixing plate 1, and the upper fixing screw 3 is screwed into the fixing plate screw hole 4 to easily fix it. The probe body can be attached to the plate 1. From the A position to the B position and the C position, the probe is moved to the lower part of the magnet with almost no vertical movement. Then, the three lower fixing screws 9 provided on the lower support plate 5 are pressed against the probe lower pedestal support plate 10 to be completely attached.

【0020】図7に、本発明の台座によるプローブ上下
可動機構の一例を示す。Aの位置はプローブ本体を下げ
た場合、Bの位置はプローブ本体を上げた場合を示す。
可動式スプリングで、5mmの変化代を確保した結果、プ
ローブ本体の下部支持板5がスムースに且つバランス良
く移動できる。そのため、プローブには振動やダメージ
がない。
FIG. 7 shows an example of a probe up-and-down moving mechanism based on the pedestal of the present invention. The position A indicates the case where the probe main body is lowered, and the position B indicates the case where the probe main body is raised.
As a result of securing a change margin of 5 mm with the movable spring, the lower support plate 5 of the probe body can be moved smoothly and in good balance. Therefore, the probe has no vibration or damage.

【0021】[0021]

【実施例】(実施例1)試料にリン酸アルミニウムを用
い、図5に示す台座を取付けた図7に示す固体試料測定
用プローブ固定構造を用いた。プローブ交換前のマジッ
ク角度は54.70度とし、プローブ交換後に該マジッ
ク角度の調節を行わずに、該試料の27AlのNMRスペ
クトルの測定を行った。7.04TのNMR装置を用
い、共鳴周波数は78.172MHz、測定時のスペク
トル幅は40000Hz、パルス幅は4マイクロ秒、繰
り返し時間は1秒で、積算は64回で測定を行った。
また、図1に示す従来のプローブ固定構造を用いて、本
実施例と同様の試料および条件により、27AlのNMR
スペクトルの測定を行った。図8に本発明のプローブ固
定構造による27Alのスペクトル(実施例1)と、従来
の固定構造(図1)による27Alのスペクトル(比較例
1)を示す。
EXAMPLES Example 1 Aluminum phosphate was used as a sample, and the solid sample measuring probe fixing structure shown in FIG. 7 with the pedestal shown in FIG. 5 was used. The magic angle before the probe exchange was 54.70 degrees, and after the probe exchange, the 27 Al NMR spectrum of the sample was measured without adjusting the magic angle. Using a 7.04 T NMR apparatus, the resonance frequency was 78.172 MHz, the spectrum width during measurement was 40,000 Hz, the pulse width was 4 microseconds, the repetition time was 1 second, and the integration was performed 64 times.
Further, using the conventional probe fixing structure shown in FIG. 1, the same sample and conditions as in this example were used to analyze 27 Al NMR.
The spectrum was measured. Spectra of 27 Al by the probe fixing structure of the present invention in FIG. 8 (Example 1) shows the spectrum of 27 Al according to the conventional fixing structure (Fig. 1) (Comparative Example 1).

【0022】プローブ交換前のマジック角度は、本発明
の固定構造を用いた場合では54.71度であり、交換
前後の該角度のずれは見られず、ベースラインも安定
し、測定結果が定量性良く解析可能なスペクトルが得ら
れたが、一方、従来の固定構造を用いた場合では該角度
は54.65度であり、交換前後でずれが生じ、ベース
ラインがうねり、得られた結果が解析困難で定量性のな
いスペクトルとなった。従って、本発明の固定構造は、
従来の固定構造に比較して、安定にマジック角度を保つ
ことができることが明らかであり、その取り外し前の位
置に正確に取り付けることから、分解能や感度の低下を
伴うことなく且つ再調整の時間を必要とせず、高精度の
NMR測定を行うことが可能であるといえる。 (実施例2)実施例1と同様の本発明による固体試料測
定用プローブ固定構造(実施例2)、および従来の固定
構造(比較例2)を用いて、プローブ交換によるマジッ
ク角度の変化を測定した。プローブ交換前の初期のマジ
ック角度は、54.70度とした。20回交換を行った
際の、マジック角度の変化を図9に示す。
The magic angle before replacing the probe is 54.71 degrees when the fixing structure of the present invention is used, and there is no deviation in the angle before and after replacement, the baseline is stable, and the measurement result is quantitative. Although a spectrum that could be analyzed with good accuracy was obtained, on the other hand, when the conventional fixed structure was used, the angle was 54.65 degrees, and a shift occurred before and after replacement, the baseline waviness, and the obtained result was The spectrum was difficult to analyze and non-quantitative. Therefore, the fixing structure of the present invention is
It is clear that the magic angle can be kept stable compared to the conventional fixed structure.Because the magic angle is accurately attached to the position before removal, there is no reduction in resolution or sensitivity and readjustment time is increased. It can be said that it is possible to perform highly accurate NMR measurement without the need. (Embodiment 2) Using the same probe fixing structure for measuring a solid sample according to the present invention as in Embodiment 1 (Example 2) and the conventional fixing structure (Comparative Example 2), the change in the magic angle due to probe exchange is measured. did. The initial magic angle before probe replacement was 54.70 degrees. FIG. 9 shows the change in the magic angle when the replacement is performed 20 times.

【0023】本発明の固定構造の場合、プローブを取り
付け、取り外しに行う操作を分解能や感度の低下や故障
の原因と考えられる衝撃、振動をほとんど与えることな
いので、マジック角度はほとんど変化しておらず、交換
・取付け後の調整は必要ないことがわかるが、一方、従
来固定構造の場合、マジック角度の変化が大きく、プロ
ーブ交換・取付けの度に再調整が必要であることが明ら
かである。
In the case of the fixing structure of the present invention, the operation for attaching and detaching the probe hardly gives shock or vibration which is considered to be a cause of deterioration of resolution or sensitivity or failure, so that the magic angle should be almost changed. However, it is clear that no adjustment is required after replacement / installation. On the other hand, in the case of the conventional fixed structure, the change in the magic angle is large, and it is clear that readjustment is necessary each time the probe is replaced / installed.

【0024】本発明は何度プローブ交換をしても、プロ
ーブに与える振動やダメージがないために、マジック角
度が変化せず、取り付け後すぐに測定ができ、プローブ
交換に要する時間が短縮ができる。
In the present invention, no matter how many times the probe is exchanged, there is no vibration or damage to the probe, the magic angle does not change, measurement can be performed immediately after attachment, and the time required for probe exchange can be shortened. .

【0025】固体プローブ交換作業は基準点の設定と溶
液プローブの取り外し、固体プローブの取り付け、マジ
ック角度の調整の4作業である。図1に示す従来のプロ
ーブ固定構造を用いた場合に、前記交換作業に要する平
均時間は約175分であった。これに対して、本発明の
図5に示す台座を取付けた図7に示す固体試料測定用プ
ローブ固定構造を用いた場合に、前記交換作業に要する
平均時間は約9分であり、大幅に交換時間が短縮でき
た。
The solid probe replacement work is four works of setting a reference point, removing the solution probe, attaching the solid probe, and adjusting the magic angle. When the conventional probe fixing structure shown in FIG. 1 was used, the average time required for the replacement work was about 175 minutes. On the contrary, when the solid sample measuring probe fixing structure shown in FIG. 7 with the pedestal shown in FIG. 5 of the present invention is used, the average time required for the replacement work is about 9 minutes, and the replacement is drastically changed. I saved time.

【0026】[0026]

【発明の効果】固体試料用NMRプローブの固定は、非
常に煩雑で且つ振動やダメージをプローブに与える場合
が多く、その交換作業は非常に時間を要していたが、本
発明の固体試料測定用プローブの固定構造を用いれば、
交換作業が大幅に時間短縮される上、マジック角度が変
化しないため、高精度な固体NMR測定を簡便に継続し
て行うことができる。
The fixation of the NMR probe for a solid sample is very complicated and often gives vibrations or damages to the probe, and the replacement work takes a very long time. If you use the fixed structure of the probe for
Since the exchange work is significantly shortened and the magic angle does not change, highly accurate solid-state NMR measurement can be easily and continuously performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の市販プローブ本体の模式図である。FIG. 1 is a schematic view of a conventional commercially available probe body.

【図2】従来のプローブ固定構造の概略図である。FIG. 2 is a schematic view of a conventional probe fixing structure.

【図3】本発明のプローブ固定構造の概略図である。FIG. 3 is a schematic view of a probe fixing structure of the present invention.

【図4】本発明のプローブ本体の模式図である。FIG. 4 is a schematic view of a probe main body of the present invention.

【図5】本発明のプローブ固定構造の台座の一例を示す
図である。
FIG. 5 is a diagram showing an example of a pedestal of the probe fixing structure of the present invention.

【図6】本発明の台座取付け位置を示す図である。FIG. 6 is a diagram showing a pedestal mounting position of the present invention.

【図7】本発明のプローブの台座によるプローブ上下可
動機構を示す図である。
FIG. 7 is a diagram showing a probe up-and-down moving mechanism based on a base of the probe of the present invention.

【図8】27AlのNMRスペクトルを示す図である。FIG. 8 is a diagram showing an NMR spectrum of 27 Al.

【図9】プローブ交換毎のマジック角度の変化を示す図
である。
FIG. 9 is a diagram showing a change in magic angle for each probe replacement.

【符号の説明】[Explanation of symbols]

1…固定板 2…上部支持板 3…上部固定ネジ 4…固定板ネジ穴 5…下部支持板 6…プローブ可動ガイド支柱 7…ストッパー 8…プローブ 9…下部固定ネジ 10…プローブ下部台座支持板 11…台座 12…下部支持板固定板 13…下部支持板固定板止めネジ 14…下部支持板受け 15…可動用スプリング、弾性体 16…可動下部支持板受け用台 17…可動下部支持板受け用台止めネジ 18…可動下部支持板受け用止めネジ 19…装置本体 20…超伝導磁石 21…磁場空間 22…試料挿入口、エアー排気口 1 ... Fixing plate 2 ... Upper support plate 3 ... Upper fixing screw 4 fixing plate screw holes 5 ... Lower support plate 6… Probe movable guide column 7 ... Stopper 8 ... Probe 9 ... Lower fixing screw 10 ... Probe lower base support plate 11 ... Pedestal 12 ... Lower support plate fixing plate 13 ... Lower support plate fixing plate set screw 14 ... Lower support plate receiver 15 ... Movable spring, elastic body 16 ... Movable lower support plate receiving stand 17 ... Movable lower support plate receiving set screw 18 ... Set screw for receiving lower movable support plate 19 ... Device body 20 ... Superconducting magnet 21 ... Magnetic field space 22 ... Sample insertion port, air exhaust port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 核磁気共鳴測定装置に用いる固体試料測
定プローブの上部支持板を核磁気共鳴測定装置本体の固
定板に固定する構造であって、 上部支持板、上部固定ネジ、プローブ、プローブ可動ガ
イド支柱、ストッパー、下部支持板、下部固定ネジ、台
座、及びプローブ下部台座支持板から構成されるプロー
ブ本体は、下部支持板の下方に該下部支持板と平行にプ
ローブ下部台座支持板とが設置され、 さらに該下部支持板と該プローブ下部台座支持板とを、
弾性体が内蔵した台座で連結した構造であることを特徴
とする核磁気共鳴測定装置に用いる固体試料測定用プロ
ーブの固定構造。
1. A structure for fixing an upper supporting plate of a solid sample measuring probe used in a nuclear magnetic resonance measuring apparatus to a fixing plate of a main body of the nuclear magnetic resonance measuring apparatus, the upper supporting plate, an upper fixing screw, a probe, and a movable probe. The probe main body including the guide column, the stopper, the lower support plate, the lower fixing screw, the pedestal, and the probe lower pedestal support plate has the probe lower pedestal support plate installed below the lower support plate and in parallel with the lower support plate. Further, the lower support plate and the probe lower pedestal support plate,
A structure for fixing a probe for measuring a solid sample used in a nuclear magnetic resonance measuring apparatus, which has a structure in which elastic bodies are connected by a pedestal.
【請求項2】 前記弾性体がステンレス鋼のバネであ
り、前記台座1個当たりに該バネが2個設けられ、該バ
ネの長さが前記台座の高さを補間し、かつバネ効果を発
揮する縮み代を満たす長さであることを特徴とする請求
項1に記載の核磁気共鳴測定装置に用いる固体試料測定
用プローブの固定構造。
2. The elastic body is a stainless steel spring, two springs are provided for each pedestal, and the length of the spring interpolates the height of the pedestal and exerts a spring effect. The fixed structure of the probe for measuring a solid sample used in the nuclear magnetic resonance measuring apparatus according to claim 1, wherein the fixing structure has a length that satisfies the shrinkage allowance.
JP2002135264A 2002-05-10 2002-05-10 Fixed structure of solid sample measuring probe used in nuclear magnetic resonance measuring apparatus Expired - Fee Related JP3857952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135264A JP3857952B2 (en) 2002-05-10 2002-05-10 Fixed structure of solid sample measuring probe used in nuclear magnetic resonance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135264A JP3857952B2 (en) 2002-05-10 2002-05-10 Fixed structure of solid sample measuring probe used in nuclear magnetic resonance measuring apparatus

Publications (2)

Publication Number Publication Date
JP2003329754A true JP2003329754A (en) 2003-11-19
JP3857952B2 JP3857952B2 (en) 2006-12-13

Family

ID=29697634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135264A Expired - Fee Related JP3857952B2 (en) 2002-05-10 2002-05-10 Fixed structure of solid sample measuring probe used in nuclear magnetic resonance measuring apparatus

Country Status (1)

Country Link
JP (1) JP3857952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147312A (en) * 2005-11-24 2007-06-14 Hitachi Ltd Nmr device
JP2008042119A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Ferromagnetic field magnet device
JP2017161498A (en) * 2015-11-20 2017-09-14 ブルーカー バイオシュピン アー・ゲー Nmr-mas apparatus probe head capable of adjusting angle
CN111537055A (en) * 2020-05-18 2020-08-14 商丘师范学院 Experimental device and experimental method for arranging ultrahigh-pressure shock wave measurement probes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147312A (en) * 2005-11-24 2007-06-14 Hitachi Ltd Nmr device
JP4673196B2 (en) * 2005-11-24 2011-04-20 株式会社日立製作所 NMR equipment
JP2008042119A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Ferromagnetic field magnet device
JP2017161498A (en) * 2015-11-20 2017-09-14 ブルーカー バイオシュピン アー・ゲー Nmr-mas apparatus probe head capable of adjusting angle
US10261143B2 (en) 2015-11-20 2019-04-16 Bruker Biospin Ag Probehead with adjustable angle for NMR-MAS apparatus
CN111537055A (en) * 2020-05-18 2020-08-14 商丘师范学院 Experimental device and experimental method for arranging ultrahigh-pressure shock wave measurement probes
CN111537055B (en) * 2020-05-18 2021-11-19 商丘师范学院 Experimental device and experimental method for arranging ultrahigh-pressure shock wave measurement probes

Also Published As

Publication number Publication date
JP3857952B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US4517516A (en) NMR Probe coil form structure
Flowers et al. A measurement of the nuclear magnetic moment of the helium-3 atom in terms of that of the proton
US5173661A (en) Nuclear magnetic resonance spectrometer
Kärger et al. On the use of pulsed field gradients in a high-field NMR spectrometer to study restricted diffusion in zeolites
JPH05335385A (en) Probing apparatus
WO2002071942A1 (en) Magnetic resonance imaging apparatus and static magnetic field generating apparatus used therefor
CN103411744A (en) Electric eddy transducer dynamic calibration device
EP1710595B1 (en) Azimuthally-orienting NMR samples
JP2003329754A (en) Fixing structure of solid sample measuring probe used for nuclear magnetic resonance measuring apparatus
KR101625728B1 (en) Setting apparatus, as well as a magnetic resonance apparatus with a setting apparatus
JP2002529175A (en) Automatic measurement of MRI gradient electromagnetic field distortion
US5432449A (en) Test apparatus for magnetic resonance imaging systems
JP2000292515A (en) Probe fixing device for nmr apparatus
JP4602910B2 (en) NMR apparatus and positioning method thereof
JPH07333311A (en) Nuclear magnetic resonance device
JP4673196B2 (en) NMR equipment
JPH01503359A (en) Fixing and adjusting device for mandrel that holds gradient coils
EP0455098B1 (en) Displacement probe in a cryogenic magnet
US6591202B1 (en) Magnetic field measuring device
JP3591384B2 (en) Jig for measuring the magnetic field of a magnet for open magnetic resonance imaging equipment
US5323112A (en) Reproducibly positionable NMR probe
CN111175679B (en) Shimming bracket assembly and shimming bracket assembly
CN117182815B (en) Axial force test equipment and test method for constant-speed driving shaft of long-handle inner star wheel
CN219495097U (en) Measurement tool for high-precision needle valve conical surface
CN114217253B (en) Debugging device and method for radio frequency coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

R151 Written notification of patent or utility model registration

Ref document number: 3857952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees