JP2003329391A - Porous film for temperature-humidity exchanger and method of manufacture - Google Patents

Porous film for temperature-humidity exchanger and method of manufacture

Info

Publication number
JP2003329391A
JP2003329391A JP2002138738A JP2002138738A JP2003329391A JP 2003329391 A JP2003329391 A JP 2003329391A JP 2002138738 A JP2002138738 A JP 2002138738A JP 2002138738 A JP2002138738 A JP 2002138738A JP 2003329391 A JP2003329391 A JP 2003329391A
Authority
JP
Japan
Prior art keywords
temperature
humidity
fiber material
porous membrane
humidity exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002138738A
Other languages
Japanese (ja)
Other versions
JP3886845B2 (en
JP2003329391A5 (en
Inventor
Akihisa Yoshimura
晃久 吉村
Hideo Maeda
秀雄 前田
Osamu Hiroi
治 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002138738A priority Critical patent/JP3886845B2/en
Publication of JP2003329391A publication Critical patent/JP2003329391A/en
Publication of JP2003329391A5 publication Critical patent/JP2003329391A5/ja
Application granted granted Critical
Publication of JP3886845B2 publication Critical patent/JP3886845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film for a temperature-humidity exchanger which performs superior temperature-humidity exchange, while sufficiently reducing gas permeability, and is superior in hydrolysis resistance, and also to provide a method for inexpensively manufacturing this porous film. <P>SOLUTION: This porous film 1 for the temperature-humidity exchanger is arranged between passages of two kinds of gas flows in the temperature-humidity exchanger for performing heat exchange and humidity exchange between the two kinds of gas flows. The porous film 1 is composed of a fiber material, and a surface of the fiber material is coated with a hydrophilic material. This porous film is obtained by refining the surface of the fiber material into a hydrophilic property by coating the surface of the fiber material with metallic oxide deposited from a metallic fluoride containing aqueous solution by soaking the fiber material in the metallic fluoride containing aqueous solution. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温湿度交換器用多
孔質膜およびその製造方法に関するものであり、詳しく
は、透気性を十分に低くしたまま良好な温湿度交換が可
能であり、しかも耐加水分解性に優れた温湿度交換器用
多孔質膜、およびこれを低コストで製造する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous membrane for a temperature / humidity exchanger and a method for producing the same. The present invention relates to a porous membrane for a temperature / humidity exchanger having excellent hydrolyzability and a method for producing the porous membrane at low cost.

【0002】[0002]

【従来の技術】2種の気体流間で熱交換および湿度交換
を行う温湿度交換器は、例えば、空調標準テキスト
((株)オーム社、p157、1980年2月発行)に記載
されているように当業界においてよく知られている。図
7は、従来の空調用の固定式温湿度交換器の内部構造を
説明するための図である。図7の温湿度交換器は、熱と
湿度を透過する透湿膜14と特殊クラフト紙の間隔板13が
積層されてなり、これらの間を供給ガスおよび被加湿ガ
スがそれぞれ直交する方向でかつ両者が接触しないよう
に通過し、その際、高温湿潤の供給ガスに含まれる熱と
水分が、透湿膜14を介して被加湿ガスに移動する。
2. Description of the Related Art A temperature / humidity exchanger for performing heat exchange and humidity exchange between two kinds of gas streams is described in, for example, an air conditioning standard textbook (Ohm Co., Ltd., p157, issued in February 1980). As is well known in the art. FIG. 7 is a diagram for explaining the internal structure of a conventional fixed temperature / humidity exchanger for air conditioning. The temperature / humidity exchanger of FIG. 7 is formed by laminating a moisture permeable film 14 that transmits heat and humidity and a spacing plate 13 of special kraft paper, and between them, the supply gas and the gas to be humidified are orthogonal to each other. Both pass through so that they do not come into contact with each other, and at that time, heat and water contained in the supply gas of high temperature and humidity move to the gas to be humidified through the moisture permeable membrane 14.

【0003】ここで、燃料電池は、一般的によく知られ
ているように、電解質膜を介して一対の電極を接触さ
せ、この一方の電極に燃料を、他方の電極に酸化剤を供
給し、燃料の酸化を電池内で電気化学的に反応させるこ
とにより化学エネルギーを直接電気エネルギーに変換す
る装置である。このような燃料電池には、電解質により
いくつかの型があるが、近来比較的高性能な燃料電池と
して、電解質に固体高分子膜を用いた、いわゆる固体高
分子型燃料電池が注目されている。例えば、プロトン導
電性の固体高分子膜を電解質に用いた燃料電池において
は、アノード電極に燃料ガス(例えば水素ガス)を、カ
ソード電極に酸化剤(例えば空気または酸素ガス)をそ
れぞれ供給し、外部回路より電流を取り出す。このと
き、下記のような反応が生じる。 陰極反応:H→ 2H + 2e (1) 陽極反応:2H + 2e + 1/2O→HO (2)
Here, in a fuel cell, as is generally well known, a pair of electrodes are brought into contact with each other through an electrolyte membrane, and fuel is supplied to one electrode and an oxidant is supplied to the other electrode. A device that directly converts chemical energy into electrical energy by electrochemically reacting the oxidation of fuel in the cell. There are several types of such fuel cells depending on the type of electrolyte. Recently, a so-called solid polymer type fuel cell using a solid polymer membrane as an electrolyte has been attracting attention as a relatively high performance fuel cell. . For example, in a fuel cell using a proton conductive solid polymer membrane as an electrolyte, a fuel gas (for example, hydrogen gas) is supplied to the anode electrode and an oxidant (for example, air or oxygen gas) is supplied to the cathode electrode. Extract current from the circuit. At this time, the following reactions occur. Cathode reaction: H 2 → 2H + + 2e (1) Anode reaction: 2H + + 2e + 1 / 2O 2 → H 2 O (2)

【0004】このように陰極反応で水素はプロトンとな
り、水を伴って固体高分子膜を通過する。続いてプロト
ンは陽極に移動し、ここ酸素と反応して水を生ずる。こ
のとき、水素イオンを伝導する交替高分子膜の伝導性は
水分を含むことにより発現するので、前記反応を円滑に
生じさせるためには固体高分子膜を湿潤に保つ必要があ
る。したがって、前記のような燃料電池の運転では、燃
料ガスを加湿する必要がある。
As described above, hydrogen becomes a proton by the cathode reaction and passes through the solid polymer membrane together with water. The protons then migrate to the anode where they react with oxygen to produce water. At this time, the conductivity of the alternating polymer membrane that conducts hydrogen ions is exhibited by the inclusion of water, so that the solid polymer membrane must be kept wet in order to smoothly cause the above reaction. Therefore, in the operation of the fuel cell as described above, it is necessary to humidify the fuel gas.

【0005】なお、ガスの加湿には水分の確保と熱の供
給が必要なため、燃料電池の排ガス中の水分を温湿度交
換により回収して使用する方法が例えば、特公昭63―
18304号に開示されている。この技術によれば、高
温湿潤をいまだ保っている燃料電池の排ガスを温湿度交
換器において燃料ガスと接触させ、燃料ガスに熱および
水分を移動させている。
Since it is necessary to secure moisture and supply heat to humidify the gas, a method of recovering and using moisture in exhaust gas of a fuel cell by exchanging temperature and humidity is disclosed in, for example, Japanese Patent Publication No. 63-63.
No. 18304. According to this technique, the exhaust gas of the fuel cell, which is still kept at high temperature and humidity, is brought into contact with the fuel gas in the temperature / humidity exchanger, and heat and moisture are transferred to the fuel gas.

【0006】[0006]

【発明が解決しようとする課題】固体高分子型燃料電池
は、70℃から80℃の比較的高温で運転されることが
多く、供給ガスの露点も70℃前後の高露点にまで加湿
する必要がある。しかし、例えば前記のクラフト紙を用
いた従来の温湿度交換器では、高温多湿条件下でクラフ
ト紙のような紙が加水分解により強度が低下し、数日で
クラフト紙が崩壊し、実用に供することはできないとい
う問題点があった。
The polymer electrolyte fuel cell is often operated at a relatively high temperature of 70 ° C. to 80 ° C., and the dew point of the supply gas must be humidified to a high dew point of about 70 ° C. There is. However, for example, in a conventional temperature / humidity exchanger using the above-mentioned kraft paper, the strength of the paper such as kraft paper decreases due to hydrolysis under high temperature and high humidity conditions, and the kraft paper collapses within a few days and is put to practical use. There was a problem that I could not do it.

【0007】また、温湿度交換器における温湿度交換膜
として多孔質膜を使用すると、一般的に多孔質膜の透気
性が高く、供給ガスと被加湿ガスと間でガスの漏れが発
生し、被加湿ガスの供給量が減少する欠点があった。こ
のような問題点を解決する方法として、特開平7−13
3994号公報には、高分子樹脂多孔質膜上に高分子透
湿性樹脂を含浸する方法が提案されている。しかしなが
らこの方法は、高分子透湿性樹脂が多孔質膜の孔部を塞
ぐため、透気性は低くなるが、その反面透湿性能が低下
するという欠点がある。特に高露点にまで燃料ガスの加
湿の必要性がある燃料電池においては、透湿性能の低下
は好ましくない。また、ガス温度80℃、露点70℃と
高温多湿の燃料ガスの供給が求められる燃料電池の運転
においては、温湿度交換器の多孔質膜に高分子樹脂など
の有機体を使用した場合、加水分解による基材の劣化は
避けられない。
Further, when a porous membrane is used as the temperature / humidity exchange membrane in the temperature / humidity exchanger, the air permeability of the porous membrane is generally high, and gas leakage occurs between the supply gas and the humidified gas. There is a drawback that the supply amount of the humidified gas is reduced. As a method for solving such a problem, Japanese Patent Laid-Open No. 7-13
Japanese Patent No. 3994 proposes a method of impregnating a polymer resin porous film with a polymer moisture-permeable resin. However, this method has a drawback that although the moisture permeability of the polymer blocks the pores of the porous membrane, the gas permeability is low, but the moisture permeability is deteriorated. In particular, in a fuel cell in which it is necessary to humidify the fuel gas up to a high dew point, it is not preferable to lower the moisture permeability. In addition, in the operation of a fuel cell in which a gas temperature of 80 ° C. and a dew point of 70 ° C. and a supply of high-humidity fuel gas are required, when an organic substance such as a polymer resin is used for the porous membrane of the temperature / humidity exchanger, Deterioration of the substrate due to decomposition is unavoidable.

【0008】したがって本発明の目的は、透気性を十分
に低くしたまま良好な温湿度交換が可能であり、しかも
耐加水分解性に優れた温湿度交換器用多孔質膜を提供す
ることにある。また本発明の別の目的は、前記温湿度交
換器用多孔質膜を低コストで生産することのできる方法
を提供することにある。
Therefore, an object of the present invention is to provide a porous membrane for a temperature / humidity exchanger which is capable of exchanging excellent temperature / humidity while keeping air permeability sufficiently low and is excellent in hydrolysis resistance. Another object of the present invention is to provide a method capable of producing the porous membrane for a temperature / humidity exchanger at low cost.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、2種
の気体流間で熱交換および湿度交換を行う温湿度交換器
における前記2種の気体流の流路間に配設される温湿度
交換器用多孔質膜であって、前記多孔質膜が繊維材料か
らなるとともに、前記繊維材料の表面が親水性材料でコ
ーティングされていることを特徴とする温湿度交換器用
多孔質膜である。請求項2の発明は、親水性材料が酸化
チタンである請求項1に記載の温湿度交換器用多孔質膜
である。請求項3の発明は、金属フッ化物含有水溶液に
繊維材料を浸漬し、前記繊維材料の表面を前記金属フッ
化物含有水溶液から析出する金属酸化物でコーティング
し、前記繊維材料の表面を親水性に改質する工程を有す
る請求項1に記載の温湿度交換器用多孔質膜を製造する
方法である。請求項4の発明は、金属酸化物が酸化チタ
ンである請求項3に記載の製造方法である。
The invention of claim 1 is arranged between flow paths of two kinds of gas flows in a temperature and humidity exchanger for performing heat exchange and humidity exchange between the two kinds of gas flows. A porous membrane for a temperature / humidity exchanger, wherein the porous membrane is made of a fibrous material, and the surface of the fibrous material is coated with a hydrophilic material. . The invention of claim 2 is the porous membrane for a temperature / humidity exchanger according to claim 1, wherein the hydrophilic material is titanium oxide. According to a third aspect of the present invention, the fiber material is immersed in an aqueous solution containing a metal fluoride, the surface of the fiber material is coated with a metal oxide deposited from the aqueous solution containing a metal fluoride, and the surface of the fiber material is made hydrophilic. The method for producing the porous membrane for a temperature / humidity exchanger according to claim 1, which has a step of reforming. The invention of claim 4 is the manufacturing method according to claim 3, wherein the metal oxide is titanium oxide.

【0010】[0010]

【発明の実施の形態】実施の形態1.本発明の温湿度交
換器は、従来と同様に、2種の気体流間で熱交換および
湿度交換を行うことを目的として使用することができ、
2種の気体流の流路間には、多孔質膜が配設される。多
孔質膜を構成する繊維材料としては、とくに制限されな
いが、耐熱性の高いものが好ましく、例えばポリフェニ
レンサルファイド、ポリエステル、ビニロン、ポリプロ
ピレン、アクリル、レーヨン、セロハン、ポリビニルア
ルコール、ポリサルフォン、ポリイミド、ポリカーボネ
ート等が挙げられる。また本発明では繊維材料が親水性
材料でコーティングされ、耐腐食性が高まるので、耐久
性の面で問題があった紙(セルロース)を使用すること
ができる。多孔質膜1は、繊維間の距離が水の表面張力
と釣り合う、すなわち繊維間の距離は、繊維間の空隙が
水によってふさがれたいわゆるウエットシールが形成さ
れるような距離であるのが好ましい。また繊維材料の空
孔率は、50〜80%であることがとくに好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. The temperature-humidity exchanger of the present invention can be used for the purpose of performing heat exchange and humidity exchange between two types of gas streams, as in the conventional case,
A porous membrane is arranged between the flow paths of the two gas flows. The fiber material constituting the porous membrane is not particularly limited, but those having high heat resistance are preferable, for example, polyphenylene sulfide, polyester, vinylon, polypropylene, acrylic, rayon, cellophane, polyvinyl alcohol, polysulfone, polyimide, polycarbonate and the like. Can be mentioned. Further, in the present invention, the fibrous material is coated with the hydrophilic material to increase the corrosion resistance, so that paper (cellulose) having a problem in durability can be used. In the porous membrane 1, it is preferable that the distance between the fibers balances the surface tension of water, that is, the distance between the fibers is such that a so-called wet seal in which voids between the fibers are filled with water is formed. . The porosity of the fiber material is particularly preferably 50 to 80%.

【0011】繊維材料を親水性材料でコーティングする
方法は、金属フッ化物水溶液から酸化物薄膜を析出させ
る、いわゆる液相析出法(LPD: Liquid Phase Deposi
tion法)が好ましい。なお、この場合は親水性材料とし
て金属酸化物が採用される。金属酸化物としては、酸化
チタン(TiO2)、酸化アルミニウム(Al2O3)、二酸化
珪素(SiO2)等が挙げられるが、中でも酸化チタン(Ti
O2)が好ましい。なお、本発明でいう親水性とは、固体
表面に対して接触角が例えば0〜5度が例示される。液
相析出法は、公知の方法であり、例えば特開昭59−1
41441号公報、特開平1−93443号公報、特開
平3−285821号公報、特開平3−285822号
公報、特開平4−26516号公報、特公平7−352
68号公報等に開示されている。具体的には、液相析出
法は、金属フッ化物含有水溶液、例えばチタンフッ化ア
ンモニウムあるいはチタンフッ化水素酸水溶液にほう酸
あるいはアルミニウムを添加して調製した水溶液に、繊
維材料を浸漬し、繊維材料の表面を金属フッ化物含有水
溶液から析出する金属酸化物でコーティングし、繊維材
料の表面を親水性に改質するという方法である。液相析
出法は、大量の繊維材料を一度に処理することができる
こと;複雑な形状の繊維材料であってもその内部まで均
一な被覆が可能であること;密着性が比較的良好である
こと;CVD法やPVD法に比べ、高価な装置を用いる
必要がなく、さらにsol−gel法によるディップコ
ーティング法やスピンコーティング法に比べ、繊維材料
を処理液に浸積させるだけであるため、処理コストが低
いこと;常温に近い温度で被覆が可能であるため、処理
エネルギーが少なくてすむこと;等に優位点がある。な
お、液相析出法を採用する場合、繊維材料としては、金
属フッ化物水溶液と反応しにくい材料を選択するのが好
ましい。
A method of coating a fiber material with a hydrophilic material is a so-called liquid phase deposition method (LPD: Liquid Phase Deposition) in which an oxide thin film is deposited from a metal fluoride aqueous solution.
tion method) is preferred. In this case, a metal oxide is used as the hydrophilic material. Examples of the metal oxide include titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), and the like. Among them, titanium oxide (Ti 2
O 2 ) is preferred. The hydrophilicity referred to in the present invention is exemplified by a contact angle of 0 to 5 degrees with respect to the solid surface. The liquid phase deposition method is a known method and is disclosed in, for example, JP-A-59-1.
No. 41441, JP-A-1-93443, JP-A-3-285821, JP-A-3-285822, JP-A-4-26516, and JP-B-7-352.
No. 68 publication and the like. Specifically, the liquid phase deposition method is a method of immersing a fiber material in an aqueous solution containing a metal fluoride, for example, an aqueous solution prepared by adding boric acid or aluminum to an aqueous solution of titanium ammonium fluoride or titanium hydrofluoric acid, Is coated with a metal oxide that precipitates from a metal fluoride-containing aqueous solution to make the surface of the fiber material hydrophilic. The liquid phase deposition method is capable of treating a large amount of fiber material at once; even if the fiber material has a complicated shape, it is possible to uniformly coat the inside thereof; Adhesion is relatively good Compared with the CVD method and the PVD method, it is not necessary to use an expensive apparatus, and further, compared to the dip coating method and the spin coating method by the sol-gel method, the fibrous material is simply immersed in the treatment liquid. Is low; the coating can be performed at a temperature close to room temperature, so that less processing energy is required; and the like. When the liquid phase deposition method is adopted, it is preferable to select, as the fiber material, a material that does not easily react with the metal fluoride aqueous solution.

【0012】さらなる具体例として、本実施の形態にお
ける液相析出法について説明する。(NHTiF
(六フッ化チタン酸アンモニウム)0.1mol/l、ホウ酸
0.2mol/lを含む水溶液を、適当な容器に入れ混合し処理
液とした。縦、横20cm角、厚さ50μm、空孔率5
0%のPPS(ポリフェニレンサルファイド)メルトブロ
ウ不織布を該処理液に浸漬し、脱泡した後に、30℃に保
持して20時間処理した。処理終了後、純水で洗浄し、6
0℃で乾燥し、多孔質膜を作製した。図1は、このよう
な液相析出法で処理した後のPPSメルトブロウ不織布の
繊維の顕微鏡拡大写真図である。図1によれば、繊維表
面10は酸化チタン薄膜でコーティングされ、酸化チタ
ン層による干渉色を呈していた。また、処理前後の重量
差からPPSメルトブロウ不織布は、その1cm当たり、
1.5mgの酸化チタンが被覆されたことがわかった。酸
化チタンの比重から体積換算すると約0.38×10-3cm3
となり、コーティングによってPPSメルトブロウ不織布
の空孔体積が狭くなることはなかった。次に、未処理の
PPSメルトブロウ不織布と液相析出法で処理した後のPPS
メルトブロウ不織布を10秒間純水に浸漬し重量法にて吸
水量を比較した。処理後のPPSメルトブロウ不織布は、
未処理のものに比較して単位面積あたり約10倍の水を保
持しており、処理後のPPSメルトブロウ不織布の表面は
一様に水によるウエットシールが形成されていた。
As a further specific example, the liquid phase deposition method in the present embodiment will be described. (NH 4 ) 2 TiF
6 (Ammonium hexafluorotitanate) 0.1mol / l, boric acid
An aqueous solution containing 0.2 mol / l was put in an appropriate container and mixed to obtain a treatment liquid. Vertical, horizontal 20 cm square, thickness 50 μm, porosity 5
A 0% PPS (polyphenylene sulfide) meltblown non-woven fabric was immersed in the treatment solution, defoamed, and then kept at 30 ° C. for 20 hours. After the treatment, wash with pure water, and
It was dried at 0 ° C. to prepare a porous film. FIG. 1 is a microscopic enlarged photograph of fibers of a PPS meltblown nonwoven fabric after being treated by such a liquid phase deposition method. According to FIG. 1, the fiber surface 10 was coated with a titanium oxide thin film and exhibited an interference color due to the titanium oxide layer. In addition, from the weight difference before and after the treatment, the PPS melt blown nonwoven fabric per 1 cm 2
It was found that 1.5 mg of titanium oxide was coated. Approximately 0.38 × 10 -3 cm 3 when converted to volume from the specific gravity of titanium oxide
Therefore, the coating did not reduce the pore volume of the PPS meltblown nonwoven fabric. Then unprocessed
PPS melt blown nonwoven fabric and PPS after treated by liquid phase deposition method
The melt blown nonwoven fabric was dipped in pure water for 10 seconds to compare the amount of water absorption by the gravimetric method. The treated PPS melt blown nonwoven fabric is
About 10 times as much water was retained per unit area as compared with the untreated one, and the surface of the treated PPS melt blown nonwoven fabric was uniformly wet-sealed with water.

【0013】図2は、本実施の形態で作製された多孔質
膜を用いた、温湿度交換器の内部構造の一例を説明する
ための図である。図2において、1は前記のように作製
された繊維材料からなる多孔質膜であり、縦、横20c
m角、厚さ50μm、空孔率50%のPPS(ポリフェニ
レンサルファイド)メルトブロウ不織布である。2は上
下の多孔質膜1を支えるセパレータであり、厚さ250
μmのPET(ポリエチレンテレフタレート)のフィルム
を波状にしたものである。本実施の形態では、9枚の多
孔質膜1の間にセパレータ2を10個設け、多孔質膜1
およびセパレータ2からなる積層体を構成し(なお、図
2ではすべての層を示してはいない)、温湿度交換器と
した。なお該積層体において、ガスの流れが矢印21の
方向になるようなガス流路4と、ガスの流れが矢印22
の方向になるようなガス流路3とを交互に形成し、それ
ぞれ積層した。次に、そして湿潤ガスの流れを矢印22
の方向になるように、乾燥ガスの流れを矢印21の方向
になるように設定し、湿度交換の度合について調べた。
図3は、温湿度交換器のガス出口部における供給ガス
(湿潤ガス)の露点と被加湿ガス(乾燥ガス)の露点と
の関係を示すグラフである。図3のグラフにおいて実線
が本実施の形態の温湿度交換器の結果を示している。な
お、破線は酸化チタンで被覆されていないPPSメルトブ
ロウ不織布を多孔質膜として用いた例(比較例)であ
る。本実施の形態の温湿度交換器のほうが比較例よりも
被加湿ガスの到達露点が高く、湿度交換の効率が高まっ
ていることが分かる。したがって本発明の多孔質膜は、
特に被加湿ガスの高い到達露点を要求される燃料電池の
排ガス水分回収にも用いることができる。
FIG. 2 is a diagram for explaining an example of the internal structure of the temperature / humidity exchanger using the porous membrane manufactured in this embodiment. In FIG. 2, reference numeral 1 is a porous membrane made of the fiber material produced as described above, and the length and width are 20c.
It is a PPS (polyphenylene sulfide) meltblown nonwoven fabric with m-square, thickness of 50 μm and porosity of 50%. 2 is a separator that supports the upper and lower porous membranes 1 and has a thickness of 250
It is a corrugated PET (polyethylene terephthalate) film of μm. In the present embodiment, ten separators 2 are provided between nine porous membranes 1 and
A laminated body composed of the separator 2 and the separator 2 was formed (note that not all layers are shown in FIG. 2) to provide a temperature / humidity exchanger. In the laminated body, the gas flow path 4 in which the gas flow is in the direction of arrow 21 and the gas flow is in the direction of arrow 22.
The gas flow paths 3 are alternately formed so as to be oriented in the above direction, and are laminated respectively. Then, and the flow of the moist gas is indicated by the arrow 22.
The flow of the dry gas was set so as to be in the direction of arrow 21, and the degree of humidity exchange was examined.
FIG. 3 is a graph showing the relationship between the dew point of the supply gas (wet gas) and the dew point of the humidified gas (dry gas) at the gas outlet of the temperature / humidity exchanger. In the graph of FIG. 3, the solid line shows the result of the temperature / humidity exchanger of the present embodiment. The broken line is an example (comparative example) in which a PPS meltblown nonwoven fabric not coated with titanium oxide was used as a porous membrane. It can be seen that the temperature / humidity exchanger of the present embodiment has a higher dew point of the gas to be humidified than the comparative example, and the humidity exchange efficiency is higher. Therefore, the porous membrane of the present invention,
In particular, it can be used for exhaust gas moisture recovery of a fuel cell that requires a high reaching dew point of the gas to be humidified.

【0014】続いて、温湿度交換器の被加湿ガスの出口
部に正圧として0〜40kPaをかけ、供給ガスの出口部
から流れ出るガス量を計測し、温湿度交換器におけるガ
スの漏れ率(供給ガスの出口部から流れ出るガス量の増
加の割合)を計測した。図4は、前記圧力と漏れ率との
関係を示すグラフである。比較例の温湿度交換器は、1
0kPa程で漏れ率が100%になるのに比べ、本実施の
形態の温湿度交換器は、漏れ率の増加が鈍いことが分か
る。また本発明者らのさらなる実験によれば、本実施の
形態の温湿度交換器は、200mmAq程度の正圧が内部に
かかった場合でも供給ガスと被加湿ガスとの間での漏れ
が起こらないことが分かった。その理由は、供給ガス中
の水分が多孔質膜に捕獲され、多孔質膜を構成する繊維
材料の繊維間の空隙が水によってふさがれたいわゆるウ
エットシールが形成されるためであると考えられる。
Subsequently, a positive pressure of 0 to 40 kPa is applied to the outlet of the humidified gas of the temperature / humidity exchanger, the amount of gas flowing out from the outlet of the supply gas is measured, and the gas leakage rate in the temperature / humidity exchanger ( The rate of increase in the amount of gas flowing out from the outlet of the supply gas) was measured. FIG. 4 is a graph showing the relationship between the pressure and the leak rate. The temperature-humidity exchanger of the comparative example has 1
It can be seen that the temperature / humidity exchanger according to the present embodiment has a slow increase in the leak rate as compared with the leak rate of 100% at about 0 kPa. According to further experiments by the inventors, the temperature-humidity exchanger according to the present embodiment does not leak between the supply gas and the humidified gas even when a positive pressure of about 200 mmAq is applied to the inside. I found out. It is considered that the reason is that the water content in the supply gas is captured by the porous membrane and a so-called wet seal is formed in which the voids between the fibers of the fibrous material forming the porous membrane are filled with water.

【0015】図5は、本実施の形態および比較例の温湿
度交換器における多孔質膜の繊維材料と供給ガス中の液
滴との関係を示す図である。図5(a)の比較例の温湿
度交換器の多孔質膜は、繊維材料表面上が親水性ではな
いため、液滴5が繊維6に捕獲されず、液滴5とガスが
触れる表面積が小さくなっている。また、繊維6間に多
くの空隙が存在しガスの漏れ率を上げている。逆に図5
(b)の本実施の形態の温湿度交換器の多孔質膜は、繊
維材料表面が親水性であるため、液滴が繊維6に捕獲さ
れ、液滴とガスが触れる表面積が大きくなっている。ま
た、繊維に捕獲された液滴が繊維の空隙を埋めウエット
シール7を形成するため、漏れ率が小さくなる。
FIG. 5 is a diagram showing the relationship between the fiber material of the porous membrane and the droplets in the supply gas in the temperature and humidity exchangers of this embodiment and the comparative example. In the porous membrane of the temperature / humidity exchanger of the comparative example of FIG. 5 (a), since the surface of the fiber material is not hydrophilic, the droplets 5 are not captured by the fibers 6 and the surface area where the droplets 5 come into contact with gas is It is getting smaller. Also, many voids exist between the fibers 6 to increase the gas leakage rate. Conversely, FIG.
In the porous membrane of the temperature / humidity exchanger of this embodiment of (b), since the surface of the fiber material is hydrophilic, the droplets are captured by the fibers 6 and the surface area where the droplets and the gas come into contact with each other is large. . Further, since the droplets captured by the fibers fill the voids of the fibers and form the wet seal 7, the leak rate becomes small.

【0016】実施の形態2.実施の形態1で作製した多
孔質膜と、比較例の多孔質膜を適当な容器に入れ、90
℃の温水に1ヶ月間浸積し、耐加水分解性を比較した。
浸漬後のサンプルを20×100mmの短冊状に切り試
験片とし、引っ張り試験を行った。図6は、試験片の引
っ張り試験における荷重曲線を示すグラフである。図6
において、本実施の形態の試験片のほうが比較例のそれ
に比べて試験片長の変位量が大きくなっても荷重に耐え
ることができ、耐加水分解性に優れていることが分か
る。逆に比較例は、多孔質膜の繊維が脆く変質している
ことが認められた。本実施の形態によれば、本発明に使
用される多孔質膜の耐加水分解性が著しく改善されたこ
とから、寿命が長い温湿度交換器が得られることが分か
る。
Embodiment 2. The porous membrane prepared in Embodiment 1 and the porous membrane of the comparative example were put in an appropriate container,
The sample was immersed in warm water at 0 ° C for 1 month, and the hydrolysis resistance was compared.
The sample after the immersion was cut into a strip of 20 × 100 mm to form a test piece, and a tensile test was performed. FIG. 6 is a graph showing a load curve in a tensile test of a test piece. Figure 6
In the above, it can be seen that the test piece of the present embodiment can withstand the load even when the displacement amount of the test piece length is larger than that of the comparative example, and is excellent in hydrolysis resistance. On the contrary, in the comparative example, it was confirmed that the fibers of the porous membrane were brittle and deteriorated. According to the present embodiment, since the hydrolysis resistance of the porous membrane used in the present invention is remarkably improved, it can be seen that a temperature / humidity exchanger having a long life can be obtained.

【0017】実施の形態3.(NHTiF(六
フッ化チタン酸アンモニウム)0.1mol/l、ホウ酸0.2mol
/lを含む水溶液を適当な容器に入れ混合し処理液とし
た。厚さ50μm、空孔率50%のPPSメルトブロウ不
織布と厚さ50μm空孔率50%の和紙(セルロース)
と厚さ40μm、空孔率50%のビニロンフィルムとをそ
れぞれ該処理液に浸漬し、脱泡した後に、30℃に保持し
て20時間処理した。処理終了後、純水で洗浄し、60℃
で乾燥した。処理後のサンプルはいずれも酸化チタン薄
膜でコーティングされ、酸化チタン層による干渉色を呈
していた。処理前後の重量差からPPSメルトブロウ不織
布1cm当たり、1.5mgの酸化チタンが、和紙1cm2
当たり、1.55mgの酸化チタンが、ビニロンフィルム1
cm当たり1.53mgの酸化チタンがコーティングされ
たことが分かった。したがって、コーティングによって
サンプルの空孔体積が狭くなることはなかった。また、
PPSメルトブロウ不織布を該処理液に10時間または3
0時間浸積処理したものを作製し、前記の20時間処理
したものと比較した。処理前後の重量差からPPSメルト
ブロウ不織布1cm当たり、10時間処理したものに
は0.8mgの酸化チタンが、20時間処理したものには
1.5mgの酸化チタンが、30時間処理したものには2.2
mgの酸化チタンが被覆されたことが分かり、時間に比
例してコーティング量が増加することが分かった。この
ことにより、種々の多孔質膜に金属酸化物薄膜を形成す
ることができ、任意の厚さのコーティングが可能である
ため、多孔質膜の材料選定において幅広い選択が可能と
なり、安価で長寿命の温湿度交換器が得られるようにな
った。
Embodiment 3. (NH 4 ) 2 TiF 6 (ammonium hexafluorotitanate) 0.1 mol / l, boric acid 0.2 mol
An aqueous solution containing / l was put in an appropriate container and mixed to obtain a treatment liquid. 50 μm thick PPS melt blown non-woven fabric with 50% porosity and 50 μm thick Japanese paper (cellulose) with 50% porosity
Then, a vinylon film having a thickness of 40 μm and a porosity of 50% was immersed in the treatment solution, defoamed, and then maintained at 30 ° C. for 20 hours. After the treatment, wash with pure water, 60 ℃
Dried in. The treated samples were all coated with a titanium oxide thin film and exhibited an interference color due to the titanium oxide layer. From the weight difference before and after the treatment, 1.5 mg of titanium oxide was added to 1 cm 2 of washi paper per 1 cm 2 of PPS melt blown nonwoven fabric.
So, 1.55 mg of titanium oxide is a vinylon film 1
It was found to be coated with 1.53 mg of titanium oxide per cm 2 . Therefore, the coating did not reduce the pore volume of the sample. Also,
PPS melt blown non-woven fabric in the treatment liquid for 10 hours or 3
The one that had been immersed for 0 hours was prepared and compared with the one that had been treated for 20 hours. From the weight difference before and after the treatment, per 1 cm 2 of PPS melt blown nonwoven fabric, 0.8 mg of titanium oxide was treated for 10 hours, and for 20 hours treated.
1.5 mg of titanium oxide is 2.2 after 30 hours treatment
It was found that mg of titanium oxide was coated, and it was found that the coating amount increased in proportion to time. As a result, metal oxide thin films can be formed on various porous membranes, and coatings of any thickness can be made. Therefore, a wide range of choices can be made in selecting the porous membrane material, which is inexpensive and has a long life. The temperature and humidity exchanger has come to be obtained.

【0018】[0018]

【発明の効果】請求項1の発明は、2種の気体流間で熱
交換および湿度交換を行う温湿度交換器における前記2
種の気体流の流路間に配設される温湿度交換器用多孔質
膜であって、前記多孔質膜が繊維材料からなるととも
に、前記繊維材料の表面が親水性材料でコーティングさ
れていることを特徴とする温湿度交換器用多孔質膜であ
るので、供給ガス中の水分が繊維材料の空隙に捕獲され
て水によるウエットシールを形成し、このことにより、
例えば撥水された繊維材料と比べても、水の表面積が大
きいため蒸発速度が高く、透気性を低くかつ透湿性を高
くすることが可能となる。したがって、請求項1の発明
によれば、透気性を十分に低くしたまま良好な温湿度交
換が可能であり、しかも耐加水分解性に優れた温湿度交
換器用多孔質膜を提供することができる。このような多
孔質膜を備えた温湿度交換器は、例えば燃料電池に供給
される燃料ガスの加湿に好適に用いることができる。
According to the invention of claim 1, in the temperature and humidity exchanger for performing heat exchange and humidity exchange between two kinds of gas streams,
A porous membrane for temperature-humidity exchanger arranged between the flow paths of seed gas flows, wherein the porous membrane is made of a fiber material, and the surface of the fiber material is coated with a hydrophilic material. Since it is a porous membrane for temperature-humidity exchanger characterized by, the water in the feed gas is trapped in the voids of the fiber material to form a wet seal by water, by which,
For example, compared with a water-repellent fiber material, the surface area of water is large, so that the evaporation rate is high, the air permeability is low, and the moisture permeability is high. Therefore, according to the invention of claim 1, it is possible to provide a favorable temperature / humidity exchange with sufficiently low air permeability, and to provide a porous membrane for a temperature / humidity exchanger having excellent hydrolysis resistance. . The temperature / humidity exchanger provided with such a porous membrane can be suitably used, for example, for humidifying the fuel gas supplied to the fuel cell.

【0019】請求項2の発明は、親水性材料が酸化チタ
ンである請求項1に記載の温湿度交換器用多孔質膜であ
るので、多孔質膜の化学的安定性が非常に高くなり、耐
加水分解性が一層高まる。したがって、このような多孔
質膜を備えた温湿度交換器は、長寿命化が達成される。
The invention of claim 2 is the porous membrane for a temperature-humidity exchanger according to claim 1, wherein the hydrophilic material is titanium oxide, so that the chemical stability of the porous membrane is very high and the resistance is high. The hydrolyzability is further enhanced. Therefore, the temperature / humidity exchanger provided with such a porous membrane has a long service life.

【0020】請求項3の発明は、金属フッ化物含有水溶
液に繊維材料を浸漬し、前記繊維材料の表面を前記金属
フッ化物含有水溶液から析出する金属酸化物でコーティ
ングし、前記繊維材料の表面を親水性に改質する工程を
有する請求項1に記載の温湿度交換器用多孔質膜を製造
する方法であるので、多孔質膜を形成する繊維材料の特
性によらずに金属酸化物薄膜を形成することが可能であ
り、また任意の厚さの薄膜を形成できるため、多孔質膜
材料選定において、安価な材料を選定することが可能と
なる。したがって、透気性を十分に低くしたまま良好な
温湿度交換が可能であり、しかも耐加水分解性に優れた
温湿度交換器用多孔質膜を低コストで製造することがで
きる。
According to a third aspect of the present invention, the fiber material is immersed in the metal fluoride-containing aqueous solution, the surface of the fiber material is coated with a metal oxide deposited from the metal fluoride-containing aqueous solution, and the surface of the fiber material is coated. The method for producing a porous membrane for a temperature / humidity exchanger according to claim 1, which has a step of modifying to hydrophilicity, so that a metal oxide thin film is formed regardless of the characteristics of the fiber material forming the porous membrane. Since it is possible to form a thin film having an arbitrary thickness, it is possible to select an inexpensive material in selecting the porous film material. Therefore, it is possible to perform favorable temperature / humidity exchange while keeping air permeability sufficiently low, and it is possible to manufacture a porous membrane for a temperature / humidity exchanger excellent in hydrolysis resistance at low cost.

【0021】請求項4の発明は、金属酸化物が酸化チタ
ンである請求項3に記載の製造方法であるので、多孔質
膜の化学的安定性が非常に高くなり、耐加水分解性が一
層高まる。したがって、長寿命の温湿度交換器を安価に
提供することができる。
The invention of claim 4 is the production method according to claim 3 in which the metal oxide is titanium oxide, so that the chemical stability of the porous membrane becomes very high and the hydrolysis resistance is further improved. Increase. Therefore, a long-life temperature / humidity exchanger can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 液相析出法で処理した後のPPSメルトブロウ
不織布の繊維の顕微鏡拡大写真図である。
FIG. 1 is a microscopic enlarged photograph of fibers of a PPS meltblown nonwoven fabric after being treated by a liquid phase deposition method.

【図2】 実施の形態1で作製された多孔質膜を用い
た、温湿度交換器の内部構造の一例を説明するための図
である。
FIG. 2 is a diagram for explaining an example of an internal structure of a temperature / humidity exchanger using the porous membrane manufactured in the first embodiment.

【図3】 温湿度交換器のガス出口部における供給ガス
(湿潤ガス)の露点と被加湿ガス(乾燥ガス)の露点と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the dew point of the supply gas (wet gas) and the dew point of the humidified gas (dry gas) at the gas outlet of the temperature / humidity exchanger.

【図4】 供給ガス圧力と漏れ率との関係を示すグラフ
である。
FIG. 4 is a graph showing a relationship between a supply gas pressure and a leak rate.

【図5】 実施の形態1および比較例の温湿度交換器に
おける多孔質膜の繊維材料と供給ガス中の液滴との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between the fiber material of the porous membrane and the droplets in the supply gas in the temperature and humidity exchangers of Embodiment 1 and Comparative Example.

【図6】 実施の形態2における試験片の引っ張り試験
における荷重曲線を示すグラフである。
FIG. 6 is a graph showing a load curve in a tensile test of a test piece according to the second embodiment.

【図7】 従来の空調用の固定式温湿度交換器の内部構
造を説明するための図である。
FIG. 7 is a view for explaining the internal structure of a conventional fixed temperature / humidity exchanger for air conditioning.

【符号の説明】[Explanation of symbols]

1 多孔質膜、2 セパレータ、3,4 ガス流路、5
液滴、6 繊維、7 ウエットシール、10 繊維表
面。
1 porous membrane, 2 separator, 3, 4 gas flow path, 5
Droplet, 6 fiber, 7 wet seal, 10 fiber surface.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 101:00 C08L 101:00 (72)発明者 廣井 治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4F074 AA24 AA44 AA46 AA65 AA70 AA74 AA87 AC23 CB03 CB13 CB27 DA49 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 101: 00 C08L 101: 00 (72) Inventor Osamu Hiroi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo No. Sanryo Electric Co., Ltd. F term (reference) 4F074 AA24 AA44 AA46 AA65 AA70 AA74 AA87 AC23 CB03 CB13 CB27 DA49

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2種の気体流間で熱交換および湿度交換
を行う温湿度交換器における前記2種の気体流の流路間
に配設される温湿度交換器用多孔質膜であって、前記多
孔質膜が繊維材料からなるとともに、前記繊維材料の表
面が親水性材料でコーティングされていることを特徴と
する温湿度交換器用多孔質膜。
1. A porous membrane for a temperature / humidity exchanger, which is disposed between flow paths of the two types of gas streams in a temperature / humidity exchanger that performs heat exchange and humidity exchange between the two types of gas streams, A porous membrane for a temperature-humidity exchanger, wherein the porous membrane is made of a fiber material, and the surface of the fiber material is coated with a hydrophilic material.
【請求項2】 親水性材料が酸化チタンである請求項1
に記載の温湿度交換器用多孔質膜。
2. The hydrophilic material is titanium oxide.
The porous membrane for a temperature / humidity exchanger according to.
【請求項3】 金属フッ化物含有水溶液に繊維材料を浸
漬し、前記繊維材料の表面を前記金属フッ化物含有水溶
液から析出する金属酸化物でコーティングし、前記繊維
材料の表面を親水性に改質する工程を有する請求項1に
記載の温湿度交換器用多孔質膜を製造する方法。
3. The surface of the fiber material is modified to be hydrophilic by immersing the fiber material in an aqueous solution containing the metal fluoride and coating the surface of the fiber material with a metal oxide that precipitates from the aqueous solution containing the metal fluoride. The method for producing the porous membrane for a temperature / humidity exchanger according to claim 1, further comprising:
【請求項4】 金属酸化物が酸化チタンである請求項3
に記載の製造方法。
4. The metal oxide is titanium oxide.
The manufacturing method described in.
JP2002138738A 2002-05-14 2002-05-14 Porous membrane for temperature / humidity exchanger and method for producing the same Expired - Fee Related JP3886845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138738A JP3886845B2 (en) 2002-05-14 2002-05-14 Porous membrane for temperature / humidity exchanger and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138738A JP3886845B2 (en) 2002-05-14 2002-05-14 Porous membrane for temperature / humidity exchanger and method for producing the same

Publications (3)

Publication Number Publication Date
JP2003329391A true JP2003329391A (en) 2003-11-19
JP2003329391A5 JP2003329391A5 (en) 2005-07-21
JP3886845B2 JP3886845B2 (en) 2007-02-28

Family

ID=29700093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138738A Expired - Fee Related JP3886845B2 (en) 2002-05-14 2002-05-14 Porous membrane for temperature / humidity exchanger and method for producing the same

Country Status (1)

Country Link
JP (1) JP3886845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510722A (en) * 2014-02-25 2017-04-13 コーロン ファッション マテリアル インコーポレイテッド Porous support, method for producing the same, and reinforced membrane including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510722A (en) * 2014-02-25 2017-04-13 コーロン ファッション マテリアル インコーポレイテッド Porous support, method for producing the same, and reinforced membrane including the same

Also Published As

Publication number Publication date
JP3886845B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US20240058765A1 (en) Ceramic proton-conducting membranes
JP2007511888A (en) Improved proton exchange membrane fuel cell
US7977012B2 (en) Method of coating a surface of a fuel cell plate
US8528883B2 (en) Hollow fiber membrane for humidifier and method for manufacturing the same
CN106229533B (en) Compound Multilayer Film Electrode of hydrophilic/hydrophobic and preparation method thereof
CN101009385B (en) Super-hydrophilic nanoporous electrically conductive coatings for PEM fuel cells
US7604887B2 (en) Electrolyte membrane, membrane electrode assembly using this and fuel cell
EP1025601A1 (en) Surface replica fuel cell for micro fuel cell electrical power pack
US6773844B2 (en) Proton conductive film and fuel cell using the same
EP0815606A1 (en) Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
JPH05283094A (en) Fuel cell
WO2007021676A2 (en) Fuel cell component with coating including nanoparticles
US9054349B2 (en) Hydrolytically-stable hydrophilic coatings for PEMFC bipolar plate
Guo et al. Improvement of PEMFC performance and endurance by employing continuous silica film incorporated water transport plate
WO2004059768A1 (en) Solid polymer electrolyte fuel battery cell and fuel battery using same
JP2002203576A (en) Electrolyte film and fuel cell using this
US8349517B2 (en) Method of coating a surface of a fuel cell plate
US20100136462A1 (en) Conductive and hydrophilic coating for pemfc bipolar plate
JP3886845B2 (en) Porous membrane for temperature / humidity exchanger and method for producing the same
JP2002352818A (en) Inorganic material composite polymer film and manufacturing method therefor
CN116770362A (en) Composite diaphragm, preparation method thereof and electrochemical energy device
JPH09120827A (en) Solid polymer electrolyte fuel cell
CN103665417A (en) Reverse osmosis membranes made with pfsa ionomer and eptfe
KR20220073190A (en) Porous membrane having surface layer of reduced hydrogen permeability and preparation method thereof
JP2002117878A (en) Fuel cell and vapor permeation membrane used for this

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111201

LAPS Cancellation because of no payment of annual fees