JP2003329314A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2003329314A
JP2003329314A JP2002137558A JP2002137558A JP2003329314A JP 2003329314 A JP2003329314 A JP 2003329314A JP 2002137558 A JP2002137558 A JP 2002137558A JP 2002137558 A JP2002137558 A JP 2002137558A JP 2003329314 A JP2003329314 A JP 2003329314A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
radiator
air conditioner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002137558A
Other languages
Japanese (ja)
Inventor
Tomoyasu Adachi
知康 足立
Yasushi Watanabe
泰 渡辺
Takayuki Hagita
貴幸 萩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002137558A priority Critical patent/JP2003329314A/en
Publication of JP2003329314A publication Critical patent/JP2003329314A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner wherein both durability and refrigerating capacity are improved. <P>SOLUTION: This air conditioner 1 is provided with: a compressor 2 for compressing a refrigerant; a radiator 3 for cooling the refrigerant compressed by the compressor 2; a decompressor 4 for decompressing the refrigerant cooled by the radiator 3; and an evaporator 5 for evaporating the refrigerant decompressed by the decompressor 4, and composes a refrigerating cycle by using carbon dioxide as the refrigerant. The air conditioner is characterized by having a supply passage 8 for supplying the refrigerant cooled by the radiator 3 into a compression process of the compressor 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フロン冷媒に代え
て二酸化炭素を冷媒として使用する空気調和装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using carbon dioxide as a refrigerant instead of a CFC refrigerant.

【0002】[0002]

【従来の技術】近年、地球環境の保全に対する関心が高
まっているが、空気調和装置の冷媒として使用されるR
134a等のフロン冷媒は、地球温暖化を助長すること
が懸念されている。このため、このようなフロン冷媒に
代わる物質として、元来自然界に存在する物質、いわゆ
る自然冷媒を用いた空気調和装置の研究が行われてい
る。
2. Description of the Related Art In recent years, there has been an increasing interest in preserving the global environment, but R used as a refrigerant for air conditioners
CFC refrigerants such as 134a are feared to promote global warming. For this reason, studies have been conducted on an air conditioner using a substance that originally exists in nature, that is, a so-called natural refrigerant, as a substance that replaces such a CFC refrigerant.

【0003】このような代替フロンの候補として、二酸
化炭素(以下、CO2と表記)が注目されている。CO2
は、地球温暖化への影響がフロンよりもはるかに小さい
だけでなく、可燃性がないうえ、基本的には人体に無害
である点が高く評価されている。
As a candidate for such a CFC substitute, carbon dioxide (hereinafter referred to as CO 2 ) is drawing attention. CO 2
Is highly valued not only for its far smaller impact on global warming than CFCs, but also for its nonflammability and basically harm to the human body.

【0004】このような背景から、CO2を使用した蒸
気圧縮式冷凍サイクル(以下、CO2冷凍サイクルと表
記)が提案されている。このCO2冷凍サイクルの作動
は、フロンを使用した従来の蒸気圧縮式冷凍サイクルと
同様である。すなわち図3のCO2モリエル線図に示す
ように、低温低圧状態のCO2(気相状態)を圧縮機に
より圧縮し(A−B)、高温高圧の気相状態とする。次
に高温高圧のCO2(気相状態)を放熱器にて冷却し
(B−C)、そして、減圧器によって減圧し(C−
D)、低温低圧の気液二相状態とする。次に低温低圧の
CO2(気液二層状態)を蒸発器にて蒸発させ(D−
A)、その際に生じる蒸発潜熱を空気等の外部流体から
奪って外部流体を冷却する。
From such a background, a vapor compression refrigeration cycle using CO 2 (hereinafter referred to as a CO 2 refrigeration cycle) has been proposed. The operation of this CO 2 refrigeration cycle is the same as that of the conventional vapor compression refrigeration cycle using Freon. That is, as shown in CO 2 Mollier diagram of FIG. 3, compressed by the compressor of CO 2 cold low pressure (gas phase) (A-B), the gas phase of high temperature and high pressure. Next, high-temperature and high-pressure CO 2 (gas phase state) is cooled by a radiator (BC), and decompressed by a decompressor (C-
D), low temperature and low pressure gas-liquid two-phase state. Next, low-temperature low-pressure CO 2 (gas-liquid two-layer state) is evaporated by an evaporator (D-
A), the evaporation latent heat generated at that time is taken from the external fluid such as air to cool the external fluid.

【0005】なお、CO2は、圧力が飽和蒸気圧(線分
CDと飽和液線SLとの交点の圧力)を下回るときから
気液二層状態に相変化する。圧力が臨界温度での飽和蒸
気圧を上回っている状態を超臨界状態と呼び、Cの状態
からDの状態へとゆっくり変化する場合には、CO2
超臨界状態から液相状態を経て気液二層状態に変化す
る。ちなみに、超臨界状態というのは、密度が液密度と
略同等でありながら、CO2分子が気相状態のように運
動する状態をいう。
It should be noted that CO 2 undergoes a phase change to a gas-liquid two-layer state when the pressure falls below the saturated vapor pressure (the pressure at the intersection of the line segment CD and the saturated liquid line SL). The state in which the pressure exceeds the saturated vapor pressure at the critical temperature is called the supercritical state, and when the state slowly changes from the state C to the state D, CO 2 changes from the supercritical state to the liquid state and then vaporizes. The liquid changes to a two-layer state. By the way, the supercritical state means a state in which CO 2 molecules move like a gas phase state while the density is almost equal to the liquid density.

【0006】しかし、CO2の臨界温度は約31℃と従
来のフロンの臨界温度(例えば、R134aでは101
℃)と比べて低いので、夏場等では放熱器側でのCO2
温度がCO2の臨界温度より高くなってしまう。つま
り、放熱器出口側においてもCO2は凝縮しない(線分
BCが飽和液船SLと交差しない)。また、放熱器出口
側(C点)の状態は、圧縮機の吐出圧力と放熱器出口側
でのCO2温度とによって決定され、放熱器出口側での
CO2温度は、放熱器の放熱能力と外気温度とによって
決定する。そして、外気温度は制御することができない
ので、放熱器出口側でのCO2温度は実質的に制御する
ことができない。
However, the critical temperature of CO 2 is about 31 ° C., which is the critical temperature of conventional CFCs (for example, R134a has a critical temperature of 101 ° C.).
Since ° C.) lower than, CO 2 at the radiator side in summer or the like
The temperature becomes higher than the critical temperature of CO 2 . That is, CO 2 does not condense even on the radiator outlet side (the line segment BC does not intersect with the saturated liquid ship SL). The state on the radiator outlet side (point C) is determined by the discharge pressure of the compressor and the CO 2 temperature on the radiator outlet side. The CO 2 temperature on the radiator outlet side is the heat radiation capacity of the radiator. And the outside temperature. Since the outside air temperature cannot be controlled, the CO 2 temperature at the radiator outlet side cannot be substantially controlled.

【0007】したがって、放熱器出口側(C点)の状態
は、圧縮機の吐出圧力(放熱器出口側圧力)を制御する
ことによって制御可能となる。つまり、夏場等の外気温
度(熱負荷)が高い場合には、図3のE−F−G−H−
Eで示されるように、放熱器出口側圧力を高くする必要
がある。
Therefore, the state on the radiator outlet side (point C) can be controlled by controlling the discharge pressure of the compressor (radiator outlet side pressure). That is, when the outside air temperature (heat load) is high in summer, etc., E-F-G-H- in FIG.
As indicated by E, the radiator outlet side pressure needs to be increased.

【0008】このように、放熱器出口側圧力(以下、高
圧サイド圧力と表記)を調節するのに、CO2冷凍サイ
クルにおける高圧サイドの冷媒充填量を調整して、高圧
サイド圧力を調節する技術が提案されている(例えば特
公平7−18602号広報参照)。このCO2冷凍サイ
クルは、冷媒を圧縮する圧縮機と、圧縮機で圧縮した冷
媒を冷却する放熱器と、放熱器で冷却した冷媒を減圧す
る絞り弁と、絞り弁で減圧した冷媒を蒸発・気化する蒸
発器と、気化した冷媒と液体の冷媒とを分離するレシー
バとを備えており、さらに放熱器で冷却した冷媒とレシ
ーバで気液分離した気化冷媒との間で熱交換させる向流
型熱交換器と、レシーバから向流型熱交換器の前または
後ろに液冷媒を導く液相ラインが設けられている。
In this way, in order to adjust the radiator outlet side pressure (hereinafter referred to as the high pressure side pressure), the refrigerant filling amount of the high pressure side in the CO 2 refrigeration cycle is adjusted to adjust the high pressure side pressure. Has been proposed (see, for example, Japanese Patent Publication No. 7-18602). In this CO 2 refrigeration cycle, a compressor that compresses a refrigerant, a radiator that cools the refrigerant compressed by the compressor, a throttle valve that depressurizes the refrigerant cooled by the radiator, and a refrigerant that depressurizes by the throttle valve evaporates An evaporator that vaporizes and a receiver that separates the vaporized refrigerant and the liquid refrigerant are provided, and a countercurrent type that heat-exchanges between the refrigerant cooled by the radiator and the vaporized refrigerant that is gas-liquid separated by the receiver. A heat exchanger and a liquid phase line for guiding the liquid refrigerant from the receiver to the front or the rear of the countercurrent heat exchanger are provided.

【0009】上記の構成によれば、圧縮機で冷媒を圧縮
し、圧縮した冷媒を放熱器で冷却し、向流型熱交換器に
おいて、後述するレシーバで気液分離した気化冷媒と熱
交換してさらに冷却する。放熱器で冷却した冷媒をさら
に冷却しているため、蒸発過程のエンタルピ変化量は大
きくなる。冷却した高圧の冷媒を絞り弁で減圧し、低温
低圧の気液二相状態の冷媒とし、蒸発器で外部流体と熱
交換して蒸発・気化する。蒸発器で気化した冷媒をレシ
ーバで気体と液体と分離して、レシーバで気液分離した
気化冷媒は上記の向流型熱交換器において放熱器で冷却
した冷媒をさらに冷却し、再び圧縮機で圧縮される。ま
た、液相ラインはレシーバに溜まる潤滑油を回路内に戻
す働きをする。
According to the above construction, the refrigerant is compressed by the compressor, the compressed refrigerant is cooled by the radiator, and the countercurrent heat exchanger exchanges heat with the vaporized refrigerant separated by the receiver described later. And further cool. Since the refrigerant cooled by the radiator is further cooled, the enthalpy change amount during the evaporation process becomes large. The cooled high-pressure refrigerant is decompressed by a throttle valve to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which is heat-exchanged with an external fluid by an evaporator and evaporated and vaporized. The refrigerant vaporized in the evaporator is separated into gas and liquid by the receiver, and the vaporized refrigerant separated by the receiver is further cooled by the radiator cooled by the radiator in the countercurrent heat exchanger, and again by the compressor. Compressed. Further, the liquid phase line functions to return the lubricating oil accumulated in the receiver into the circuit.

【0010】またこれとは別に、冷凍能力を損なうこと
なく、高圧サイド圧力を抑える技術が提案されている
(例えば特開平10−288411参照)。このCO2
冷凍サイクルは、冷媒を圧縮する圧縮機と、圧縮した冷
媒を冷却する放熱器と、冷却した冷媒を減圧する第2減
圧装置と、第2減圧装置で減圧した冷媒を蒸発・気化す
る蒸発器と、蒸発器で気化した冷媒と液冷媒とを分離す
るアキュムレータとを備えており、放熱器で冷却した冷
媒の一部を分岐し、分岐した冷媒を減圧する第1減圧装
置と、第1減圧装置で減圧した冷媒と放熱器で冷却した
冷媒との間で熱交換する冷却器と、放熱器で熱交換し
た、第1減圧装置で減圧した冷媒を圧縮機の圧縮工程の
途中に戻す戻し流路とが設けられている。
Aside from this, there has been proposed a technique for suppressing the high pressure side pressure without impairing the refrigerating capacity (see, for example, Japanese Patent Laid-Open No. 10-288411). This CO 2
The refrigeration cycle includes a compressor that compresses the refrigerant, a radiator that cools the compressed refrigerant, a second decompression device that decompresses the cooled refrigerant, and an evaporator that evaporates and vaporizes the refrigerant decompressed by the second decompression device. A first pressure reducing device that includes an accumulator that separates the refrigerant vaporized by the evaporator from the liquid refrigerant, branches a part of the refrigerant cooled by the radiator, and depressurizes the branched refrigerant; and a first pressure reducing device. A cooler that exchanges heat between the refrigerant that has been depressurized in step 1 and the refrigerant that has been cooled in the radiator, and a return flow path that returns the refrigerant that has exchanged heat in the radiator and that has been depressurized by the first depressurizer to the middle of the compression process of the compressor And are provided.

【0011】上記の構成によれば、圧縮機で冷媒を圧縮
し、圧縮した冷媒を放熱器で冷却し、冷却器において、
後述する第1減圧装置で減圧した冷媒と熱交換してさら
に冷却する。放熱器で冷却した冷媒をさらに冷却してい
るため、蒸発過程のエンタルピ変化量は大きくなる。冷
却した高圧の冷媒を第2減圧装置で減圧し、低温低圧の
気液二相状態の冷媒とし、蒸発器で外部流体と熱交換し
て蒸発・気化する。蒸発器で気化した冷媒をアキュムレ
ータで気体と液体とに分離して、アキュムレータで気液
分離した気化冷媒は再び圧縮機で圧縮される。
According to the above construction, the refrigerant is compressed by the compressor, the compressed refrigerant is cooled by the radiator, and
It is further cooled by exchanging heat with the refrigerant decompressed by the first decompression device described later. Since the refrigerant cooled by the radiator is further cooled, the enthalpy change amount during the evaporation process becomes large. The cooled high-pressure refrigerant is decompressed by the second decompression device to be a low-temperature low-pressure gas-liquid two-phase refrigerant, which is heat-exchanged with the external fluid by the evaporator and evaporated and vaporized. The refrigerant vaporized by the evaporator is separated into gas and liquid by the accumulator, and the vaporized refrigerant separated by the accumulator is compressed again by the compressor.

【0012】また、放熱器で冷却された冷媒の一部を分
岐し、第1減圧装置で減圧し低温低圧の気液二相状態の
冷媒とし、冷却器において放熱器で冷却した冷媒をさら
に冷却する。その後、熱交換して気化した冷媒は、戻し
流路を通って圧縮機の圧縮工程の途中に戻される。冷媒
の圧縮工程で発生する熱の一部は、供給された冷媒に奪
われることになり、最終的に吐出する冷媒の温度は奪わ
れた熱の分だけ低くなる。
Further, a part of the refrigerant cooled by the radiator is branched and decompressed by the first decompressor into a low-temperature low-pressure gas-liquid two-phase refrigerant, and the refrigerant cooled by the radiator is further cooled by the cooler. To do. After that, the refrigerant that has exchanged heat and vaporized is returned to the middle of the compression process of the compressor through the return flow path. Part of the heat generated in the refrigerant compression step is taken by the supplied refrigerant, and the temperature of the finally discharged refrigerant is reduced by the taken heat.

【0013】[0013]

【発明が解決しようとする課題】ところで、特公平7−
18602号広報の例では、向流型熱交換器において、
放熱器で冷却した冷媒とレシーバで気液分離した気化冷
媒との間で熱交換するため、気化冷媒の温度が高くな
る。温度の高くなった冷媒を圧縮機で圧縮すると、吐出
する冷媒の温度も高くなるため、圧縮機の運転温度が高
くなり、圧縮機の耐久性の低下が懸念される。また、特
開平10−288411の例では、圧縮機の圧縮工程に
戻す冷媒が気化した密度の薄い冷媒であるため、冷凍能
力を高める方法として、高圧サイドの冷媒充填量を増加
させて高圧サイドの圧力を高めるのに不利になるという
問題があった。
By the way, Japanese Patent Publication No. 7-
In the example of 18602 public information, in the countercurrent heat exchanger,
Since heat is exchanged between the refrigerant cooled by the radiator and the vaporized refrigerant separated by the receiver, the temperature of the vaporized refrigerant becomes high. When the refrigerant having a high temperature is compressed by the compressor, the temperature of the discharged refrigerant also becomes high, so that the operating temperature of the compressor becomes high and the durability of the compressor may be deteriorated. Further, in the example of Japanese Patent Laid-Open No. 10-288411, since the refrigerant to be returned to the compression step of the compressor is a vaporized refrigerant having a low density, as a method of increasing the refrigerating capacity, the refrigerant filling amount on the high pressure side is increased to increase the refrigeration capacity. There was a problem that it was disadvantageous to increase the pressure.

【0014】この発明は、このような事情を考慮してな
されたもので、その目的は、耐久性と冷凍能力との向上
を両立することができる空気調和装置を提供することに
ある。
The present invention has been made in consideration of such circumstances, and an object thereof is to provide an air conditioner which can improve both durability and refrigerating capacity.

【0015】[0015]

【課題を解決するための手段】本発明の空気調和装置で
は、上記課題を解決するため、以下の手段を採用した。
請求項1にかかる発明は、冷媒を圧縮する圧縮機と、該
圧縮機により圧縮された冷媒を冷却する放熱器と、該放
熱器において冷却された冷媒を減圧する減圧器と、該減
圧器により減圧された冷媒を蒸発させる蒸発器とを備
え、冷媒として二酸化炭素を使用して冷凍サイクルを構
成する空気調和装置であって、前記放熱器において冷却
された冷媒を前記圧縮機の圧縮工程に供給する供給路を
有することを特徴とする。
In order to solve the above problems, the air conditioner of the present invention employs the following means.
The invention according to claim 1 includes a compressor for compressing a refrigerant, a radiator for cooling the refrigerant compressed by the compressor, a decompressor for decompressing the refrigerant cooled in the radiator, and the decompressor. An air conditioner comprising a vaporizer for evaporating a decompressed refrigerant, wherein carbon dioxide is used as a refrigerant to constitute a refrigeration cycle, and the refrigerant cooled in the radiator is supplied to a compression step of the compressor. It is characterized by having a supply path for

【0016】この発明にかかる空気調和装置によれば、
放熱器において冷却された冷媒を圧縮機の圧縮工程に供
給することで、冷媒の圧縮工程で発生する熱の一部が供
給された冷媒に奪われることになり、最終的に吐出する
冷媒の温度は奪われた熱の分だけ低くなるので、圧縮機
の運転温度が低くなる。また、圧縮工程に供給される冷
媒は、超臨界状態にあるため、その密度が高く、CO2
冷凍サイクルの高圧サイドの冷媒充填量を増加させて高
圧サイドの圧力を高める効果、つまり蒸発過程のエンタ
ルピ変化量を大きくする効果が大きいので、冷媒が外部
流体から熱を奪う能力、冷凍能力が大きくなる。
According to the air conditioner of the present invention,
By supplying the refrigerant cooled in the radiator to the compression step of the compressor, part of the heat generated in the refrigerant compression step is taken away by the supplied refrigerant, and the temperature of the refrigerant finally discharged. Is lower by the amount of heat taken away, and the operating temperature of the compressor is lower. Further, since the refrigerant supplied to the compression step is in a supercritical state, its density is high and CO 2
Since the effect of increasing the refrigerant filling amount on the high pressure side of the refrigeration cycle to increase the pressure on the high pressure side, that is, the effect of increasing the enthalpy change amount in the evaporation process is large, the refrigerant has a large ability to remove heat from the external fluid and a large refrigerating capacity. Become.

【0017】請求項2にかかる発明は、請求項1記載の
空気調和装置において、前記放熱器により冷却された冷
媒と、前記蒸発器にて気化した冷媒との間で熱交換する
熱交換器を備えることを特徴とする空気調和装置。
According to a second aspect of the present invention, in the air conditioner according to the first aspect, there is provided a heat exchanger for exchanging heat between the refrigerant cooled by the radiator and the refrigerant vaporized by the evaporator. An air conditioner characterized by comprising.

【0018】この発明にかかる空気調和装置によれば、
放熱器により冷却された冷媒と、蒸発器により気化した
冷媒とでは、放熱器により冷却された冷媒の方が、蒸発
器により気化した冷媒より温度が高いため、熱交換器に
おける熱交換により、放熱器により冷却された冷媒がさ
らに冷却され、蒸発過程のエンタルピ変化量がさらに大
きくされる効果が大きいので、冷媒が外部流体から熱を
奪う能力、冷凍能力が大きくなる。
According to the air conditioner of the present invention,
As for the refrigerant cooled by the radiator and the refrigerant vaporized by the evaporator, the refrigerant cooled by the radiator has a higher temperature than the refrigerant vaporized by the evaporator. Since the refrigerant cooled by the vessel is further cooled and the amount of change in enthalpy in the evaporation process is further increased, the refrigerant's ability to remove heat from the external fluid and its refrigerating ability are increased.

【0019】請求項3にかかる発明は、請求項1または
2記載の空気調和装置において、前記供給路内を流れる
冷媒の流量を調節する流量調節部を介装することを特徴
とする空気調和装置。
According to a third aspect of the present invention, in the air conditioner according to the first or second aspect, the air conditioner is characterized by interposing a flow rate adjusting unit for adjusting the flow rate of the refrigerant flowing through the supply passage. .

【0020】この発明にかかる空気調和装置によれば、
流量調節部の働きにより、圧縮機の圧縮工程に供給され
る冷媒の流量が任意に調節されるので、圧縮機から吐出
する冷媒の温度も任意に定められる。また、CO2冷凍
サイクルの高圧サイドの冷媒充填量も任意に調節でき、
高圧サイドの圧力も任意に調節できる。最終的には蒸発
過程のエンタルピ変化量を任意に調節できる。
According to the air conditioner of the present invention,
Since the flow rate of the refrigerant supplied to the compression process of the compressor is arbitrarily adjusted by the function of the flow rate controller, the temperature of the refrigerant discharged from the compressor is also arbitrarily determined. In addition, the refrigerant charge on the high pressure side of the CO 2 refrigeration cycle can be adjusted as desired.
The pressure on the high pressure side can also be adjusted arbitrarily. Finally, the amount of change in enthalpy during the evaporation process can be adjusted arbitrarily.

【0021】請求項4にかかる発明は、請求項3記載の
空気調和装置において、前記圧縮機から吐出された冷媒
の温度を検出する温度センサを備え、該温度センサの出
力に基づいて、前記供給路内を流れる冷媒の流量を制御
することを特徴とする空気調和装置。
According to a fourth aspect of the present invention, in the air conditioner according to the third aspect, a temperature sensor for detecting the temperature of the refrigerant discharged from the compressor is provided, and the supply based on the output of the temperature sensor. An air conditioner characterized by controlling the flow rate of a refrigerant flowing in a passage.

【0022】この発明にかかる空気調和装置によれば、
圧縮機から吐出された冷媒の温度を検出する温度センサ
の出力に基づいて、供給路内を流れ、圧縮工程に供給さ
れる冷媒の流量を制御することで、圧縮機から吐出され
た冷媒の温度が、自動的に一定温度以下に調節される。
According to the air conditioner of the present invention,
Based on the output of the temperature sensor that detects the temperature of the refrigerant discharged from the compressor, the temperature of the refrigerant discharged from the compressor is controlled by controlling the flow rate of the refrigerant that flows through the supply path and is supplied to the compression process. However, the temperature is automatically adjusted below a certain temperature.

【0023】[0023]

【発明の実施の形態】以下、図面を参照し、この発明の
実施の形態について説明する。図1には、フロンの代替
物としてのCO2を冷媒として冷凍サイクルを構成する
空気調和装置の第一の構成を示す。図1において空気調
和装置1は、冷媒を圧縮する圧縮機2と、圧縮した冷媒
を冷却する放熱器3と、放熱器3で冷却した冷媒を減圧
する減圧器4と、減圧した冷媒を蒸発・気化する蒸発器
5と、蒸発器5で気化した冷媒と液冷媒とを分離するア
キュムレータ6と、放熱器3で冷却した冷媒とアキュム
レータ6で分離した気化冷媒とを熱交換させる向流型熱
交換器7とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first configuration of an air conditioner that constitutes a refrigeration cycle using CO 2 as a refrigerant instead of CFC. 1, an air conditioner 1 includes a compressor 2 that compresses a refrigerant, a radiator 3 that cools the compressed refrigerant, a decompressor 4 that decompresses the refrigerant cooled by the radiator 3, and an evaporator that decompresses the decompressed refrigerant. Evaporator 5 that evaporates, accumulator 6 that separates the refrigerant and liquid refrigerant that are vaporized in evaporator 5, and the countercurrent heat exchange that exchanges heat between the refrigerant cooled by radiator 3 and the vaporized refrigerant separated by accumulator 6. And a container 7.

【0024】空気調和装置には、放熱器3と向流型熱交
換器7の間から圧縮機2の圧縮工程に伸びる供給路8が
設けられている。供給路8には、冷媒流量を調節する電
磁弁(流量調節部)9と固定絞り(流量調節部)10が
介装され、圧縮機2の吐出側には、冷媒の吐出温度を測
定する温度センサ11が設けられている。温度センサ1
1の出力により、電磁弁9はその開閉を制御されてい
る。
The air conditioner is provided with a supply passage 8 extending from between the radiator 3 and the countercurrent heat exchanger 7 to the compression process of the compressor 2. A solenoid valve (flow rate adjusting unit) 9 and a fixed throttle (flow rate adjusting unit) 10 for adjusting the flow rate of the refrigerant are provided in the supply passage 8, and a temperature for measuring the discharge temperature of the refrigerant is provided on the discharge side of the compressor 2. A sensor 11 is provided. Temperature sensor 1
The output of 1 controls the opening / closing of the solenoid valve 9.

【0025】上記の構成からなる空気調和装置1におい
ては、図1に示すように、冷媒は圧縮機2により圧縮さ
れ、圧縮された冷媒は放熱器3において冷却され、冷却
された冷媒は向流型熱交換器7において、後述するアキ
ュムレータ6で気液分離された気化冷媒と熱交換してさ
らに冷却される。放熱器3で冷却された冷媒をさらに冷
却しているため、蒸発過程のエンタルピ変化量は大きく
なる。冷却された高圧の冷媒は減圧器4で減圧され、低
温低圧の気液二相状態の冷媒とされ、蒸発器5で外部流
体と熱交換して蒸発・気化される。蒸発器5で気化した
冷媒はアキュムレータ6で気体と液体と分離されて、ア
キュムレータ6で気液分離された気化冷媒は上記の向流
型熱交換器7において放熱器3で冷却した冷媒をさらに
冷却し、再び圧縮機2で圧縮される。
In the air conditioner 1 having the above structure, as shown in FIG. 1, the refrigerant is compressed by the compressor 2, the compressed refrigerant is cooled in the radiator 3, and the cooled refrigerant is countercurrent. In the mold heat exchanger 7, heat is exchanged with the vaporized refrigerant that has been gas-liquid separated by the accumulator 6 described later, and is further cooled. Since the coolant cooled by the radiator 3 is further cooled, the enthalpy change amount in the evaporation process becomes large. The cooled high-pressure refrigerant is decompressed by the decompressor 4 to be a low-temperature low-pressure gas-liquid two-phase refrigerant, which is evaporated and vaporized by exchanging heat with the external fluid in the evaporator 5. The refrigerant vaporized in the evaporator 5 is separated into gas and liquid by the accumulator 6, and the vaporized refrigerant separated by the accumulator 6 is further cooled by the countercurrent heat exchanger 7 in the radiator 3. Then, it is compressed again by the compressor 2.

【0026】また、放熱器3で冷却された冷媒の一部を
分岐し、分岐された冷媒は超臨界状態のまま、供給路8
を通って圧縮機2の圧縮工程の途中に戻される。冷媒の
圧縮工程で発生する熱の一部は、供給された冷媒に奪わ
れることになり、最終的に吐出する冷媒の温度は奪われ
た熱の分だけ低くなる。
Further, a part of the refrigerant cooled by the radiator 3 is branched, and the branched refrigerant remains in the supercritical state and the supply path 8
And is returned to the middle of the compression process of the compressor 2. Part of the heat generated in the refrigerant compression step is taken by the supplied refrigerant, and the temperature of the finally discharged refrigerant is reduced by the taken heat.

【0027】圧縮機2から吐出された冷媒の温度は、温
度センサ11により検出され、温度センサ11出力に基
づいて、電磁弁9の開閉を制御し、電磁弁9の開閉と固
定絞り10により圧縮工程に供給される冷媒の流量を制
御することで、圧縮機2から吐出される冷媒の温度が、
自動的に一定に保たれる。
The temperature of the refrigerant discharged from the compressor 2 is detected by the temperature sensor 11, the opening / closing of the solenoid valve 9 is controlled based on the output of the temperature sensor 11, and the opening / closing of the solenoid valve 9 and the fixed throttle 10 are used for compression. By controlling the flow rate of the refrigerant supplied to the process, the temperature of the refrigerant discharged from the compressor 2 becomes
Automatically kept constant.

【0028】上記の構成によれば、放熱器3において冷
却された冷媒を圧縮機2の圧縮工程に供給するので、冷
媒の圧縮工程で発生する熱の一部が供給された冷媒に奪
われることになり、最終的に吐出する冷媒の温度は奪わ
れた熱の分だけ低くなる。そのため、圧縮機2の運転温
度が低くなり、圧縮機2の耐久性を向上させることがで
きる。
According to the above configuration, since the refrigerant cooled in the radiator 3 is supplied to the compression process of the compressor 2, part of the heat generated in the refrigerant compression process is taken by the supplied refrigerant. Then, the temperature of the finally discharged refrigerant becomes lower by the amount of heat taken away. Therefore, the operating temperature of the compressor 2 is lowered, and the durability of the compressor 2 can be improved.

【0029】同時に、圧縮工程に供給される冷媒は、超
臨界状態にあるため、その密度が高く、CO2冷凍サイ
クルの高圧サイドの冷媒充填量を増加させて高圧サイド
の圧力を高める効果、つまり蒸発過程のエンタルピ変化
量を大きくする効果が大きく、冷凍能力を向上させるこ
とができる。
At the same time, since the refrigerant supplied to the compression step is in a supercritical state, its density is high, and the refrigerant filling amount on the high pressure side of the CO 2 refrigeration cycle is increased to increase the pressure on the high pressure side. The effect of increasing the amount of change in enthalpy during the evaporation process is great, and the refrigerating capacity can be improved.

【0030】また、圧縮機2から吐出された冷媒の温度
を検出する温度センサの出力に基づいて、電磁弁9の開
閉と固定絞り10とにより圧縮工程に供給される冷媒の
流量を制御することで、圧縮機2から吐出された冷媒の
温度が、自動的に一定温度以下に調節されるため、圧縮
機2の運転温度も自動的に一定温度以下に調節され、圧
縮機2の故障を未然に防ぐこと、つまり耐久性を向上さ
せることができる。
Further, the flow rate of the refrigerant supplied to the compression process is controlled by the opening / closing of the solenoid valve 9 and the fixed throttle 10 based on the output of the temperature sensor for detecting the temperature of the refrigerant discharged from the compressor 2. Then, since the temperature of the refrigerant discharged from the compressor 2 is automatically adjusted to a certain temperature or less, the operating temperature of the compressor 2 is also automatically adjusted to a certain temperature or less, and the failure of the compressor 2 is caused. That is, it is possible to improve durability.

【0031】図2には、フロンの代替物としてのCO2
を冷媒として冷凍サイクルを構成する空気調和装置の第
2の構成を示す。図2において、空気調和装置20の基
本的な構成は、図1に示すものと同一であり、同一構成
要素には同一符号を付し、その説明を省略する。図2に
おいて、供給路8には、冷媒流量を調節する可変絞り2
1が介装されている。
In FIG. 2, CO 2 as an alternative to CFCs
The 2nd structure of the air conditioning apparatus which comprises a refrigerating cycle by using as a refrigerant is shown. In FIG. 2, the basic configuration of the air conditioner 20 is the same as that shown in FIG. 1, and the same components are assigned the same reference numerals and explanations thereof are omitted. In FIG. 2, a supply passage 8 has a variable throttle 2 for adjusting the flow rate of the refrigerant.
1 is installed.

【0032】上記の構成からなる空気調和装置20にお
いては、図2に示すように、冷媒は圧縮機2により圧縮
され、圧縮された冷媒は放熱器3において冷却され、冷
却された冷媒は向流型熱交換器7において、後述するア
キュムレータ6で気液分離された気化冷媒と熱交換して
さらに冷却される。放熱器3で冷却された冷媒をさらに
冷却しているため、蒸発過程のエンタルピ変化量は大き
くなる。冷却された高圧の冷媒は減圧器4で減圧され、
低温低圧の気液二相状態の冷媒とされ、蒸発器5で外部
流体と熱交換して蒸発・気化される。蒸発器5で気化し
た冷媒はアキュムレータ6で気体と液体と分離されて、
アキュムレータ6で気液分離された気化冷媒は上記の向
流型熱交換器7において放熱器3で冷却した冷媒をさら
に冷却し、再び圧縮機2で圧縮される。
In the air conditioner 20 having the above structure, as shown in FIG. 2, the refrigerant is compressed by the compressor 2, the compressed refrigerant is cooled in the radiator 3, and the cooled refrigerant is countercurrent. In the mold heat exchanger 7, heat is exchanged with the vaporized refrigerant that has been gas-liquid separated by the accumulator 6 described later, and is further cooled. Since the coolant cooled by the radiator 3 is further cooled, the enthalpy change amount in the evaporation process becomes large. The cooled high-pressure refrigerant is decompressed by the decompressor 4,
The low-temperature low-pressure refrigerant in a gas-liquid two-phase state is heat-exchanged with an external fluid in the evaporator 5 to be evaporated and vaporized. The refrigerant vaporized in the evaporator 5 is separated into gas and liquid by the accumulator 6,
The vaporized refrigerant separated into gas and liquid by the accumulator 6 further cools the refrigerant cooled by the radiator 3 in the countercurrent heat exchanger 7, and is compressed again by the compressor 2.

【0033】また、放熱器3で冷却された冷媒の一部を
分岐し、分岐された冷媒は超臨界状態のまま、供給路8
を通って圧縮機2の圧縮工程の途中に戻される。冷媒の
圧縮工程で発生する熱の一部は、供給された冷媒に奪わ
れることになり、最終的に吐出する冷媒の温度は奪われ
た熱の分だけ低くなる。
Further, a part of the refrigerant cooled by the radiator 3 is branched, and the branched refrigerant remains in the supercritical state and the supply path 8
And is returned to the middle of the compression process of the compressor 2. Part of the heat generated in the refrigerant compression step is taken by the supplied refrigerant, and the temperature of the finally discharged refrigerant is reduced by the taken heat.

【0034】圧縮機2から吐出された冷媒の温度は、温
度センサ11により検出され、温度センサ11出力に基
づいて、可変絞り21の開度を制御し、可変絞り21の
開度により圧縮工程に供給される冷媒の流量をより細か
く制御することで、圧縮機2から吐出される冷媒の温度
が、自動的に一定に保たれやすくなる。
The temperature of the refrigerant discharged from the compressor 2 is detected by the temperature sensor 11, the opening of the variable throttle 21 is controlled based on the output of the temperature sensor 11, and the opening of the variable throttle 21 causes the compression process. By controlling the flow rate of the supplied refrigerant more finely, the temperature of the refrigerant discharged from the compressor 2 tends to be automatically kept constant.

【0035】上記の構成によれば、放熱器3において冷
却された冷媒を圧縮機2の圧縮工程に供給するので、冷
媒の圧縮工程で発生する熱の一部が供給された冷媒に奪
われることになり、最終的に吐出する冷媒の温度は奪わ
れた熱の分だけ低くなる。そのため、圧縮機2の運転温
度が低くなり、圧縮機2の耐久性を向上させることがで
きる。
According to the above construction, since the refrigerant cooled in the radiator 3 is supplied to the compression step of the compressor 2, part of the heat generated in the refrigerant compression step is taken by the supplied refrigerant. Then, the temperature of the finally discharged refrigerant becomes lower by the amount of heat taken away. Therefore, the operating temperature of the compressor 2 is lowered, and the durability of the compressor 2 can be improved.

【0036】同時に、圧縮工程に供給される冷媒は、超
臨界状態にあるため、その密度が高く、CO2冷凍サイ
クルの高圧サイドの冷媒充填量を増加させて高圧サイド
の圧力を高める効果、つまり蒸発過程のエンタルピ変化
量を大きくする効果が大きく、冷凍能力を向上させるこ
とができる。
At the same time, since the refrigerant supplied to the compression step is in a supercritical state, its density is high, and the refrigerant filling amount on the high pressure side of the CO 2 refrigeration cycle is increased to increase the pressure on the high pressure side. The effect of increasing the amount of change in enthalpy during the evaporation process is great, and the refrigerating capacity can be improved.

【0037】また、圧縮機2から吐出された冷媒の温度
を検出する温度センサの出力に基づいて、可変絞り21
の開度により圧縮工程に供給される冷媒の流量をより細
かく制御することで、圧縮機2から吐出された冷媒の温
度が、自動的に一定温度以下に調節されるため、圧縮機
2の運転温度も自動的に一定温度以下に調節され、圧縮
機2の故障を未然に防ぐこと、つまり耐久性をより向上
させることができる。
Further, based on the output of the temperature sensor for detecting the temperature of the refrigerant discharged from the compressor 2, the variable throttle 21
The temperature of the refrigerant discharged from the compressor 2 is automatically adjusted to a certain temperature or less by controlling the flow rate of the refrigerant supplied to the compression process more finely according to the opening degree of the operation of the compressor 2. The temperature is also automatically adjusted to be equal to or lower than a certain temperature, so that failure of the compressor 2 can be prevented, that is, durability can be further improved.

【0038】なお、上記の実施の形態においては、供給
路8の経路を図1、図2における実線のものに適応して
説明したが、供給路8の経路を図1、図2における実線
のものに限られることなく、供給路8の経路が図1、図
2における二点鎖線のものに適応しても同様の効果が得
られる。
In the above-described embodiment, the route of the supply path 8 has been described as being adapted to the solid line in FIGS. 1 and 2, but the route of the supply path 8 is indicated by the solid line in FIGS. The same effect can be obtained even if the route of the supply path 8 is not limited to the one shown in FIG. 1 and FIG.

【0039】また、上記の実施の形態においては、温度
センサが圧縮機吐出部に設けられたものに適応して説明
したが、この温度センサが圧縮機吐出部に設けられたも
のに限られることなく、温度センサが圧縮機吐出部から
減圧器入口までの間の任意の地点に設けられたものにも
適応することができるものである。
Further, in the above-described embodiment, the temperature sensor has been described as being applied to the compressor discharge part, but the temperature sensor is not limited to that provided in the compressor discharge part. Instead, the temperature sensor may be provided at any point between the compressor discharge portion and the pressure reducer inlet.

【0040】[0040]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、放熱器において冷却された冷媒を圧縮機の
圧縮工程に供給することで、冷媒の圧縮工程で発生する
熱の一部が供給された冷媒に奪われることになり、最終
的に吐出する冷媒の温度は奪われた熱の分だけ低くな
る。そのため、圧縮機の運転温度が低くなり、圧縮機の
耐久性が向上し、同時に、圧縮工程に供給される冷媒
は、超臨界状態にあるため、その密度が高く、CO2
凍サイクルの高圧サイドの冷媒充填量を増加させて高圧
サイドの圧力を高める効果、つまり蒸発過程のエンタル
ピ変化量を大きくする効果が大きい。そのため、冷媒が
外部流体から熱を奪う能力、冷凍能力が向上するという
効果を奏する。
As described above, according to the first aspect of the present invention, by supplying the refrigerant cooled in the radiator to the compression step of the compressor, the heat generated in the refrigerant compression step is reduced. The part is taken by the supplied refrigerant, and the temperature of the finally discharged refrigerant becomes lower by the amount of the taken heat. Therefore, the operating temperature of the compressor is lowered, the durability of the compressor is improved, and at the same time, the refrigerant supplied to the compression step is in a supercritical state, so that its density is high and the high pressure side of the CO 2 refrigeration cycle is high. The effect of increasing the refrigerant charge amount to increase the pressure on the high pressure side, that is, the effect of increasing the enthalpy change amount in the evaporation process is large. Therefore, there is an effect that the ability of the refrigerant to remove heat from the external fluid and the refrigerating ability are improved.

【0041】請求項2に係る発明によれば、放熱器によ
り冷却された冷媒と、蒸発器により気化した冷媒とで
は、放熱器により冷却された冷媒の方が、蒸発器により
気化した冷媒より温度が高いため、熱交換器における熱
交換により、放熱器により冷却された冷媒をさらに冷却
し、蒸発過程のエンタルピ変化量をさらに大きくなっ
て、冷凍能力がさらに向上するという効果を奏する。
According to the second aspect of the present invention, of the refrigerant cooled by the radiator and the refrigerant vaporized by the evaporator, the refrigerant cooled by the radiator has a higher temperature than the refrigerant vaporized by the evaporator. Therefore, due to the heat exchange in the heat exchanger, the refrigerant cooled by the radiator is further cooled, the enthalpy change amount in the evaporation process is further increased, and the refrigerating capacity is further improved.

【0042】請求項3に係る発明によれば、流量調節部
の働きにより、圧縮機の圧縮工程に供給される冷媒の流
量が任意に調節されるので、圧縮機から吐出する冷媒の
温度も任意に定められる。そのため、圧縮機の運転温度
も任意に定められ、圧縮機の故障を未然に防ぐこと、耐
久性を向上することができ、同時に、CO2冷凍サイク
ルの高圧サイドの冷媒充填量、ひいては高圧サイドの圧
力も任意に調節できて、蒸発過程のエンタルピ変化量を
任意に調節できるため、冷凍能力を任意に高められると
いう効果を奏する。
According to the third aspect of the invention, since the flow rate of the refrigerant supplied to the compression step of the compressor is arbitrarily adjusted by the function of the flow rate adjusting section, the temperature of the refrigerant discharged from the compressor is also arbitrary. Stipulated in. Therefore, the operating temperature of the compressor is also arbitrarily set, failure of the compressor can be prevented, and durability can be improved. At the same time, the amount of refrigerant charged on the high-pressure side of the CO 2 refrigeration cycle, and by extension, the high-pressure side, can be reduced. Since the pressure can be adjusted arbitrarily and the amount of change in enthalpy in the evaporation process can be adjusted arbitrarily, the refrigerating capacity can be arbitrarily increased.

【0043】請求項4に係る発明によれば、圧縮機から
吐出された冷媒の温度を検出する温度センサの出力に基
づいて、圧縮工程に供給される冷媒の流量を制御するこ
とで、圧縮機から吐出された冷媒の温度が、自動的に一
定温度以下に調節されるため、圧縮機の運転温度も自動
的に一定温度以下に調節され、圧縮機の故障を未然に防
ぐこと、耐久性が向上するという効果を奏する。
According to the fourth aspect of the invention, the compressor is controlled by controlling the flow rate of the refrigerant supplied to the compression process based on the output of the temperature sensor that detects the temperature of the refrigerant discharged from the compressor. Since the temperature of the refrigerant discharged from is automatically adjusted to a certain temperature or less, the operating temperature of the compressor is also automatically adjusted to a certain temperature or less, preventing failure of the compressor and durability. There is an effect of improving.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による空気調和装置の実施形態を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an air conditioner according to the present invention.

【図2】 本発明による空気調和装置の別の実施形態を
示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing another embodiment of the air conditioner according to the present invention.

【図3】 二酸化炭素を冷媒として使用する従来の空気
調和装置によって実現される冷凍サイクルのモリエル線
図である。
FIG. 3 is a Mollier diagram of a refrigeration cycle realized by a conventional air conditioner that uses carbon dioxide as a refrigerant.

【符号の説明】[Explanation of symbols]

1、20 空気調和装置 2 圧縮機 3 放熱器 4 減圧器 5 蒸発器 7 向流型熱交換器(熱交換器) 8 供給路 9 電磁弁(流量調節部) 10 固定絞り(流量調節部) 11 温度センサ 21 可変絞り(流量調節部) 1,20 Air conditioner 2 compressor 3 radiator 4 pressure reducer 5 evaporator 7 Countercurrent heat exchanger (heat exchanger) 8 supply routes 9 Solenoid valve (flow rate control unit) 10 Fixed throttle (flow rate control unit) 11 Temperature sensor 21 Variable throttle (flow rate controller)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩田 貴幸 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Hagita             1 Takamichi, Iwatsuka-cho, Nakamura-ku, Nagoya-shi, Aichi               Mitsubishi Heavy Industries Nagoya Research Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮機と、該圧縮機によ
り圧縮された冷媒を冷却する放熱器と、該放熱器におい
て冷却された冷媒を減圧する減圧器と、該減圧器により
減圧された冷媒を蒸発させる蒸発器とを備え、冷媒とし
て二酸化炭素を使用して冷凍サイクルを構成する空気調
和装置であって、 前記放熱器において冷却された冷媒を前記圧縮機の圧縮
工程に供給する供給路を有することを特徴とする空気調
和装置。
1. A compressor for compressing a refrigerant, a radiator for cooling the refrigerant compressed by the compressor, a decompressor for decompressing the refrigerant cooled in the radiator, and a decompressor for decompressing the refrigerant. An air conditioner that comprises an evaporator that evaporates a refrigerant and that constitutes a refrigeration cycle using carbon dioxide as a refrigerant, and is a supply path that supplies the refrigerant cooled in the radiator to a compression step of the compressor. An air conditioner characterized by having.
【請求項2】 請求項1記載の空気調和装置において、 前記放熱器により冷却された冷媒と、前記蒸発器にて気
化した冷媒との間で熱交換する熱交換器を備えることを
特徴とする空気調和装置。
2. The air conditioner according to claim 1, further comprising a heat exchanger that exchanges heat between the refrigerant cooled by the radiator and the refrigerant vaporized by the evaporator. Air conditioner.
【請求項3】 請求項1または2記載の空気調和装置に
おいて、 前記供給路内を流れる冷媒の流量を調節する流量調節部
を介装することを特徴とする空気調和装置。
3. The air conditioner according to claim 1, further comprising a flow rate adjusting unit for adjusting a flow rate of the refrigerant flowing in the supply passage.
【請求項4】 請求項3記載の空気調和装置において、 前記圧縮機から吐出された冷媒の温度を検出する温度セ
ンサを備え、該温度センサの出力に基づいて、前記供給
路内を流れる冷媒の流量を制御することを特徴とする空
気調和装置。
4. The air conditioner according to claim 3, further comprising a temperature sensor that detects the temperature of the refrigerant discharged from the compressor, and based on the output of the temperature sensor, the amount of the refrigerant flowing in the supply passage. An air conditioner characterized by controlling the flow rate.
JP2002137558A 2002-05-13 2002-05-13 Air conditioner Pending JP2003329314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137558A JP2003329314A (en) 2002-05-13 2002-05-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137558A JP2003329314A (en) 2002-05-13 2002-05-13 Air conditioner

Publications (1)

Publication Number Publication Date
JP2003329314A true JP2003329314A (en) 2003-11-19

Family

ID=29699279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137558A Pending JP2003329314A (en) 2002-05-13 2002-05-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2003329314A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7861541B2 (en) 2004-07-13 2011-01-04 Tiax Llc System and method of refrigeration
JP2007278686A (en) * 2006-03-17 2007-10-25 Mitsubishi Electric Corp Heat pump water heater
JP4613916B2 (en) * 2006-03-17 2011-01-19 三菱電機株式会社 Heat pump water heater
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
EP1850075A1 (en) * 2006-04-25 2007-10-31 Valeo Systèmes Thermiques Air-conditioning circuit with supercritical cycle
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
EP1202004B1 (en) Cooling cycle and control method thereof
JP3365273B2 (en) Refrigeration cycle
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
JP3838008B2 (en) Refrigeration cycle equipment
JP2001133058A (en) Refrigeration cycle
JP2007278686A (en) Heat pump water heater
US8171747B2 (en) Refrigeration device
JP2008089268A (en) Vehicle cooler
JP2000179960A (en) Vapor compression type refrigeration cycle
JP2002156161A (en) Air conditioner
JP4841288B2 (en) Refrigeration equipment
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2008164288A (en) Refrigerating device
JP2000266415A (en) Refrigerating cycle
JP2000205670A (en) Vapor compression type refrigeration cycle
JP2001004235A (en) Steam compression refrigeration cycle
JP4841287B2 (en) Refrigeration equipment
JP2006308230A (en) Refrigerating cycle control device
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
JP4156422B2 (en) Refrigeration cycle equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2003329314A (en) Air conditioner
JP2008096072A (en) Refrigerating cycle device
JP2002168536A (en) Air conditioner
JP2000337722A (en) Vapor compression type refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050302

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Effective date: 20070605

Free format text: JAPANESE INTERMEDIATE CODE: A02