JP2003329497A - Vortex flowmeter sensor and vortex flowmeter having this sensor - Google Patents

Vortex flowmeter sensor and vortex flowmeter having this sensor

Info

Publication number
JP2003329497A
JP2003329497A JP2002140486A JP2002140486A JP2003329497A JP 2003329497 A JP2003329497 A JP 2003329497A JP 2002140486 A JP2002140486 A JP 2002140486A JP 2002140486 A JP2002140486 A JP 2002140486A JP 2003329497 A JP2003329497 A JP 2003329497A
Authority
JP
Japan
Prior art keywords
vortex
pressure
base material
sensor
vibrating tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002140486A
Other languages
Japanese (ja)
Other versions
JP3644934B2 (en
Inventor
賢一 ▲高▼井
Kenichi Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2002140486A priority Critical patent/JP3644934B2/en
Publication of JP2003329497A publication Critical patent/JP2003329497A/en
Application granted granted Critical
Publication of JP3644934B2 publication Critical patent/JP3644934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vortex sensor using a metallic vibrating pipe for improving the S/N ratio. <P>SOLUTION: The metallic vibrating pipe 13 has an installing flange part 11 to a vortex generator, and a pressure receiving part 13a, and has a pressure detecting element plate, a conductive base material 14 having a plate facing to the pressure receiving side in axial symmetry to the vibrating pipe 13, and a piezoelectric element 15 respectively arranged on both side surfaces of the plate of the base material 14. This pressure detecting element plate is housed by contacting a lower end contact part 14a of the base material 14 with a wall surface separating a little from a bottom part of a recessed part by fixing an upper end joining part 14b of the base material 14 to an upper end part of the recessed part formed on the vibrating pipe 13. An upper part of the recessed part is sealed by a mold material. The sensor has a structure for connecting the outside of the upper end joining part 14b of the base material 14 and an inner wall of the metallic vibrating pipe 13 only by metal contact without molding the periphery of the piezoelectric element 15 inside of the vortex sensor 10 by resin. The pressure detecting element plate is formed so that the piezoelectric element 15 is drawn up to an upper fixing part of the vibrating pipe 13. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、渦流量計センサ及
び渦流量計に関し、より詳細には、渦発生体内に片持支
持されて嵌挿され、渦発生体内に導入されるカルマン渦
の変動圧に応動する渦流量計センサ及びそのセンサを備
えた渦流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vortex flowmeter sensor and a vortex flowmeter, and more particularly to a fluctuation of a Karman vortex which is cantilevered and inserted into a vortex generator and is introduced into the vortex generator. The present invention relates to a vortex flowmeter sensor that responds to pressure and a vortex flowmeter equipped with the sensor.

【0002】[0002]

【従来の技術】渦流量計は、周知のように、流体の流れ
の中に渦発生体を配設したとき、その渦発生体から単位
時間内に発生するカルマン渦の数が或るレイノルズ数範
囲で流量に比例することを利用した推測形の流量計であ
る。発生する渦は、渦発生体周りに生ずる流れ変化又は
圧力変化として渦流量計センサ(しばしば単に渦センサ
と呼ぶ)により検出される。これらの渦センサは、渦発
生体内に固着されるか着脱可能に配設されている。流量
計は、目的に応じて多様の流体の流量計測を行う計量機
であるが、渦流量計は、気体液体等密度や粘度に影響さ
れることなくレイノルズ数のみに依存して特性が定めら
れる特徴をもっている。しかし、カルマン渦の発生によ
る変動圧は測定流体の密度と流速の2乗に比例した量で
あるから、測定範囲を拡大するためには小流域での感度
を高くすることが必要である。この点において、渦発生
体内に着脱可能に配設される形式の渦センサは有利であ
る。
2. Description of the Related Art As is well known, in a vortex flowmeter, when a vortex generator is arranged in a fluid flow, the number of Karman vortices generated from the vortex generator within a unit time is a certain Reynolds number. It is a speculative flow meter that utilizes the fact that it is proportional to the flow rate in the range. The vortices that are generated are detected by vortex flowmeter sensors (often referred to simply as vortex sensors) as flow or pressure changes that occur around the vortex generator. These vortex sensors are fixed in the vortex generator or are detachably arranged. The flow meter is a measuring instrument that measures the flow rate of various fluids according to the purpose, but the vortex flow meter is characterized by the Reynolds number alone without being affected by the density and viscosity of the gas liquid. It has characteristics. However, since the fluctuating pressure due to the generation of Karman vortices is an amount proportional to the density of the measured fluid and the square of the flow velocity, it is necessary to increase the sensitivity in a small flow region in order to expand the measurement range. In this respect, a vortex sensor of the type that is detachably arranged in the vortex generator is advantageous.

【0003】着脱式の渦センサとしては、本出願人が特
公昭63−31726号公報において提案した渦発生体
の大きさによらず同一のセンサを着脱可能とする渦流量
計がある。図5(A),(B)は、この従来の渦流量計
を説明するための図で、図5(A)は流れ方向からみた
断面図、図5(B)は図5(A)の矢視B−B断面図で
ある。図中、1は流管(管体)、2は渦発生体、3は取
付面、4は圧力室、5は導圧孔、30は渦センサを夫々
示している。
As a detachable vortex sensor, there is a vortex flowmeter proposed by the present applicant in Japanese Patent Publication No. 63-31726, in which the same sensor can be detached regardless of the size of the vortex generator. 5 (A) and 5 (B) are views for explaining the conventional vortex flowmeter, FIG. 5 (A) is a cross-sectional view seen from the flow direction, and FIG. 5 (B) is FIG. 5 (A). It is an arrow BB sectional view. In the figure, 1 is a flow tube (tube), 2 is a vortex generator, 3 is a mounting surface, 4 is a pressure chamber, 5 is a pressure guide hole, and 30 is a vortex sensor.

【0004】管体1には、被測定流体の流通する配管に
介装される、直径上に渦発生体2が設けられている。渦
発生体2には管体1を貫通した凹部が設けられ、その凹
部は圧力室4となっており、圧力室4の両側壁面に導圧
孔5が貫通し、被測定流体に連通している。一方、圧力
室4には渦センサ30が挿入されている。渦センサ30
は、鍔部(フランジ)31を有する有底な円筒体状の振
動管33と、振動管33の底部に受圧板33aが一体に
形成され振動管33内に同軸に嵌挿された母材34と、
母材34の両側面に導電性接着剤で固着された圧電素子
35と、振動管33内に母材34を一体固着する充填材
36及びリード線32とからなっている。リード線とし
てのシールドケーブル32は、その芯線32bに圧電素
子35の一方の極が接続され、そのシールド線32aに
圧電素子35の他方の極がハンダ付けされた錫メッキ線
を介して接続される。
The tube body 1 is provided with a vortex generator 2 on the diameter, which is interposed in a pipe through which the fluid to be measured flows. The vortex generator 2 is provided with a recess penetrating the tube body 1, and the recess serves as a pressure chamber 4, and pressure guiding holes 5 penetrate both side wall surfaces of the pressure chamber 4 to communicate with the fluid to be measured. There is. On the other hand, the vortex sensor 30 is inserted in the pressure chamber 4. Vortex sensor 30
Is a bottomed cylindrical vibrating tube 33 having a flange portion (flange) 31, and a pressure receiving plate 33a integrally formed at the bottom of the vibrating tube 33, and a base material 34 coaxially inserted into the vibrating tube 33. When,
The piezoelectric element 35 is fixed to both side surfaces of the base material 34 with a conductive adhesive, and the filler 36 and the lead wire 32 that integrally fix the base material 34 in the vibrating tube 33. In the shielded cable 32 as a lead wire, one pole of the piezoelectric element 35 is connected to its core wire 32b, and the other pole of the piezoelectric element 35 is connected to its shield wire 32a via a tinned wire soldered. .

【0005】渦センサ30は、振動管33の鍔部31に
おいて管体1に形成された取付面3で管体1に片持固着
される。渦による変動圧力は、導圧孔5を介して圧力室
4に導入され、受圧板33aに作用する。変動圧力を受
けた受圧板33aは片持固着された位置まわりに変動す
るが、この変動は、振動管33の凹陥部36aに充填さ
れた充填剤36を介して圧電素子35に伝達され、振動
に応じた電気信号(電荷)をリード線32より出力され
る。ここで、充填剤36は、単に力伝達の媒体ではなく
絶縁性が要求される。一般に絶縁抵抗は温度により変化
し、高温では低下するので、充填剤36としてガラス,
エポキシ樹脂等の絶縁性材料が用いられる。
The vortex sensor 30 is cantilevered to the tube body 1 at the mounting surface 3 formed on the tube body 1 at the flange portion 31 of the vibration tube 33. The fluctuating pressure due to the vortex is introduced into the pressure chamber 4 through the pressure guiding hole 5 and acts on the pressure receiving plate 33a. The pressure receiving plate 33a, which receives the fluctuating pressure, fluctuates around the cantilevered and fixed position, but this fluctuation is transmitted to the piezoelectric element 35 via the filler 36 filled in the concave portion 36a of the vibrating tube 33, and vibrates. Is output from the lead wire 32. Here, the filler 36 is required to have an insulating property rather than a force transmission medium. Insulation resistance generally changes with temperature and decreases at high temperatures.
An insulating material such as epoxy resin is used.

【0006】図6は、従来技術による他の渦流量計セン
サを説明するための図で、図中、40は渦流量計センサ
を示している。渦センサ40は、フランジ41を有する
有底な円筒体状の振動管43と、振動管43の底部に受
圧板43aが一体に形成され振動管43内に同軸に嵌挿
された母材44と、母材44の両側面に固着された圧電
素子45と、振動管43内に母材44を一体固着する充
填材46及びリード線42(シールド線42a及び芯線
42b)とからなっている。渦センサ40における動作
は図5を参照して説明した通りであり省略する。なお、
図中46bは母材44の位置決めを行うための凹溝であ
り、48はフランジ41において管体とビス等で接合す
るための穴である。この従来例においては、充填剤46
としてエポキシ系の接着剤を使用した例を示しており、
また電極線42aは圧電素子45に45aで示す位置に
ハンダペーストされているものとする。
FIG. 6 is a view for explaining another vortex flowmeter sensor according to the prior art. In the figure, 40 denotes the vortex flowmeter sensor. The vortex sensor 40 includes a bottomed cylindrical vibrating tube 43 having a flange 41, and a base material 44 in which a pressure receiving plate 43a is integrally formed at the bottom of the vibrating tube 43 and is coaxially inserted into the vibrating tube 43. The piezoelectric element 45 is fixed to both side surfaces of the base material 44, and the filler 46 and the lead wire 42 (the shield wire 42a and the core wire 42b) that integrally fix the base material 44 in the vibrating tube 43. The operation of the vortex sensor 40 is as described with reference to FIG. In addition,
In the figure, 46b is a groove for positioning the base material 44, and 48 is a hole in the flange 41 for joining with the pipe body with a screw or the like. In this conventional example, the filler 46
Shows an example of using an epoxy adhesive as
Further, the electrode wire 42a is assumed to be solder-pasted on the piezoelectric element 45 at the position indicated by 45a.

【0007】また、上述したカルマン渦の発生に伴う交
番差圧の応力を電荷変化として検出する圧電素子に対
し、交番差圧を抵抗変化として検出するストレンゲージ
(歪ゲージ)により渦を検出する渦センサも存在する。
ストレンゲージ式の渦センサでは、一端のみを支持され
た渦発生体の中に、一体に固着された母材及び一対のス
トレンゲージが内蔵されており、カルマン渦の発生に伴
う渦発生体の交番揚力によって内部のストレンゲージが
歪応力を受ける。ストレンゲージはブリッジ回路の2辺
を構成しており、ストレンゲージの抵抗変化を電圧変化
として検出する。ストレンゲージを用いて圧力を検出す
る場合も、振動管の基本的な構成は同様であり、説明を
省略する。
Further, in contrast to the piezoelectric element which detects the stress of the alternating differential pressure due to the generation of the above-mentioned Karman vortex as a change in electric charge, a vortex which detects the vortex by a strain gauge (strain gauge) which detects the alternating differential pressure as a change in resistance. There are also sensors.
In the strain gauge type vortex sensor, the base material and the pair of strain gauges that are integrally fixed are built into the vortex generator whose only one end is supported. Strain stress is applied to the internal strain gauge by the lift force. The strain gauge constitutes two sides of the bridge circuit and detects the resistance change of the strain gauge as a voltage change. Even when the pressure is detected using the strain gauge, the basic configuration of the vibrating tube is the same, and the description thereof will be omitted.

【0008】上述のごとく、従来の圧電素子やストレン
ゲージによりカルマン渦を検出するセンサにおける振動
管の材質としては、樹脂,金属がある。樹脂製のセンサ
は、製造が比較的簡単・安価であり、また金属を用いる
ことができない腐食性の強い流体の計測に使用する場合
に有用であるが、商用ノイズの除去をするために電磁波
シールド材を設置しなくてはならず、製造工程が多くな
る。そして樹脂製センサである為に、センサ自体の耐久
性・信頼性が求められる場合には、安全面の問題から敬
遠され、金属製センサが使用される。
As described above, the material of the vibrating tube in the conventional sensor for detecting the Karman vortex by the piezoelectric element or the strain gauge is resin or metal. A resin sensor is relatively simple and inexpensive to manufacture, and is useful when measuring highly corrosive fluids that cannot use metals, but it is an electromagnetic wave shield to eliminate commercial noise. The material has to be installed, which increases the number of manufacturing processes. Since the sensor is made of resin, when the durability and reliability of the sensor itself are required, the sensor made of metal is used, and it is avoided from the viewpoint of safety.

【0009】しかしながら、金属製センサは、耐久性・
信頼性があるが、振動管が削り加工になり高価なセンサ
となってしまう。また、金属製センサは樹脂製センサに
比べてセンサ出力が大幅に低下してしまい、S/N比が
悪い特性を持ってしまう。
However, the metallic sensor is
Although it is reliable, the vibrating tube is shaved and becomes an expensive sensor. Further, the sensor output of the metal sensor is significantly lower than that of the resin sensor, and the S / N ratio is poor.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上述のごと
き実状に鑑みてなされたものであり、樹脂製振動管を使
用した場合に必要であった電磁波シールド材の塗布を必
要とせず、高温・高圧に耐えることが可能な金属製の振
動管を用いた渦流量計センサにおいて、S/N比を向上
することが可能な渦流量計センサ及びそのセンサを備え
た渦流量計を提供することをその目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and does not require the application of the electromagnetic wave shield material, which is required when a resin vibrating tube is used, and is high in temperature. To provide a vortex flowmeter sensor that can improve the S / N ratio in a vortex flowmeter sensor that uses a metal vibrating tube that can withstand high pressure, and a vortex flowmeter that includes the sensor. Is its purpose.

【0011】本発明は、金属製振動管を高価な削り加工
で製造せず、信頼性が高く、安価に製造可能な金属製の
振動管を用いた渦流量計センサ及びそのセンサを備えた
渦流量計を提供することを他の目的とする。
The present invention is a vortex flowmeter sensor using a metal vibrating tube which is highly reliable and can be manufactured at a low cost without manufacturing the metal vibrating tube by an expensive shaving process, and a vortex sensor equipped with the sensor. Another purpose is to provide a flow meter.

【0012】[0012]

【課題を解決するための手段】第1の技術手段は、被測
定流体が流通する流管内に流れに対向して設けられ、内
部に圧力室を有し、さらに被測定流体に連通し該圧力室
に流体圧を導入する導圧孔を有する渦発生体に配設する
ための、該渦発生体における前記圧力室内に導入される
カルマン渦に基づく変動圧力を検知する渦流量計センサ
において、前記渦発生体に取り付けるためのフランジ部
と受圧部と有する金属製の振動管と、該振動管に軸対称
で受圧側に面する平板をもつ導電性の母材と該母材の平
板の両側面に各々設けられた圧電素子又は歪ゲージとを
有する圧力検出素子板とを備え、前記圧力検出素子板
を、前記振動管に形成された凹陥部の上端部に前記母材
の上端接合部を固定し、該凹陥部の底部より僅かに離れ
た壁面に前記母材の下端接触部を接触させて収納し、絶
縁性樹脂のモールド材で該凹陥部上部を封止し、且つ、
前記圧電素子又は歪ゲージを前記振動管の上端接合部ま
で延伸させたことを特徴としたものである。
A first technical means is provided in a flow tube through which a fluid to be measured flows so as to face the flow, has a pressure chamber therein, and communicates with the fluid to be measured. A vortex flowmeter sensor for detecting a fluctuating pressure based on a Karman vortex introduced into the pressure chamber in the vortex generator, the vortex flowmeter sensor being disposed in the vortex generator having a pressure guiding hole for introducing fluid pressure into the chamber, A vibrating tube made of metal having a flange part for attaching to the vortex generator and a pressure receiving part, a conductive base material having a flat plate axially symmetrical to the vibrating tube and facing the pressure receiving side, and both side surfaces of the flat plate of the base material. A pressure detecting element plate having a piezoelectric element or a strain gauge respectively provided on the pressure detecting element plate, and fixing the upper end joint portion of the base material to the upper end portion of the recess formed in the vibrating tube. The base material of the base material on the wall surface slightly separated from the bottom of the recess. Housed by contacting the end contact portion, sealing the the recessed portion upper in the molding material of the insulating resin, and,
The piezoelectric element or the strain gauge is extended to the upper end joint portion of the vibrating tube.

【0013】第2の技術手段は、第1の技術手段におい
て、前記母材の下端接触部は、前記振動管の凹陥部の底
部より僅かに離れた壁面に設けられた係止溝に、外径が
該係止溝の内径よりも僅かに大きい放射状のスリットを
有する円板状のばね部をもつことを特徴としたものであ
る。
A second technical means is the same as the first technical means, in which a lower end contact portion of the base material is provided outside a locking groove provided on a wall surface slightly separated from a bottom portion of the concave portion of the vibrating tube. It is characterized by having a disc-shaped spring portion having radial slits whose diameter is slightly larger than the inner diameter of the locking groove.

【0014】第3の技術手段は、第1又は第2の技術手
段において、前記振動管は、金属粉末射出成型材である
ことを特徴としたものである。
A third technical means is the same as the first or second technical means, wherein the vibrating tube is a metal powder injection molding material.

【0015】第4の技術手段は、第1乃至3のいずれか
1の技術手段において、記載の渦流量計センサを備えた
ことを特徴としたものである。
A fourth technical means is characterized in that the vortex flowmeter sensor described in any one of the first to third technical means is provided.

【0016】[0016]

【発明の実施の形態】図1は、本発明の一実施形態に係
る渦流量計センサの構成例を示す図で、図1(A)は流
れ方向からみた断面図、図1(B)は図1(A)の矢視
B−B断面図である。図1中、1は流管(管体)、2は
渦発生体、3は取付面、4は圧力室、5は導圧孔、10
は渦流量計センサ(以下、渦センサと呼ぶ)を夫々示し
ている。また、図2は、図1の渦流量計センサの詳細を
説明するための図で、図2(A)はその垂直方向の断面
図、図2(B)はその水平方向の断面図、図2(C)は
他の垂直方向の断面図を示す図である。なお、図2中、
12はリード線としてのシールドケーブル、12aはシ
ールド線、12bは芯線、13aは受圧部、15aはペ
ースト位置、18は穴であり、これら従来技術において
説明したので説明を省略する。また、図2中、17はア
ース線を示す。また、図3は、図2の圧力検出素子板の
一例を示す図で、図3(A)はその平面図、図3(B)
は図3(A)の母材の下端接触部の一例を示す図であ
る。
1 is a diagram showing an example of the structure of a vortex flowmeter sensor according to an embodiment of the present invention. FIG. 1 (A) is a cross-sectional view seen from the flow direction, and FIG. 1 (B) is FIG. 2 is a sectional view taken along line BB of FIG. In FIG. 1, 1 is a flow tube (tubular body), 2 is a vortex generator, 3 is a mounting surface, 4 is a pressure chamber, 5 is a pressure guide hole, and 10
Indicates a vortex flowmeter sensor (hereinafter referred to as a vortex sensor), respectively. 2 is a diagram for explaining the details of the vortex flowmeter sensor of FIG. 1, FIG. 2 (A) is a vertical sectional view thereof, and FIG. 2 (B) is a horizontal sectional view thereof. 2C is a view showing another vertical cross-sectional view. In addition, in FIG.
Reference numeral 12 is a shield cable as a lead wire, 12a is a shield wire, 12b is a core wire, 13a is a pressure receiving portion, 15a is a paste position, and 18 is a hole. Further, in FIG. 2, 17 indicates a ground wire. 3 is a diagram showing an example of the pressure detection element plate of FIG. 2, FIG. 3 (A) is a plan view thereof, and FIG. 3 (B).
FIG. 4 is a diagram showing an example of a lower end contact portion of the base material of FIG. 3 (A).

【0017】本実施形態に係る渦センサ10は、渦発生
体2に組み込み渦発生体2の圧力室4内に導入されるカ
ルマン渦に基づく変動圧力を検知するためのセンサであ
り、圧力検出素子板を内部に収納した振動管13をその
主たる構成要素とする。渦発生体2は被測定流体が流通
する流管内に流れに対向して設けられ、カルマン渦を発
生させるためのものである。また、渦発生体2は、内部
に圧力室4を有し、さらに被測定流体に連通し圧力室4
に流体圧を導入する導圧孔5をその側面に有する。な
お、渦センサ10を組み込んだ渦発生体2を備えた渦流
量計としては、被測定流体すべてが流量計の測定管(流
管1に相当)を通過するような流量計としてもよいし、
大口径の流管における流量を測定する場合に好適なよう
にその流管内に小口径の測定管(流管1に相当)をもつ
渦流量計を挿入し、その部分流速から全流量を求める挿
入形渦流量計としてもよいが、後者の方が後述する金属
粉末射出成型材(MIM材)を振動管13に用いた実施
形態には好適である。さらに渦発生体2の形状も、図1
(B)に示す形状や三角柱状でなくとも渦発生体の両側
で流れが剥離しカルマン渦が交番発生するような形状で
あればよい。
The vortex sensor 10 according to the present embodiment is a sensor for detecting a fluctuating pressure based on a Karman vortex introduced into the pressure chamber 4 of the vortex generator 2 incorporated in the vortex generator 2, and is a pressure detecting element. The vibrating tube 13 having a plate accommodated therein is a main component. The vortex generator 2 is provided in the flow tube through which the fluid to be measured flows so as to face the flow, and is for generating a Karman vortex. Further, the vortex generator 2 has a pressure chamber 4 inside, and further communicates with the fluid to be measured.
It has a pressure guiding hole 5 on its side surface for introducing a fluid pressure into. The vortex flowmeter provided with the vortex generator 2 incorporating the vortex sensor 10 may be a flowmeter in which all the fluid to be measured passes through the measuring pipe (corresponding to the flow pipe 1) of the flowmeter,
Inserting a vortex flowmeter with a small diameter measuring tube (corresponding to the flow tube 1) into the flow tube so as to be suitable for measuring the flow rate in the large diameter flow tube, and obtaining the total flow rate from the partial flow velocity Although a vortex flowmeter may be used, the latter is more suitable for an embodiment in which a metal powder injection molding material (MIM material) described later is used for the vibration tube 13. Furthermore, the shape of the vortex generator 2 is also shown in FIG.
The shape shown in (B) is not limited to the triangular prism shape as long as the flow separates on both sides of the vortex generator and the Karman vortices are alternately generated.

【0018】本発明において振動管13は金属製とし、
渦発生体2に取り付けるためのフランジ部11と受圧部
13aともつ。金属製の振動管13を用いることで樹脂
製振動管を使用した場合に必要であった電磁波シールド
材の塗布を必要とせず、電気シールド性を向上させるこ
とができる。また、上述の圧力検出素子板としては、振
動管13に軸対称で受圧側に面する平板をもつ導電性の
母材14と母材14の平板の両側面に各々設けられた圧
電素子15(又は歪ゲージ)とを有するものとする。本
発明の主たる特徴として、この圧力検出素子板を、振動
管13に形成された凹陥部の上端部に母材14の上端接
合部14bを固定し、その凹陥部の底部より僅かに離れ
た壁面に母材14の下端接触部14aを接触させて収納
する。そして、絶縁性樹脂のモールド材16で凹陥部上
部を封止することにより、渦センサ10が製造される。
すなわち、渦センサ10内部の圧電素子15(又は歪ゲ
ージ)周りを樹脂にてモールドせず、母材14が図3
(A)のごとくT字形をしており、その上端接合部14
bの外側と金属製振動管13の内壁とが金属接触のみで
接続されている構造(無焼成型構造)をもつものとす
る。また、固定を確実なものとするため、接着剤で固定
することが好ましく、さらに母材14と振動管13との
熱膨張係数を略等しくするようにしてもよい。
In the present invention, the vibrating tube 13 is made of metal,
It has a flange portion 11 for attaching to the vortex generator 2 and a pressure receiving portion 13a. By using the vibration tube 13 made of metal, it is possible to improve the electric shielding property without the need to apply the electromagnetic wave shield material which was required when the vibration tube made of resin was used. Further, as the above-mentioned pressure detection element plate, a conductive base material 14 having a flat plate which is axisymmetric to the vibration tube 13 and faces the pressure receiving side, and piezoelectric elements 15 (which are provided on both side surfaces of the flat plate of the base material 14 respectively) Or strain gauge). As a main feature of the present invention, the pressure detecting element plate is a wall surface in which the upper end joint portion 14b of the base material 14 is fixed to the upper end portion of the concave portion formed in the vibration tube 13 and is slightly separated from the bottom portion of the concave portion. The lower end contact portion 14a of the base material 14 is brought into contact with and stored. Then, the vortex sensor 10 is manufactured by sealing the upper part of the concave portion with the molding material 16 of the insulating resin.
That is, the area around the piezoelectric element 15 (or strain gauge) inside the vortex sensor 10 is not molded with resin, and the base material 14 is formed as shown in FIG.
It has a T-shape as shown in (A) and its upper end joint 14
It is assumed that the outer side of b and the inner wall of the metallic vibrating tube 13 are connected by only metal contact (non-baking type structure). Further, in order to secure the fixing, it is preferable to fix with an adhesive, and the base material 14 and the vibrating tube 13 may have substantially the same thermal expansion coefficient.

【0019】また、本発明の他の主たる特徴として、圧
電素子15(又は歪ゲージ)を振動管13の上部固定部
まで延伸させるよう圧力検出素子板を形成するものとす
る。ここでは、図3(A)に示すように圧電素子15の
上部を母材14の上端接合部(上部固定部に相当)14
bまで上方に延長した構造をもつものとする。金属振動
管を用いることで樹脂製の振動管に比べ出力が低下しS
/N比が悪くなるが、圧電素子(又は歪ゲージ)の配置
を上部固定部まで延長したことで出力が大きくなりS/
N比の向上が可能となる。
As another main feature of the present invention, the pressure detecting element plate is formed so as to extend the piezoelectric element 15 (or strain gauge) to the upper fixed portion of the vibration tube 13. Here, as shown in FIG. 3A, the upper portion of the piezoelectric element 15 is connected to the upper end joint portion (corresponding to the upper fixing portion) 14 of the base material 14.
It shall have a structure extending upward to b. By using a metal vibrating tube, the output is lower than that of a resin vibrating tube.
Although the / N ratio deteriorates, the output becomes large by extending the arrangement of the piezoelectric element (or strain gauge) to the upper fixed part, and S /
It is possible to improve the N ratio.

【0020】また、下端接触部14aとしては、図3
(B)に示すように放射状のスリットを有する円板状の
ばね部をもつようにするとよい。この放射状スリット
は、振動管13の凹陥部の底部より僅かに離れた壁面に
設けられた係止溝に対し、外径がその係止溝の内径より
も僅かに大きく形成されている必要がある。図3(B)
で示す下端接触部14aにより、振動管13の凹陥部に
対し着脱自在にばね係止することが可能で、圧力検出素
子板を振動管13に収納する際にも便利であり、且つ、
圧電素子15(又は歪ゲージ)の検出を可能とする。
Further, as the lower end contact portion 14a, as shown in FIG.
As shown in (B), it is preferable to have a disk-shaped spring portion having radial slits. The radial slit needs to have an outer diameter slightly larger than the inner diameter of the engaging groove provided on the wall surface slightly separated from the bottom of the concave portion of the vibrating tube 13. . Figure 3 (B)
With the lower end contact portion 14a shown in FIG. 5, it is possible to detachably lock the spring with respect to the recessed portion of the vibration tube 13, which is convenient when the pressure detection element plate is housed in the vibration tube 13, and
The piezoelectric element 15 (or strain gauge) can be detected.

【0021】図4は、本発明の一実施形態に係る渦流量
計センサにおける振動管の製造方法を説明するためのフ
ロー図である。上述した渦センサにおける金属製の振動
管13(フランジ部11及び受圧部13aを含む)は、
MIM(金属粉末射出成型:Metal Inject
ionMolding)材とすることが好ましい。金属
粉末射出成型の振動管を用いることで信頼性の高い・安
価な振動管及びそれを備えた渦流量計センサ及び渦流量
計を提供できる。まず、金属微粒子粉末22を熱可塑性
バインダ21と混練する(ステップS1)。次に、これ
を射出生成機を用いて成形し(ステップS2)、その
後、脱バインダ(脱脂)し(ステップS3)、焼結する
(ステップS4)。その後、必要に応じてサイジング
(ステップS5)、後処理(ステップS6)を行うこと
でMIM製の振動管(製品23)が形成される。
FIG. 4 is a flow chart for explaining a method of manufacturing the vibration tube in the vortex flowmeter sensor according to the embodiment of the present invention. The metal vibrating tube 13 (including the flange portion 11 and the pressure receiving portion 13a) in the vortex sensor described above is
MIM (Metal Powder Injection Molding: Metal Inject)
(ionMolding) material is preferable. By using a vibrating tube formed by metal powder injection molding, it is possible to provide a highly reliable and inexpensive vibrating tube, and a vortex flowmeter sensor and a vortex flowmeter equipped therewith. First, the fine metal particle powder 22 is kneaded with the thermoplastic binder 21 (step S1). Next, this is molded using an injection generator (step S2), then debindered (degreased) (step S3), and sintered (step S4). After that, sizing (step S5) and post-treatment (step S6) are performed as necessary to form a vibrating tube (product 23) made of MIM.

【0022】MIM製法は、3次元的な複雑形状をもつ
金属成形部品が量産可能であり、均一収縮するので寸法
精度±0.5%と高精度で、且つ相対密度も95%以上
と高いため機械的性質が優れている。さらに、高い展延
性をもつのでプレス,曲げ加工が容易である上に各種の
熱処理に対応可能であり、また、微粉末を使用するので
表面は滑らかになり、メッキ等の各種表面処理が容易で
ある。このように、MIM製法はこれまでの金属粉末焼
結とは異なり、密度・強度ともに向上しているため、こ
の製法で生成した振動管も高い信頼性を得ることができ
る。コスト面では、実際に従来の削り振動管に比べて1
/10程度のコストで製造可能となる。これは渦流量計
センサ全体で1/4程度のコストに相当し、渦流量計全
体で2/5程度のコストに相当する。
In the MIM method, metal molded parts having a three-dimensionally complex shape can be mass-produced, and uniform shrinkage results in high dimensional accuracy of ± 0.5% and high relative density of 95% or more. It has excellent mechanical properties. Furthermore, since it has high extensibility, it can be pressed and bent easily and can be used for various heat treatments. Also, since fine powder is used, the surface becomes smooth and various surface treatments such as plating are easy. is there. As described above, the MIM manufacturing method is different from the conventional metal powder sintering in that both the density and the strength are improved, so that the vibration tube produced by this manufacturing method can also obtain high reliability. In terms of cost, it is actually 1
It can be manufactured at a cost of about / 10. This corresponds to a cost of about 1/4 for the whole vortex flowmeter sensor and a cost of about 2/5 for the whole vortex flowmeter.

【0023】[0023]

【発明の効果】本発明によれば、樹脂製振動管を使用し
た場合に必要であった電磁波シールド材の塗布を必要と
せず、高温・高圧に耐えることが可能な金属製の振動管
を用いた渦流量計センサにおいて、S/N比を向上する
ことが可能となる。
According to the present invention, a metal vibrating tube capable of withstanding high temperature and high pressure without using the electromagnetic wave shielding material, which is required when a resin vibrating tube is used, is used. It is possible to improve the S / N ratio in the conventional vortex flowmeter sensor.

【0024】また、本発明によれば、渦流量計センサに
おける金属製振動管を、高価な削り加工で製造せず、信
頼性が高く、安価に製造することが可能となる。
Further, according to the present invention, the metal vibrating tube in the vortex flowmeter sensor can be manufactured with high reliability and at low cost without being manufactured by expensive shaving.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係る渦流量計センサの
構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a vortex flowmeter sensor according to an embodiment of the present invention.

【図2】 図1の渦流量計センサの詳細を説明するため
の図である。
FIG. 2 is a diagram for explaining details of the vortex flowmeter sensor of FIG.

【図3】 図2の圧力検出素子板の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a pressure detection element plate of FIG.

【図4】 本発明の一実施形態に係る渦流量計センサに
おける振動管の製造方法を説明するためのフロー図であ
る。
FIG. 4 is a flowchart for explaining a method of manufacturing the vibration tube in the vortex flowmeter sensor according to the embodiment of the present invention.

【図5】 従来技術による渦流量計を説明するための図
である。
FIG. 5 is a diagram for explaining a vortex flowmeter according to a conventional technique.

【図6】 従来技術による他の渦流量計センサを説明す
るための図である。
FIG. 6 is a diagram for explaining another vortex flowmeter sensor according to the related art.

【符号の説明】[Explanation of symbols]

1…流管(管体)、2…渦発生体、3…取付面、4…圧
力室、5…導圧孔、10…渦流量計センサ、11…フラ
ンジ部、12…シールドケーブル、12a…シールド
線、12b…芯線、13…振動管、13a…受圧部、1
4…母材、14a…下端接触部、14b…上端接合部、
15…圧電素子、15a…ペースト位置、16…モール
ド材、17…アース線、18…穴、21…熱可塑性バイ
ンダ、22…金属微粒子粉末、23…製品。
DESCRIPTION OF SYMBOLS 1 ... Flow tube (tubular body), 2 ... Vortex generator, 3 ... Mounting surface, 4 ... Pressure chamber, 5 ... Pressure guiding hole, 10 ... Vortex flowmeter sensor, 11 ... Flange part, 12 ... Shielded cable, 12a ... Shield wire, 12b ... Core wire, 13 ... Vibration tube, 13a ... Pressure receiving portion, 1
4 ... Base material, 14a ... Bottom contact part, 14b ... Top joint part,
15 ... Piezoelectric element, 15a ... Paste position, 16 ... Mold material, 17 ... Ground wire, 18 ... Hole, 21 ... Thermoplastic binder, 22 ... Metal fine particle powder, 23 ... Product.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体が流通する流管内に流れに対
向して設けられ、内部に圧力室を有し、さらに被測定流
体に連通し該圧力室に流体圧を導入する導圧孔を有する
渦発生体に配設するための、該渦発生体における前記圧
力室内に導入されるカルマン渦に基づく変動圧力を検知
する渦流量計センサにおいて、 前記渦発生体に取り付けるためのフランジ部と受圧部と
有する金属製の振動管と、該振動管に軸対称で受圧側に
面する平板をもつ導電性の母材と該母材の平板の両側面
に各々設けられた圧電素子又は歪ゲージとを有する圧力
検出素子板とを備え、前記圧力検出素子板を、前記振動
管に形成された凹陥部の上端部に前記母材の上端接合部
を固定し、該凹陥部の底部より僅かに離れた壁面に前記
母材の下端接触部を接触させて収納し、絶縁性樹脂のモ
ールド材で該凹陥部上部を封止し、且つ、前記圧電素子
又は歪ゲージを前記振動管の上端接合部まで延伸させた
ことを特徴とする渦流量計センサ。
1. A pressure guide hole is provided in a flow tube through which a fluid to be measured flows so as to face the flow, has a pressure chamber therein, and further has a pressure guide hole communicating with the fluid to be measured and introducing a fluid pressure into the pressure chamber. A vortex flowmeter sensor for arranging the vortex generator, which detects a fluctuating pressure based on a Karman vortex introduced into the pressure chamber in the vortex generator, including a flange portion for attaching to the vortex generator and a pressure receiving pressure. And a vibrating tube made of metal, a conductive base material having a flat plate which is axisymmetric to the vibrating tube and faces the pressure receiving side, and piezoelectric elements or strain gauges provided on both side surfaces of the flat plate of the base material, respectively. A pressure detecting element plate having a pressure detecting element plate, the upper end joint portion of the base material is fixed to the upper end portion of the concave portion formed in the vibrating tube, and the pressure detecting element plate is slightly separated from the bottom portion of the concave portion. The bottom edge contact part of the base material is brought into contact with the Sealed the recessed portion upper in molding material of RESIN, and flowmeter sensor, characterized in that the piezoelectric element or a strain gauge was extended to the upper end joint portion of the vibrating tube.
【請求項2】 前記母材の下端接触部は、前記振動管の
凹陥部の底部より僅かに離れた壁面に設けられた係止溝
に、外径が該係止溝の内径よりも僅かに大きい放射状の
スリットを有する円板状のばね部をもつことを特徴とす
る請求項1記載の渦流量計センサ。
2. A lower end contact portion of the base material is formed in a locking groove provided on a wall surface slightly separated from a bottom portion of the recessed portion of the vibrating tube and has an outer diameter slightly smaller than an inner diameter of the locking groove. The vortex flowmeter sensor according to claim 1, further comprising a disk-shaped spring portion having a large radial slit.
【請求項3】 前記振動管は、金属粉末射出成型材であ
ることを特徴とする請求項1又は2記載の渦流量計セン
サ。
3. The vortex flowmeter sensor according to claim 1, wherein the vibrating tube is a metal powder injection molding material.
【請求項4】 請求項1乃至3のいずれか1記載の渦流
量計センサを備えたことを特徴とする渦流量計。
4. A vortex flowmeter comprising the vortex flowmeter sensor according to any one of claims 1 to 3.
JP2002140486A 2002-05-15 2002-05-15 Vortex flowmeter sensor and vortex flowmeter equipped with the sensor Expired - Fee Related JP3644934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140486A JP3644934B2 (en) 2002-05-15 2002-05-15 Vortex flowmeter sensor and vortex flowmeter equipped with the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140486A JP3644934B2 (en) 2002-05-15 2002-05-15 Vortex flowmeter sensor and vortex flowmeter equipped with the sensor

Publications (2)

Publication Number Publication Date
JP2003329497A true JP2003329497A (en) 2003-11-19
JP3644934B2 JP3644934B2 (en) 2005-05-11

Family

ID=29701360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140486A Expired - Fee Related JP3644934B2 (en) 2002-05-15 2002-05-15 Vortex flowmeter sensor and vortex flowmeter equipped with the sensor

Country Status (1)

Country Link
JP (1) JP3644934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164388A (en) * 2017-09-25 2020-05-15 Ckd株式会社 Vortex flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164388A (en) * 2017-09-25 2020-05-15 Ckd株式会社 Vortex flowmeter
CN111164388B (en) * 2017-09-25 2021-07-30 Ckd株式会社 Vortex flowmeter

Also Published As

Publication number Publication date
JP3644934B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US5705751A (en) Magnetic diaphragm pressure transducer with magnetic field shield
JP3305704B2 (en) Eddy current detector
US7874218B2 (en) Capacitive electromagnetic flowmeter
KR101153658B1 (en) Measuring device
US20030067960A1 (en) Precision temperature probe having fast response
US7007556B2 (en) Method for determining a mass flow of a fluid flowing in a pipe
EP3285058B1 (en) Pressure sensor
JPH06103202B2 (en) Electromagnetic flow meter
JP4129881B2 (en) Explosion-proof high temperature multi-vortex flowmeter
JP5365665B2 (en) Sensor unit
JP2014517316A (en) Pressure sensor device for detecting the pressure of a fluid medium in a measurement chamber
US6769305B2 (en) Acceleration sensor
JP2003329497A (en) Vortex flowmeter sensor and vortex flowmeter having this sensor
JP5648590B2 (en) Sensor device
EP3353526A1 (en) A density sensor and density sensor manufacturing method
JP2005172658A (en) Ultrasonic flowmeter
US11860013B2 (en) Magnetically inductive flowmeter having electrode with pressure measuring transducer
JP3481220B2 (en) Piezoelectric sensor for eddy flow meter and method of manufacturing the same
CN221280662U (en) Bearing pedestal vibration impact temperature composite sensor
JP4648625B2 (en) Vortex flow meter
JPH0225446B2 (en)
CN219757569U (en) Lead structure of pressure sensor and pressure measuring module
JPS6166122A (en) Electrode structure of electromagnetic flowmeter
JPH0719919A (en) Vortex sensor
JPH04331322A (en) Sensor for karman vortex flowmeter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Ref document number: 3644934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees