JP2003329584A - Method for analyzing metal contained in organic phase sample - Google Patents

Method for analyzing metal contained in organic phase sample

Info

Publication number
JP2003329584A
JP2003329584A JP2002132245A JP2002132245A JP2003329584A JP 2003329584 A JP2003329584 A JP 2003329584A JP 2002132245 A JP2002132245 A JP 2002132245A JP 2002132245 A JP2002132245 A JP 2002132245A JP 2003329584 A JP2003329584 A JP 2003329584A
Authority
JP
Japan
Prior art keywords
metal
organic phase
phase sample
organic
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002132245A
Other languages
Japanese (ja)
Other versions
JP3917457B2 (en
Inventor
Junichi Machida
純一 待田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2002132245A priority Critical patent/JP3917457B2/en
Publication of JP2003329584A publication Critical patent/JP2003329584A/en
Application granted granted Critical
Publication of JP3917457B2 publication Critical patent/JP3917457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analytical method capable of easily and highly accurately determining metal (M1), by atomic absorption analysis or plasma emission analysis, in an organic phase sample (X) containing an organic solvent (S1) in which metal components are dissolved and which is slightly soluble in water even in the case of a very small amount of metal contents. <P>SOLUTION: The method includes a process (A) for dissolving the organic phase sample (X) in a diluent solvent (S1) soluble in both the organic solvent (S1) and water to acquire an organic mixed solution (XS); a process (B) for measuring the organic mixed solution (XS) by atomic absorption analysis or plasma emission analysis; a process (C) for preparing a reference solution, for creating a calibration curve, which is substantially formed of the metal (M1) to be measured, an aqueous solution for dissolving a known amount of the metal (M1), and the diluent solvent (S2) and in which the metal (M1) is dissolved; a process (D) for creating the calibration curve on the basis of the reference solution; and a process (E) for determining the metal (M1) in the organic phase sample (X) on the basis of the calibration curve and the result of measurement in the process (B). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水に難溶な有機溶
媒を有する金属成分含有試料中の金属を、原子吸光分析
又はプラズマ発光分析により、容易に、且つ高精度で定
量することが可能な分析方法に関する。
TECHNICAL FIELD The present invention can easily and highly accurately quantify a metal in a sample containing a metal component having an organic solvent which is poorly soluble in water, by atomic absorption analysis or plasma emission analysis. Related analysis methods.

【0002】[0002]

【従来の技術】金属成分(M)が溶解した、水に難溶な有
機溶媒(S1)を有する有機相試料(X)中の金属(M1)を定量
する分析方法としては、有機相試料(X)を加熱し、有機
溶媒(S1)及びその他成分を燃焼・分解して、金属成分
(M)の酸化物を得、(1-1)該酸化物の質量を測定する方
法、(1-2)該酸化物を蛍光X線分析する方法、(1-3)該酸
化物を酸に溶解した水溶液試料を原子吸光分析又はプラ
ズマ発光分析する方法等が知られている。また、(2)有
機相試料(X)を、有機溶媒(S1)に可溶な有機溶剤に直接
溶解して有機混合溶液を得、該有機混合溶液を原子吸光
分析又はプラズマ発光分析する方法、若しくは(3)有機
相試料(X)と強酸水溶液等とを混ぜ合わせることによ
り、有機相試料(X)中の金属成分を強酸水溶液中に抽出
し(逆抽出)、該強酸水溶液を原子吸光分析又はプラズマ
発光分析する方法も知られている。ところで、上記(1-
3)、(2)及び(3)における原子吸光分析又はプラズマ発光
分析する方法においては、標準溶液を調製し、該標準溶
液により作成した検量線を用いて目的金属の定量が行わ
れている。該標準溶液は、前記分析した溶液に含まれる
溶剤と同一の溶剤に、測定対象である既知量の金属を溶
解して調製することが好ましいとされ、通常、意図的に
前記同一溶剤でない溶剤を用いて標準溶液が調製される
ことはない。その理由は、前記同一溶剤でない溶剤を用
いて調製した標準溶液の粘度及び/又は密度が、原子吸
光分析又はプラズマ発光分析した溶液の粘度及び/又は
密度と相違するため、分析装置における溶液のサンプリ
ング量に差が生じ、正確な定量ができない可能性が高い
からである。
2. Description of the Related Art As an analytical method for quantifying a metal (M1) in an organic phase sample (X) having a water-insoluble organic solvent (S1) in which a metal component (M) is dissolved, an organic phase sample ( X) is heated to burn and decompose the organic solvent (S1) and other components, and the metal component
(M) to obtain an oxide, (1-1) a method of measuring the mass of the oxide, (1-2) a method of fluorescent X-ray analysis of the oxide, (1-3) acid of the oxide A method of performing atomic absorption analysis or plasma emission analysis on an aqueous solution sample dissolved in the above is known. Further, (2) the organic phase sample (X), an organic solvent (S1) directly dissolved in an organic solvent soluble to obtain an organic mixed solution, a method for atomic absorption analysis or plasma emission analysis of the organic mixed solution, Alternatively, (3) the organic phase sample (X) is mixed with a strong acid aqueous solution to extract the metal components in the organic phase sample (X) into the strong acid aqueous solution (back extraction), and the strong acid aqueous solution is subjected to atomic absorption spectrometry. Alternatively, a method for plasma emission analysis is also known. By the way, (1-
In the methods of 3), (2) and (3) for atomic absorption analysis or plasma emission analysis, a standard solution is prepared and the target metal is quantified using a calibration curve prepared from the standard solution. It is said that the standard solution is preferably prepared by dissolving a known amount of metal to be measured in the same solvent as the solvent contained in the analyzed solution. No standard solution is prepared using. The reason is that the viscosity and / or density of a standard solution prepared using a solvent that is not the same solvent is different from the viscosity and / or density of a solution that has been subjected to atomic absorption analysis or plasma emission analysis, so sampling of the solution in an analyzer is performed. This is because there is a high possibility that accurate quantification will not be possible due to differences in the amounts.

【0003】[0003]

【発明が解決しようとしている課題】金属成分(M)の酸
化物を調製し、該酸化物を用いて行う前記(1-1)〜(1-3)
の分析方法では、該酸化物調製のための加熱工程が煩雑
であり、しかも、該加熱中に金属成分の一部が飛散し、
酸化物の回収率が低下する可能性が極めて高いという問
題がある。従って、このような酸化物を用いる方法で
は、特に、測定対象である金属が数mg/l程度の低含有
量の有機相試料(X)を分析する場合、正確な分析がほと
んど不可能である。一方、有機相試料(X)を、有機溶媒(S
1)に可溶な有機溶剤に直接溶解して調製した有機混合溶
液を用いる前記(2)の方法では、検量線作成のための標
準溶液の調製に問題がある。即ち、測定対象の金属は、
有機溶媒(S1)に可溶な有機溶剤に対して、通常、溶解度
が低いため、標準溶液の調製が極めて困難である。加え
て、標準溶液の調製にあたり、測定対象金属の金属塩化
合物の結晶水量を確定し、更に付着水の除去等の高度な
前処理が必要であり、作業が極めて煩雑になるという問
題も生じる。そこで、従来、有機相試料(X)中の金属を
原子吸光分析又はプラズマ発光分析を用いて定量する方
法においては、逆抽出した強酸水溶液等を用いる前記
(3)の方法が多く用いられている。しかし、この方法に
おいても、逆抽出のための作業が煩雑であって、例え
ば、イットリウム又は重希土類元素の様な逆抽出され難
い金属を対象とする場合には、水相の量を多くするか、
2回以上の逆抽出を行う必要が生じる。更に、有機相試
料(X)に含まれる金属成分(M)の全てを、逆抽出により水
相へ移行することは困難であり、分析結果にばらつきが
生じるという問題もある。
[Problems to be Solved by the Invention] Preparation of an oxide of a metal component (M), and using the oxide (1-1) to (1-3)
In the analysis method, the heating step for preparing the oxide is complicated, and moreover, a part of the metal component is scattered during the heating,
There is a problem that the recovery rate of oxides is extremely likely to decrease. Therefore, with the method using such an oxide, accurate analysis is almost impossible, especially when an organic phase sample (X) having a low content of a metal of about several mg / l is analyzed. . On the other hand, the organic phase sample (X) was mixed with the organic solvent (S
In the method (2) using the organic mixed solution prepared by directly dissolving in the organic solvent soluble in 1), there is a problem in preparing the standard solution for preparing the calibration curve. That is, the metal to be measured is
The standard solution is extremely difficult to prepare because the solubility is usually low in an organic solvent soluble in the organic solvent (S1). In addition, in the preparation of the standard solution, it is necessary to determine the amount of water of crystallization of the metal salt compound of the metal to be measured and further to perform advanced pretreatment such as removal of adhered water, which causes a problem that the work becomes extremely complicated. Therefore, conventionally, in the method of quantifying the metal in the organic phase sample (X) by using atomic absorption spectrometry or plasma emission spectrometry, the strong acid aqueous solution or the like extracted back is used.
The method (3) is often used. However, even in this method, the work for back-extraction is complicated, and for example, when targeting a metal that is difficult to be back-extracted such as yttrium or heavy rare earth elements, is the amount of the aqueous phase increased? ,
It becomes necessary to perform back extraction twice or more. Further, it is difficult to transfer all the metal components (M) contained in the organic phase sample (X) to the aqueous phase by back extraction, and there is a problem that the analysis results vary.

【0004】従って、本発明の目的は、金属成分が溶解
した、水に難溶な有機溶媒を有する有機相試料中の金属
を、該金属量が微量な場合であっても、原子吸光分析又
はプラズマ発光分析により、容易に、且つ高精度で定量
することができる分析方法を提供することにある。
Therefore, an object of the present invention is to analyze a metal in an organic phase sample having an organic solvent in which a metal component is dissolved and which is poorly soluble in water, even if the amount of the metal is very small. An object of the present invention is to provide an analysis method that can be easily and highly accurately quantified by plasma emission analysis.

【0005】[0005]

【課題を解決するための手段】即ち、本発明によれば、
金属成分(M)と、水に難溶であり、且つ金属成分(M)を溶
解しうる有機溶媒(S1)とを有する有機相試料(X)中の金
属(M1)を定量する分析方法において、有機相試料(X)
を、有機溶媒(S1)及び水の双方に可溶な希釈溶剤(S2)に
溶解し、有機混合溶液(XS)を得る工程(A)と、有機混合
溶液(XS)を、原子吸光分析又はプラズマ発光分析にて測
定する工程(B)と、検量線作成のために、測定対象であ
る既知量の金属(M1)、金属(M1)を溶解する水溶液及び希
釈溶剤(S2)からなる、金属(M1)が溶解した標準溶液を調
製する工程(C)と、工程(C)で調製した標準溶液に基づい
て検量線を作成する工程(D)と、工程(D)により作成した
検量線及び工程(B)の測定結果より、有機相試料(X)中の
金属(M1)を定量する工程(E)とを含むことを特徴とする
分析方法が提供される。
That is, according to the present invention,
In the analysis method for quantifying the metal (M1) in the organic phase sample (X) having a metal component (M) and an organic solvent (S1) that is sparingly soluble in water and capable of dissolving the metal component (M) , Organic phase sample (X)
Is dissolved in a diluent solvent (S2) soluble in both the organic solvent (S1) and water to obtain the organic mixed solution (XS) (A), and the organic mixed solution (XS) is subjected to atomic absorption spectrometry or The step of measuring by plasma emission spectrometry (B), for the purpose of creating a calibration curve, a known amount of the metal to be measured (M1), consisting of an aqueous solution dissolving the metal (M1) and a diluting solvent (S2), a metal (M1) step of preparing a standard solution dissolved (C), a step of creating a calibration curve based on the standard solution prepared in step (C) (D), and the calibration curve created by step (D) and From the measurement result of the step (B), there is provided an analysis method comprising a step (E) of quantifying the metal (M1) in the organic phase sample (X).

【0006】[0006]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明の分析方法は、金属成分(M)と、水に難溶で
あり、且つ金属成分(M)を溶解しうる有機溶媒(S1)とを
有する有機相試料(X)中の金属(M1)を定量する方法であ
って、少なくとも特定の工程(A)〜(E)を含む。ここで、
水に難溶であるとは、水への溶解度が1%以下であるこ
とを意味する。また、有機溶媒(S1)は、金属(M)を溶解
しうる溶媒であり、該溶解とは、有機溶媒(S1)中で、金
属成分(M)がイオンとなっている状態、金属成分(M)の金
属化合物が溶媒和を受けた状態、金属成分(M)の金属化
合物がコロイドになっている状態等の原子吸光分析、プ
ラズマ発光分析が可能である金属成分(M)が溶媒に均一
分散している状態を含む意味である。
The present invention will be described in more detail below. The analysis method of the present invention comprises a metal component (M), a metal (M1) in an organic phase sample (X) having an organic solvent (S1) which is sparingly soluble in water and which can dissolve the metal component (M). ) Is quantified, which comprises at least specific steps (A) to (E). here,
Poorly soluble in water means that the solubility in water is 1% or less. Further, the organic solvent (S1) is a solvent capable of dissolving the metal (M), and the dissolution is a state in which the metal component (M) is an ion in the organic solvent (S1), the metal component ( Atomic absorption analysis and plasma emission analysis are possible when the metal compound (M) is subjected to solvation, the metal compound (M) is a colloid, etc. It is meant to include the dispersed state.

【0007】本発明において有機相試料(X)は、金属成
分(M)と有機溶媒(S1)とを有するものであれば特に限定
されない。該有機相試料(X)は、通常、金属成分(M)が溶
解しており、水を実質的に含まない有機相のものである
が、本発明の所望の効果を損なわない範囲で、若干の水
を含んでいても良い。更に、有機相試料(X)は、有機溶
媒(S1)以外の、例えば、有機溶媒(S1)との溶解性を有
し、且つ水に可溶な他の有機溶媒等が含まれていても良
い。このような有機相試料(X)としては、例えば、溶媒
抽出による金属成分分離・精製工程において生成する有
機相等が好ましく挙げられる。有機相試料(X)に含まれ
る有機溶媒(S1)は、水に難溶であり、且つ金属成分(M)
を溶解しうる有機溶媒であれば特に限定されず、その種
類は、金属成分(M)の種類等により適宜決定され、また
有機溶媒(S1)は1種類の溶媒に限定されず、2種以上の混
合溶媒であっても良い。有機相試料(X)に含まれる金属
成分(M)は、特に限定されず、例えば、微量含有される
ことが多い希土類金属等が好ましく挙げられる。また、
金属成分(M)は、1種類に限定されず2種以上であっても
良い。
In the present invention, the organic phase sample (X) is not particularly limited as long as it has the metal component (M) and the organic solvent (S1). The organic phase sample (X) is usually an organic phase in which the metal component (M) is dissolved and does not substantially contain water, but within a range not impairing the desired effect of the present invention, it is slightly May contain water. Further, the organic phase sample (X), other than the organic solvent (S1), for example, having a solubility in the organic solvent (S1), and even if other water-soluble organic solvent or the like is included. good. Preferable examples of such an organic phase sample (X) include an organic phase produced in a metal component separation / purification step by solvent extraction. The organic solvent (S1) contained in the organic phase sample (X) is poorly soluble in water, and the metal component (M)
Is not particularly limited as long as it is an organic solvent capable of dissolving, the type is appropriately determined by the type of the metal component (M) and the like, and the organic solvent (S1) is not limited to one type of solvent, two or more types. May be a mixed solvent of. The metal component (M) contained in the organic phase sample (X) is not particularly limited, and preferable examples thereof include rare earth metals often contained in trace amounts. Also,
The metal component (M) is not limited to one type and may be two or more types.

【0008】本発明において工程(A)は、有機相試料(X)
を、希釈溶剤(S2)に溶解し、有機混合溶液(XS)を得る工
程である。希釈溶剤(S2)は、有機溶媒(S1)及び水の双方
に可溶な溶剤であれば良く、例えば、アルコール、ケト
ン、カルボン酸等が挙げられる。希釈溶剤(S2)は、比較
的低級なものが好ましく、アルコールであれば、例え
ば、メタノール、エタノール、プロパノール、ブタノー
ル、イソプロパノール等の炭素数4以下のアルコールか
ら選ばれる1種又は2種以上が挙げられる。特に、メタノ
ールを除く、炭素数2〜4のアルコールから選ばれる1種
又は2種以上が好ましい。希釈溶剤(S2)として、体積変
化を生じ分析の精度に支障をきたし易い揮発性の高い溶
剤、例えば、アセトン又はメタノールや、粘度が高く、
水への溶解度が低く、均一溶液が得難いブタノールより
分子量が大きい溶剤等は好ましいとは言い難いが、これ
らが使用できないというものではない。
In the present invention, the step (A) is the organic phase sample (X).
Is dissolved in a diluting solvent (S2) to obtain an organic mixed solution (XS). The diluting solvent (S2) may be any solvent that is soluble in both the organic solvent (S1) and water, and examples thereof include alcohol, ketone, carboxylic acid and the like. The diluting solvent (S2) is preferably relatively low, and if it is an alcohol, for example, one or more selected from alcohols having 4 or less carbon atoms such as methanol, ethanol, propanol, butanol, and isopropanol can be mentioned. To be Particularly, one or more selected from alcohols having 2 to 4 carbon atoms, excluding methanol, are preferable. As the diluting solvent (S2), a highly volatile solvent that easily causes a volume change and impairs the accuracy of analysis, for example, acetone or methanol, or a high viscosity,
It is difficult to say that a solvent having a higher molecular weight than butanol, which has a low solubility in water and is difficult to obtain a uniform solution, is preferable, but it does not mean that these cannot be used.

【0009】工程(A)において有機混合溶液(XS)の調製
は、例えば、得られる有機混合溶液(XS)中の有機相試料
(X)が、通常10容量%以下、好ましくは5容量%以下とな
るように希釈溶剤(S2)に溶解する方法等により行うこと
ができる。この際、有機相試料(X)の割合が10容量%を
越えると、標準溶液との組成の違いが顕著になり、有機
混合溶液(XS)と標準溶液の粘度及び/又は密度が異なる
ため、分析装置におけるサンプリング量に差が生じ、正
確な定量ができない可能性がある。しかし、有機相試料
(X)中の有機溶媒(S1)の種類、並びに使用する希釈溶剤
(S2)の種類等によっては有機相試料(X)の割合が10容量
%を超える割合となるように調製することもできる。本
発明において工程(A)に用いる有機相試料(X)の使用量
は、極微量であっても良い。従って、従来の逆抽出法に
比して格段に少ない試料量であっても分析が可能であ
る。
In the step (A), the organic mixed solution (XS) is prepared by, for example, the organic phase sample in the obtained organic mixed solution (XS).
It can be carried out by a method of dissolving in the diluent solvent (S2) so that (X) is usually 10% by volume or less, preferably 5% by volume or less. At this time, when the ratio of the organic phase sample (X) exceeds 10% by volume, the difference in composition from the standard solution becomes remarkable, and the organic mixed solution (XS) and the standard solution have different viscosities and / or densities. There is a possibility that accurate quantification may not be possible due to the difference in sampling amount in the analyzer. However, the organic phase sample
Type of organic solvent (S1) in (X) and the diluent solvent used
Depending on the type of (S2) and the like, the proportion of the organic phase sample (X) can be adjusted to exceed 10% by volume. The amount of the organic phase sample (X) used in the step (A) in the present invention may be extremely small. Therefore, analysis is possible even with a significantly smaller sample amount compared to the conventional back extraction method.

【0010】本発明において工程(B)は、工程(A)で調製
した有機混合溶液(XS)を、原子吸光分析又はプラズマ発
光分析にて測定する工程である。工程(B)において、原
子吸光分析又はプラズマ発光分析は、市販の各装置等を
用いて実施することができる。プラズマ発光分析装置に
おいてイオン源としては、ICP、MIP、その他のプラズマ
を用いることができる。
In the present invention, the step (B) is a step of measuring the organic mixed solution (XS) prepared in the step (A) by atomic absorption analysis or plasma emission analysis. In the step (B), atomic absorption analysis or plasma emission analysis can be carried out using each commercially available device or the like. ICP, MIP, or other plasma can be used as the ion source in the plasma emission spectrometer.

【0011】本発明において工程(C)は、検量線作成の
ために、測定対象である既知量の金属(M1)、金属(M1)を
溶解する水溶液及び希釈溶剤(S2)からなる、金属(M1)が
溶解した標準溶液を調製する工程である。この工程(C)
では、工程(A)で調製した有機混合溶液(XS)に溶剤とし
て含まれていない、金属(M1)を溶解する水溶液と、工程
(A)における有機混合溶液(XS)調製時に使用した希釈溶
剤(S2)とを用いるので、金属(M1)が均一溶解した検量線
用の標準溶液を得ることができる。工程(C)に用いる金
属(M1)は、有機相試料(X)中の金属成分(M)と同一、若し
くは金属成分(M)の一部である。工程(C)に用いる金属(M
1)を溶解する水溶液としては、例えば、塩酸水溶液、硝
酸水溶液、硫酸水溶液、炭酸水溶液等の酸性水溶液;ア
ンモニア水溶液等のアルカリ性水溶液等が挙げられる。
工程(C)に用いる希釈溶剤(S2)は、工程(A)で使用した希
釈溶剤(S2)と同一であり、上述の例示と同様な溶剤が例
示できる。
In the present invention, the step (C) comprises a metal (M2) consisting of a known amount of the metal (M1) to be measured, an aqueous solution in which the metal (M1) is dissolved, and a diluting solvent (S2) for preparing a calibration curve. This is a step of preparing a standard solution in which M1) is dissolved. This step (C)
Then, in the organic mixed solution (XS) prepared in step (A) is not included as a solvent, an aqueous solution for dissolving the metal (M1), and
Since the diluting solvent (S2) used when preparing the organic mixed solution (XS) in (A) is used, a standard solution for a calibration curve in which the metal (M1) is uniformly dissolved can be obtained. The metal (M1) used in the step (C) is the same as or a part of the metal component (M) in the organic phase sample (X). Metal used in process (C) (M
Examples of the aqueous solution in which 1) is dissolved include acidic aqueous solutions such as hydrochloric acid aqueous solution, nitric acid aqueous solution, sulfuric acid aqueous solution and carbonate aqueous solution; and alkaline aqueous solutions such as ammonia aqueous solution.
The diluting solvent (S2) used in the step (C) is the same as the diluting solvent (S2) used in the step (A), and the same solvents as those exemplified above can be exemplified.

【0012】工程(C)において、検量線作成のための、
金属(M1)が溶解した標準溶液の調製は、例えば、既知量
の金属(M1)、金属(M1)を溶解する水溶液及び希釈溶剤(S
2)を混合溶解する方法、既知量の金属(M1)を溶解した水
溶液を調製した後、希釈溶剤(S2)を混合溶解する方法、
市販の既知量の金属(M1)が溶解した水溶液に、希釈溶剤
(S2)を混合溶解する方法等が挙げられる。前記既知量の
金属(M1)を溶解した水溶液を調製するには、例えば、既
知量の金属(M1)の純金属、酸化物、若しくは塩酸塩、硝
酸塩、硫酸塩、炭酸塩、アンモニウム塩等の金属化合物
を、水若しくは酸性水溶液又はアルカリ性水溶液に溶解
することにより得ることができる。この際、金属又は金
属化合物と、水、若しくは酸性水溶液又はアルカリ性水
溶液との混合割合は、金属(M1)が溶解する割合であれば
特に限定されない。
In step (C), for preparing a calibration curve,
The preparation of the standard solution in which the metal (M1) is dissolved, for example, a known amount of the metal (M1), an aqueous solution in which the metal (M1) is dissolved and a diluting solvent (S
2) method of mixing and dissolving, after preparing an aqueous solution in which a known amount of metal (M1) is dissolved, a method of mixing and dissolving a diluting solvent (S2),
Commercially available aqueous solution of known amount of metal (M1), diluted solvent
Examples include a method of mixing and dissolving (S2). To prepare an aqueous solution in which the known amount of the metal (M1) is dissolved, for example, a known amount of the metal (M1) of a pure metal, an oxide, or a hydrochloride, a nitrate, a sulfate, a carbonate, an ammonium salt, etc. It can be obtained by dissolving a metal compound in water, an acidic aqueous solution or an alkaline aqueous solution. At this time, the mixing ratio of the metal or metal compound and water, or the acidic aqueous solution or the alkaline aqueous solution is not particularly limited as long as the metal (M1) is dissolved.

【0013】工程(C)において、得られる標準溶液中の
希釈溶剤(S2)の割合は、既知量の金属(M1)と、金属(M1)
を溶解する水溶液との総和量が、標準溶液に対して通常
10容量%以下、好ましくは5容量%以下となるような割
合とすることができる。この際、既知量の金属(M1)と、
金属(M1)を溶解する水溶液との総和量が10容量%を越え
ると、有機混合溶液(XS)との組成の違いが顕著になり、
有機混合溶液(XS)と標準溶液の粘度及び/又は密度が異
なるため、分析装置におけるサンプリング量に差が生
じ、正確な定量ができない可能性がある。一方、下限値
は特に限定されず、0.01容量%程度でも調製可能であ
る。
In step (C), the ratio of the diluting solvent (S2) in the standard solution obtained is such that the known amount of metal (M1) and metal (M1)
The total amount of the
The proportion may be 10% by volume or less, preferably 5% by volume or less. At this time, with a known amount of metal (M1),
When the total amount with the aqueous solution that dissolves the metal (M1) exceeds 10% by volume, the difference in composition from the organic mixed solution (XS) becomes remarkable,
Since the organic mixed solution (XS) and the standard solution have different viscosities and / or densities, a difference may occur in the sampling amount in the analyzer, and accurate quantification may not be possible. On the other hand, the lower limit value is not particularly limited, and it can be prepared even at about 0.01% by volume.

【0014】本発明において工程(D)は、工程(C)で調製
した標準溶液に基づいて検量線を作成する工程であっ
て、公知の方法に準じて作成することができる。
In the present invention, step (D) is a step of preparing a calibration curve based on the standard solution prepared in step (C), and can be prepared according to a known method.

【0015】本発明において工程(E)は、工程(D)により
作成した検量線及び工程(B)の測定結果より、有機相試
料(X)中の金属(M1)を定量する工程であって、この工程
も各分析結果及び検量線に基づいて公知の方法に準じて
行うことができる。
In the present invention, the step (E) is a step of quantifying the metal (M1) in the organic phase sample (X) from the calibration curve prepared in the step (D) and the measurement result of the step (B). This step can also be performed according to a known method based on each analysis result and the calibration curve.

【0016】本発明の分析方法では、上記工程(A)〜(E)
を含むものであれば特に限定されず、所望の効果を期待
して他の工程が含まれていても良い。このような本発明
の分析方法は、溶媒抽出法による金属の分離・精製工程
において生成する有機相に含まれる金属の定量に好適で
あり、特に、希土類金属の定量に好適である。また、従
来の一般的な逆抽出法に比して短時間に分析を行うこと
が可能であるので、分析結果を速やかに商業生産におけ
る品質管理にフィードバックすることができる。
In the analysis method of the present invention, the above steps (A) to (E)
It is not particularly limited as long as it includes the above, and other steps may be included in the expectation of a desired effect. Such an analytical method of the present invention is suitable for quantifying the metal contained in the organic phase produced in the metal separation / purification step by the solvent extraction method, and particularly suitable for quantifying the rare earth metal. In addition, since it is possible to perform the analysis in a shorter time than the conventional general back extraction method, the analysis result can be promptly fed back to the quality control in the commercial production.

【0017】[0017]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが本発明はこれらに限定されない。実施例1-1 <有機相試料(X)の調製>ランタン濃度が1000mg/lであ
り、且つ塩酸濃度が0.022mol/lである、ランタンが溶
解した塩酸水溶液を調製した。別に、2-エチルヘキシル
ホスホネート(大八化学工業製、商品名PC-88A)を、濃度
が0.59mol/lとなるようにn-ヘプタンに溶解し、水に難
溶であり、ランタンを溶解しうる有機溶媒(S1)を調製し
た。次いで、前記塩酸水溶液50mlと有機溶媒(S1)50mlと
を100ml用のガラス製分液ロートに入れ、続いて、塩酸
水溶液中のランタンの特定割合を有機溶媒(S1)に移行す
るために、分注器を使って6.69mol/lのアンモニア水38
0μlを注入した。分液ロートを、振とう機にて20分間振
とう後、30分間静置し平衡状態とした。この状態で分液
ロートのコックを開いて水相を回収することにより、分
液ロート内に、有機溶媒(S1)と、溶解したランタンとか
ら実質的になる有機相試料(X)を調製した。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these. Example 1-1 <Preparation of Organic Phase Sample (X)> A lanthanum-dissolved hydrochloric acid aqueous solution having a lanthanum concentration of 1000 mg / l and a hydrochloric acid concentration of 0.022 mol / l was prepared. Separately, 2-ethylhexylphosphonate (manufactured by Daihachi Chemical Industry Co., Ltd., trade name PC-88A) is dissolved in n-heptane to a concentration of 0.59 mol / l, it is sparingly soluble in water, and lanthanum can be dissolved. An organic solvent (S1) was prepared. Next, 50 ml of the hydrochloric acid aqueous solution and 50 ml of the organic solvent (S1) were placed in a glass separating funnel for 100 ml, and subsequently, a specific ratio of lanthanum in the hydrochloric acid aqueous solution was transferred to the organic solvent (S1) to separate the mixture. Using an injector, 6.69 mol / l ammonia water 38
0 μl was injected. The separating funnel was shaken for 20 minutes on a shaker and then left standing for 30 minutes to equilibrate. In this state, by opening the cock of the separating funnel and recovering the aqueous phase, an organic solvent (S1) in the separating funnel and an organic phase sample (X) consisting essentially of dissolved lanthanum were prepared. .

【0018】<有機相試料(X)中のランタン濃度の分析
>50mlのメスフラスコに前記有機相試料(X)を2ml入れ、
希釈溶剤(S2)としてのイソプロピルアルコールで定容
し、分析用サンプルとして有機混合溶液(XS)を調製し、
プラズマ発光分析(セイコーインスツルメンツ社製、商
品名「SPS1700」)を行った。一方、ランタン濃度1000mg
/lの塩酸水溶液(和光純薬製)0.1〜5mlを、希釈溶剤(S
2)としてのイソプロピルアルコールに溶解し、ランタン
濃度1〜50mg/lの範囲の標準溶液を調製し、該標準溶液
を用いて検量線を作成した。この検量線及び前記プラズ
マ発光分析の結果から有機相試料(X)中のランタン濃度
を求めた。この結果を実測値として表1に示す。 <有機相試料(X)中のランタン濃度理論値の決定>上述
の分析結果を評価するために、まず、50mlのメスフラス
コに前記有機相試料(X)の調製時に分液ロートから回収
した水相2mlを入れ、溶剤としての水で定容した分析用
サンプルを、プラズマ発光分析(セイコーインスツルメ
ンツ社製、商品名「SPS1700」)した。一方、ランタン濃
度1000mg/lの塩酸水溶液(和光純薬製)を用いて、ラン
タン濃度1〜50mg/lの範囲の標準溶液を調製し、該標準
溶液を用いて検量線を作成した。この検量線及び前記プ
ラズマ発光分析の結果から水相中のランタン濃度を求め
た。次いで、この水相中のランタン濃度から有機相試料
(X)中のランタン濃度の理論値を算出した。この結果、
並びに理論値と実測値との差を併せて表1に示す。
<Analysis of Lanthanum Concentration in Organic Phase Sample (X)> 2 ml of the organic phase sample (X) was placed in a 50 ml volumetric flask,
Constant volume with isopropyl alcohol as a diluting solvent (S2), to prepare an organic mixed solution (XS) as a sample for analysis,
Plasma emission analysis (manufactured by Seiko Instruments Inc., trade name "SPS1700") was performed. On the other hand, lanthanum concentration 1000 mg
0.1 to 5 ml of hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries) of
It was dissolved in isopropyl alcohol as 2) to prepare a standard solution having a lanthanum concentration in the range of 1 to 50 mg / l, and a calibration curve was prepared using the standard solution. The lanthanum concentration in the organic phase sample (X) was determined from this calibration curve and the results of the plasma emission analysis. The results are shown in Table 1 as measured values. <Determination of theoretical value of lanthanum concentration in organic phase sample (X)> To evaluate the above analysis results, first, in a 50 ml volumetric flask, water recovered from the separating funnel at the time of preparation of the organic phase sample (X). 2 ml of the phase was added and the volume of the sample for analysis was adjusted with water as a solvent. The sample for analysis was subjected to plasma emission analysis (manufactured by Seiko Instruments Inc., trade name “SPS1700”). On the other hand, a standard solution having a lanthanum concentration of 1 to 50 mg / l was prepared using a hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a lanthanum concentration of 1000 mg / l, and a calibration curve was prepared using the standard solution. The lanthanum concentration in the aqueous phase was determined from this calibration curve and the results of the plasma emission analysis. Then, from the lanthanum concentration in this aqueous phase, the organic phase sample
The theoretical value of the lanthanum concentration in (X) was calculated. As a result,
Table 1 also shows the difference between the theoretical and measured values.

【0019】実施例1-2〜1-4 有機相試料(X)の調製において、アンモニア水の注入量
を表1に示すとおり変更した以外は、実施例1-1と同様
に、有機相試料(X)の調製、有機相試料(X)中のランタン
濃度の分析、及びランタン濃度の理論値決定を行った。
結果を表1に示す。
Examples 1-2 to 1-4 Organic phase samples (X) were prepared in the same manner as in Example 1-1, except that the injection amount of aqueous ammonia was changed as shown in Table 1. (X) was prepared, the lanthanum concentration in the organic phase sample (X) was analyzed, and the theoretical value of the lanthanum concentration was determined.
The results are shown in Table 1.

【0020】実施例1-5 有機相試料(X)の調製において、アンモニア水の注入量
を表1に示すとおり変更し、且つ有機相試料(X)中のラン
タン濃度理論値の決定において、有機相試料(X)の調製
時に分液ロートから回収した水相を水で定容せずにその
まま分析用サンプルとした以外は、実施例1-1と同様
に、有機相試料(X)の調製、有機相試料(X)中のランタン
濃度の分析、及びランタン濃度の理論値決定を行った。
結果を表1に示す。
Example 1-5 In the preparation of the organic phase sample (X), the injection amount of ammonia water was changed as shown in Table 1, and in the determination of the theoretical value of the lanthanum concentration in the organic phase sample (X), Preparation of the organic phase sample (X) in the same manner as in Example 1-1, except that the aqueous phase recovered from the separating funnel during the preparation of the phase sample (X) was used as a sample for analysis as it was without constant volume with water. The lanthanum concentration in the organic phase sample (X) was analyzed, and the theoretical value of the lanthanum concentration was determined.
The results are shown in Table 1.

【0021】比較例1-1 <有機相試料(X)の調製>実施例1-1と同様に有機相試料
(X)を調製した。 <有機相試料(X)中のランタン濃度の分析>分液ロート
に前記有機相試料(X)を30ml及び6mol/l塩酸水溶液30ml
を入れ、20分間振とうし、30分間静置し、有機相試料
(X)中のランタンを水相(塩酸水溶液相)に抽出する、い
わゆる逆抽出を行った。次いで、分液ロートから水相を
回収し、該水相を実施例1-1と同様にプラズマ発光分析
した。この水相は、上記逆抽出により有機相試料(X)中
のランタンが移行された相であるので、この水相を分析
することにより、実施例1-1と同様な有機相試料(X)中の
ランタン濃度を分析することになる。一方、ランタン濃
度1000mg/lの塩酸水溶液(和光純薬製)を用いて、ラン
タン濃度1〜50mg/lの範囲の標準溶液を調製し、該標準
溶液を用いて検量線を作成した。この検量線及び前記プ
ラズマ発光分析の結果から有機相試料(X)中のランタン
濃度を求めた。結果を表1に示す。
Comparative Example 1-1 <Preparation of Organic Phase Sample (X)> Organic phase sample as in Example 1-1
(X) was prepared. <Analysis of lanthanum concentration in organic phase sample (X)> 30 ml of the above organic phase sample (X) and 30 ml of 6 mol / l hydrochloric acid aqueous solution in a separating funnel.
, Shake for 20 minutes, let stand for 30 minutes, and then sample the organic phase.
The so-called back extraction was performed, in which the lanthanum in (X) was extracted into the aqueous phase (hydrochloric acid aqueous solution phase). Then, the aqueous phase was recovered from the separating funnel, and the aqueous phase was subjected to plasma emission analysis in the same manner as in Example 1-1. This aqueous phase is a phase in which the lanthanum in the organic phase sample (X) was transferred by the back extraction, so by analyzing this aqueous phase, an organic phase sample (X) similar to Example 1-1 The lanthanum concentration in it will be analyzed. On the other hand, a standard solution having a lanthanum concentration of 1 to 50 mg / l was prepared using a hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a lanthanum concentration of 1000 mg / l, and a calibration curve was prepared using the standard solution. The lanthanum concentration in the organic phase sample (X) was determined from this calibration curve and the results of the plasma emission analysis. The results are shown in Table 1.

【0022】比較例1-2〜1-5 有機相試料(X)の調製において、アンモニア水の注入量
を表1に示すとおり変更した以外は、実施例1-1と同様に
有機相試料(X)の調製を行い、また、得られた各有機相
試料(X)を用いて比較例1-1と同様に有機相試料(X)中の
ランタン濃度の分析を行った。結果を表1に示す。
Comparative Examples 1-2 to 1-5 In the preparation of the organic phase sample (X), the same procedure as in Example 1-1 was repeated except that the injection amount of aqueous ammonia was changed as shown in Table 1. X) was prepared, and the lanthanum concentration in the organic phase sample (X) was analyzed in the same manner as in Comparative Example 1-1 using each of the obtained organic phase samples (X). The results are shown in Table 1.

【0023】[0023]

【表1】 表1より、実施例における各有機相試料(X)のランタン濃
度分析結果と比較し、比較例の逆抽出により得られたラ
ンタン濃度分析結果が、ランタン濃度の理論値からの乖
離が大きいことが判る。
[Table 1] From Table 1, compared with the lanthanum concentration analysis results of each organic phase sample (X) in the example, the lanthanum concentration analysis results obtained by the back extraction of the comparative example, there is a large deviation from the theoretical value of the lanthanum concentration. I understand.

【0024】比較例2-1 実施例1-1における有機相試料(X)中のランタン濃度の分
析において、検量線作成のための標準溶液の調製を、ラ
ンタン濃度1000mg/lの塩酸水溶液を用いずに、酸化ラ
ンタン、水酸化ランタン又は硝酸ランタンをイソプロピ
ルアルコールに溶解して行った。しかし、いずれの場合
も各ランタン化合物の溶け残りが生じ、検量線作成用の
標準溶液を得ることができなかった。
Comparative Example 2-1 In the analysis of the lanthanum concentration in the organic phase sample (X) in Example 1-1, a standard solution for preparing a calibration curve was prepared by using an aqueous hydrochloric acid solution having a lanthanum concentration of 1000 mg / l. Instead, lanthanum oxide, lanthanum hydroxide or lanthanum nitrate was dissolved in isopropyl alcohol. However, in each case, the undissolved residue of each lanthanum compound was generated, and the standard solution for preparing the calibration curve could not be obtained.

【0025】[0025]

【発明の効果】本発明の分析方法は、工程(A)〜(E)を含
み、特に、工程(A)及び(C)で特定の希釈溶剤(S2)を用
い、更に、工程(C)において金属(M1)を溶解する水溶液
を用いるので、原子吸光分析又はプラズマ発光分析によ
り、有機相試料(X)中に含まれる金属(M1)を容易に、再
現性良く、且つ高精度で定量することができる。
The analytical method of the present invention comprises steps (A) to (E), and in particular, a specific diluent solvent (S2) is used in steps (A) and (C), and further, step (C) Since an aqueous solution in which the metal (M1) is dissolved is used, the metal (M1) contained in the organic phase sample (X) can be easily, reproducibly and highly accurately quantified by atomic absorption analysis or plasma emission analysis. be able to.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G042 AA01 BC03 CA10 CB03 EA01 HA07 2G043 AA01 BA01 CA03 DA02 EA08 GA25 GB21 NA11 2G052 AA09 AA11 AB01 AB27 AD26 AD46 FD01 FD09 GA13 GA15 HB07 JA04 JA08 JA09 2G059 AA01 BB04 CC03 DD04 EE01 FF08 FF12 MM12    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G042 AA01 BC03 CA10 CB03 EA01                       HA07                 2G043 AA01 BA01 CA03 DA02 EA08                       GA25 GB21 NA11                 2G052 AA09 AA11 AB01 AB27 AD26                       AD46 FD01 FD09 GA13 GA15                       HB07 JA04 JA08 JA09                 2G059 AA01 BB04 CC03 DD04 EE01                       FF08 FF12 MM12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属成分(M)と、水に難溶であり、且つ
金属成分(M)を溶解しうる有機溶媒(S1)とを有する有機
相試料(X)中の金属(M1)を定量する分析方法において、 有機相試料(X)を、有機溶媒(S1)及び水の双方に可溶な
希釈溶剤(S2)に溶解し、有機混合溶液(XS)を得る工程
(A)と、 有機混合溶液(XS)を、原子吸光分析又はプラズマ発光分
析にて測定する工程(B)と、 検量線作成のために、測定対象である既知量の金属(M
1)、金属(M1)を溶解する水溶液及び希釈溶剤(S2)からな
る、金属(M1)が溶解した標準溶液を調製する工程(C)
と、 工程(C)で調製した標準溶液に基づいて検量線を作成す
る工程(D)と、 工程(D)により作成した検量線及び工程(B)の測定結果よ
り、有機相試料(X)中の金属(M1)を定量する工程(E)とを
含むことを特徴とする分析方法。
1. A metal (M1) in an organic phase sample (X) comprising a metal component (M) and an organic solvent (S1) which is sparingly soluble in water and capable of dissolving the metal component (M). In the analytical method for quantification, a step of dissolving the organic phase sample (X) in a diluting solvent (S2) soluble in both the organic solvent (S1) and water to obtain an organic mixed solution (XS)
(A) and the step of measuring the organic mixed solution (XS) by atomic absorption analysis or plasma emission analysis (B), and a known amount of metal (M
1), consisting of an aqueous solution dissolving the metal (M1) and a diluting solvent (S2), a step of preparing a standard solution in which the metal (M1) is dissolved (C)
From the measurement results of the calibration curve created in step (D) and the calibration curve created in step (D), and the calibration curve based on the standard solution prepared in step (C) and the measurement result of step (B), the organic phase sample (X) And a step (E) of quantifying the metal (M1) therein.
【請求項2】 希釈溶剤(S2)が、炭素数4以下のアルコ
ールから選ばれる1種又は2種以上であることを特徴と
する請求項1記載の分析方法。
2. The analysis method according to claim 1, wherein the diluting solvent (S2) is one or more selected from alcohols having 4 or less carbon atoms.
【請求項3】 工程(C)において、既知量の金属(M1)
と、金属(M1)を溶解する水溶液との総和量が、標準溶液
に対して10容量%以下となるように希釈溶剤(S2)の含有
量を調整することを特徴とする請求項1又は2記載の分析
方法。
3. A known amount of metal (M1) in step (C)
And a total amount of the aqueous solution in which the metal (M1) is dissolved, the content of the diluting solvent (S2) is adjusted so that the content is 10% by volume or less with respect to the standard solution. Analytical method described.
【請求項4】 有機相試料(X)が、溶媒抽出による金属
成分分離・精製工程において生成する有機相であること
を特徴とする請求項1〜3のいずれか1項記載の分析方
法。
4. The analysis method according to claim 1, wherein the organic phase sample (X) is an organic phase produced in a metal component separation / purification step by solvent extraction.
【請求項5】 金属(M1)が希土類金属であることを特徴
とする請求項1〜4のいずれか1項記載の分析方法。
5. The analysis method according to any one of claims 1 to 4, wherein the metal (M1) is a rare earth metal.
JP2002132245A 2002-05-08 2002-05-08 Method for analyzing metals contained in organic phase samples Expired - Lifetime JP3917457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132245A JP3917457B2 (en) 2002-05-08 2002-05-08 Method for analyzing metals contained in organic phase samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132245A JP3917457B2 (en) 2002-05-08 2002-05-08 Method for analyzing metals contained in organic phase samples

Publications (2)

Publication Number Publication Date
JP2003329584A true JP2003329584A (en) 2003-11-19
JP3917457B2 JP3917457B2 (en) 2007-05-23

Family

ID=29695964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132245A Expired - Lifetime JP3917457B2 (en) 2002-05-08 2002-05-08 Method for analyzing metals contained in organic phase samples

Country Status (1)

Country Link
JP (1) JP3917457B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096190A (en) * 2006-10-10 2008-04-24 Chisso Corp Calcium quantitative determination method and calcium quantitative determination kit
JP2008203032A (en) * 2007-02-19 2008-09-04 Japan Energy Corp Analysis method of trace of metal
CN102305786A (en) * 2011-09-06 2012-01-04 安徽皖维高新材料股份有限公司 Method for determining active rhodium content of acetic anhydride carbonyl synthesis reaction liquid prepared from methyl acetates
CN102692407A (en) * 2011-03-24 2012-09-26 张家港市国泰华荣化工新材料有限公司 Method for analysis of metal impurity ions of organic solvent
KR101425568B1 (en) 2013-07-22 2014-08-01 대한민국 The analysis method of effective stabilizer content in combustible cartridge case
JP2018063242A (en) * 2016-10-07 2018-04-19 アークレイ株式会社 Method for plasma spectroscopic analysis and inhibitor of plasma emission derived from non-target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439314A (en) * 2013-08-16 2013-12-11 中国科学院上海光学精密机械研究所 Method for testing content of rare-earth active ions in laser glass
CN105572106A (en) * 2015-12-18 2016-05-11 苏州新材料研究所有限公司 Method for measuring composition of ReBCO high-temperature superconducting films

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096190A (en) * 2006-10-10 2008-04-24 Chisso Corp Calcium quantitative determination method and calcium quantitative determination kit
JP2008203032A (en) * 2007-02-19 2008-09-04 Japan Energy Corp Analysis method of trace of metal
CN102692407A (en) * 2011-03-24 2012-09-26 张家港市国泰华荣化工新材料有限公司 Method for analysis of metal impurity ions of organic solvent
CN102305786A (en) * 2011-09-06 2012-01-04 安徽皖维高新材料股份有限公司 Method for determining active rhodium content of acetic anhydride carbonyl synthesis reaction liquid prepared from methyl acetates
KR101425568B1 (en) 2013-07-22 2014-08-01 대한민국 The analysis method of effective stabilizer content in combustible cartridge case
JP2018063242A (en) * 2016-10-07 2018-04-19 アークレイ株式会社 Method for plasma spectroscopic analysis and inhibitor of plasma emission derived from non-target

Also Published As

Publication number Publication date
JP3917457B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
Badoud et al. Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry: I. Screening analysis
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
Benkhedda et al. Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactorPresented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehammer, Norway, February 4–8, 2001.
Kaykhaii et al. Room temperature ionic liquid-based dispersive liquid–liquid microextraction of uranium in water samples before spectrophotometric determination
Hsieh et al. Using dried-droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood
JP3917457B2 (en) Method for analyzing metals contained in organic phase samples
CN114894913B (en) Method for synchronously and rapidly determining total arsenic and arsenic metabolite content in urine
Wangkarn et al. Determination of arsenic in organic solvents and wines using microscale flow injection inductively coupled plasma mass spectrometry
JP2009128315A (en) Method for analyzing trace precious metal with radio-frequency plasma mass spectrometer
JP5522584B2 (en) ICP emission spectroscopy method
Kharlamova et al. Hydrogen/deuterium exchange in parallel with acid/base induced protein conformational change in electrospray droplets
Al-Ammar et al. Accuracy improvement in the determination of palladium in pharmaceuticals by eliminating volatility error when using ICP-MS coupled with direct introduction of sample dissolved in organic solvents
Laurent et al. Advantages of a fast-scanning quadrupole for LA-ICP-MS analysis of fluid inclusions
Huang et al. Determination of lead in fish samples by slurry sampling electrothermal atomic absorption spectrometry
JP2008216211A (en) Method of determining quantity of trace element using inductively coupled plasma mass spectrometer
JP2006329687A (en) Analytical method for trace element in metal sample
Völlkopf et al. Determination of cadmium, copper, manganese and rubidium in plastic materials by graphite furnace atomic absorption spectrometry using solid sampling
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
Marks et al. Rapid determination and confirmation of biogenic amines in tuna loin by gas chromatography/mass spectrometry using ethylchloroformate derivative
JP2023012339A (en) Method for analyzing concentrations of fluorine and compound thereof
Linge Recent developments in trace element analysis by ICP‐AES and ICP‐MS with particular reference to geological and environmental samples
Zhang et al. Detection of trace palladium by direct analysis in real time mass spectrometry (DART-MS)
Zhernokleeva et al. Analysis of pure scandium, yttrium, and their oxides using methods of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry
Huang et al. Determination of trace lead in the high salt matrix of comestible CaCO3 by an isotope dilution method with detection by inductively coupled plasma-mass spectrometry
Sahayam et al. Determination of ultra-trace impurities in high purity gallium arsenide by inductively coupled plasma mass spectrometry after volatilization of matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3917457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term