JP2003329194A - Monitoring system of liquid pressure feeding device - Google Patents

Monitoring system of liquid pressure feeding device

Info

Publication number
JP2003329194A
JP2003329194A JP2002139638A JP2002139638A JP2003329194A JP 2003329194 A JP2003329194 A JP 2003329194A JP 2002139638 A JP2002139638 A JP 2002139638A JP 2002139638 A JP2002139638 A JP 2002139638A JP 2003329194 A JP2003329194 A JP 2003329194A
Authority
JP
Japan
Prior art keywords
liquid
working fluid
amount
feeding device
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002139638A
Other languages
Japanese (ja)
Inventor
Masahisa Hiroya
広谷  昌久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002139638A priority Critical patent/JP2003329194A/en
Publication of JP2003329194A publication Critical patent/JP2003329194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring system of a liquid pressure feeding device wherein the amount of working fluid consumed in the liquid pressure feeding device is automatically and accurately measured. <P>SOLUTION: This monitoring system for the liquid pressure feeding device is composed of the liquid pressure feeding device 21, a pressure sensor 23 mounted on the liquid pressure feeding device 21 as a pressure detecting means, an amount of working fluid calculating means 25 connected to the pressure sensor 23, and a remote monitoring device 27 communicable with the amount of working fluid calculating means 15. The amount of working fluid calculating means 25 calculates the number of the operations of the liquid pressure feeding device 21 on the basis of the pressure in the liquid pressure feeding device 21 detected by the pressure sensor 23, calculates the amount of working fluid consumed by the liquid pressure feeding device 21 on the basis of the amount of the working fluid introduced in the liquid pressure feeding device 21 in one operation and the number of the operations, and communicates the same to the remote monitoring device 27. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、温水等の液体を高
圧の蒸気や圧縮空気等の作動流体で圧送する液体圧送装
置のモニタリングシステムに関するものである。液体圧
送装置は、各種蒸気使用装置で発生した復水等の温水を
ボイラーや廃熱利用箇所に送る装置として使用される。 【0002】 【従来の技術】従来の液体圧送装置としては、例えば特
開平10−61885号公報に示されているものが用い
られていた。これは、図2に示すように、本体1と蓋2
で密閉状容器を構成して、容器内にフロート3とフロー
ト弁4とスナップ機構部5を配置すると共に、蓋2に作
動蒸気導入口6と作動蒸気排出口7と液体流入口8と液
体排出口9が設けられている。 【0003】フロート3は支点10を回転中心として上
下に浮上降下して、ダブル弁機構のフロート弁4を上下
に移動させて液体排出口9を連通遮断すると共に、第1
レバー11を支点12を中心として上下に変位させるも
のである。同じく支点12を中心として回転自在に第2
レバー13を配置し、この第2レバー13の端部と第1
レバー11の端部の間に圧縮状態のコイルバネ14を取
り付ける。第2レバー13の上部に操作棒15を連結す
る。 【0004】操作棒15の上部には、作動蒸気排出口7
を開閉する球状の排出弁体16を取り付けると共に、操
作棒15の中段部に操作レバー17を固着する。操作レ
バー17の上部に上下動自在に作動蒸気導入口棒18を
配置して、この作動蒸気導入口棒18の更に上方に球状
の作動蒸気導入弁体19を自由状態で配置する。 【0005】図2に示す状態は容器内の液体が少なく、
フロート3が下方に位置する状態を示し、この状態にお
いては、フロート弁4は閉弁して容器内と液体排出口9
を遮断している。液体流入口8には図示はしていない
が、容器内方向への液体の流れだけを許容する逆止弁を
介して、圧送液体発生源と接続する。また、作動蒸気導
入口6には高圧蒸気源を接続する。 【0006】液体流入口8から液体が流下してきて容器
内の液位が上昇するとフロート3も上昇し、フロート弁
4も微開する。更に液位が上昇してフロート3が所定高
さに達すると、スナップ機構部5がスナップ移動して操
作棒15が瞬間的に上方へ変位する。操作棒15の上方
への変位により、作動蒸気排出弁体16が作動蒸気排出
口7を閉口すると共に、導入弁体19が作動蒸気導入口
6を開口して、高圧の蒸気が容器内へ供給され、溜って
いた液体がフロート弁4と液体排出口9から所定箇所へ
圧送される。 【0007】液体が圧送されて液位が低下するとフロー
ト3も降下し、所定高さに達すると再度スナップ機構部
5が反対側にスナップ移動することにより、作動蒸気導
入口6が閉口され、作動蒸気排出口7が開口され、フロ
ート弁4も閉弁して、液体の圧送を停止すると共に、液
体流入口8から再び液体が容器内へ流入して、上記サイ
クルを繰り返す。このような作動サイクルによって液体
を所定の箇所へ圧送することができるものである。 【0008】 【発明が解決しようとする課題】上記従来の液体圧送装
置では、液体を圧送するためにどのくらいの量の作動蒸
気が消費されているのかが不明確な問題があった。即
ち、従来の液体圧送装置には消費される作動蒸気の量を
測定する機能がなく、その量を測定することができない
のである。液体圧送装置で消費される作動蒸気の量を測
定することはエネルギー管理上重要なことである。 【0009】従って本発明の課題は、液体圧送装置で消
費される作動流体の量を自動的に且つ正確に測定するこ
とができる液体圧送装置のモニタリングシステムを提供
することである。 【0010】 【課題を解決するための手段】上記の課題を解決するた
めに講じた本発明の技術的手段は、密閉状容器に高圧の
作動流体導入口と作動流体排出口、及び、圧送される液
体流入口と液体排出口を設けて、容器内に溜まった液体
の液位に応じて作動流体導入口が開口すると共に、作動
流体排出口が閉口して、容器内に溜まった液体を液体排
出口から容器の外部へ圧送する液体圧送装置において、
容器内の圧力を検出する圧力検出手段と、検出された圧
力から液体圧送装置の作動回数を算出すると共に1回の
作動で容器内に導入される作動流体の量と作動回数から
液体圧送装置で消費される作動流体の量を算出する作動
流体量算出手段とを具備することを特徴とする液体圧送
装置のモニタリングシステムにある。 【0011】容器内の圧力は、作動流体導入口が開口し
作動流体排出口が閉口すると上昇し、作動流体導入口が
閉口し作動流体排出口が開口すると降下するので、検出
された圧力から液体圧送装置の作動回数を算出すること
ができる。また、図2に示すフロート3の下限における
水位と天井壁との間の容積が、1回の作動で作動流体が
導入される容器内の容積であるので、この1回の作動で
作動流体が導入される容器内の容積に、作動流体として
圧縮空気が用いられる場合には検出された圧力を、作動
流体として蒸気が用いられる場合には検出された圧力に
基づく飽和蒸気の比容積の逆数、すなわち比重量を、掛
け合わせて1回の作動で容器内に導入される作動空気あ
るいは作動蒸気の量を算出する。そして、この算出した
作動空気あるいは作動蒸気の量に作動回数を掛け合わせ
て液体圧送装置で消費される作動流体の量を算出する。 【0012】 【発明の実施の形態】図1において、液体圧送装置21
と、液体圧送装置21に取り付けた圧力検出手段として
の圧力センサ23と、圧力センサ23に連結した作動流
体量算出手段25、及び、作動流体量算出手段25と通
信が可能な遠隔監視装置27とで液体圧送装置のモニタ
リングシステムを構成する。液体圧送装置21は、図2
に示す従来例のものと基本構造は同じであり、作動蒸気
導入口6と作動蒸気排出口7、及び、液体流入口8と液
体排出口9を設けると共に、圧力センサ23と作動流体
量算出手段25を新たに取り付けたものである。 【0013】圧力センサ23は、液体圧送装置21内の
圧力を検出する。液体圧送装置21内の圧力は、作動蒸
気導入口6が開口し作動蒸気排出口7が閉口すると上昇
し、作動蒸気導入口6が閉口し作動蒸気排出口7が開口
すると降下するので、作動流体量算出手段25は、圧力
センサ23で検出された液体圧送装置21内の圧力から
液体圧送装置21の作動回数を算出する。 【0014】また、図2に示すフロート3の下限におけ
る水位と天井壁との間の容積が、1回の作動で作動蒸気
が導入される容器内の容積であるので、作動流体量算出
手段25には、図示しない記憶部に、この1回の作動で
作動蒸気が導入される容器内の容積を予め記憶させてお
くと共に、飽和蒸気の圧力と比容積の関係を予め記憶さ
せておく。 【0015】作動流体量算出手段25は、この1回の作
動で作動蒸気が導入される容器内の容積に、圧力センサ
23で検出された液体圧送装置21内の圧力に基づく飽
和蒸気の比容積の逆数、すなわち比重量を掛け合わせて
1回の作動で導入される作動蒸気の量を算出し、この算
出した作動蒸気の量に作動回数を掛け合わせて液体圧送
装置21で消費される作動蒸気の量を算出し、この算出
した作動蒸気の量を記憶部に記憶すると共に、表示部2
9に表示する。 【0016】作動流体として圧縮空気が用いられる場合
には、1回の作動で作動空気が導入される容器内の容積
に、圧力センサ23で検出された液体圧送装置21内の
圧力を掛け合わせて1回の作動で導入される作動空気の
量を算出し、この算出した作動空気の量に作動回数を掛
け合わせて液体圧送装置21で消費される作動空気の量
を算出し、この算出した作動空気の量を記憶部に記憶す
ると共に、表示部29に表示する。 【0017】また、作動流体量算出手段25は、記憶部
に記憶した作動蒸気あるいは作動空気の量をワイヤレス
でアンテナ31から遠隔監視装置27に通信できる通信
手段を内蔵する。 【0018】遠隔監視装置27は、液体圧送装置21か
ら離れた位置、例えば工場プラントの集中制御監視室に
配置され、作動流体量算出手段25からの信号をアンテ
ナ33で受信して、液体圧送装置21で消費される作動
蒸気あるいは作動空気の量を表示部35に表示する。 【0019】 【発明の効果】本発明の液体圧送装置のモニタリングシ
ステムは、液体圧送装置に圧力検出手段と作動流体量算
出手段とを具備することにより、液体圧送装置で消費さ
れる作動流体の流量を自動的に且つ正確に測定すること
ができるという優れた効果を生じる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monitoring system for a liquid pumping device for pumping a liquid such as hot water with a working fluid such as high-pressure steam or compressed air. The liquid pumping device is used as a device for sending hot water such as condensate generated in various steam-using devices to a boiler or a waste heat utilization point. 2. Description of the Related Art As a conventional liquid pressure feeding device, for example, a device disclosed in Japanese Patent Application Laid-Open No. 10-61885 has been used. This is, as shown in FIG.
And a float 3, a float valve 4, and a snap mechanism 5 are disposed in the container, and a working steam inlet 6, a working steam outlet 7, a liquid inlet 8, and a liquid outlet 8 are provided in the lid 2. An outlet 9 is provided. The float 3 floats up and down about the fulcrum 10 as the center of rotation, moves the float valve 4 of the double valve mechanism up and down to cut off the communication of the liquid discharge port 9 and to release the first discharge.
The lever 11 is vertically displaced about the fulcrum 12. Similarly, the second rotatable centering on the fulcrum 12
The lever 13 is disposed, and the end of the second lever 13 and the first
A compressed coil spring 14 is attached between the ends of the lever 11. The operation rod 15 is connected to the upper part of the second lever 13. [0004] The operating steam outlet 7 is provided above the operating rod 15.
And a control lever 17 is fixed to the middle part of the control rod 15. An operation steam introduction port rod 18 is disposed above the operation lever 17 so as to be vertically movable, and a spherical operation steam introduction valve body 19 is disposed above the operation steam introduction port rod 18 in a free state. In the state shown in FIG. 2, the liquid in the container is small,
This shows a state in which the float 3 is located below. In this state, the float valve 4 is closed to close the inside of the container and the liquid outlet 9.
Is shut off. Although not shown, the liquid inlet 8 is connected to a pressure-feeding liquid generation source via a check valve that allows only the flow of the liquid in the inward direction of the container. A high-pressure steam source is connected to the working steam inlet 6. When the liquid flows down from the liquid inlet 8 and the liquid level in the container rises, the float 3 also rises, and the float valve 4 also slightly opens. When the liquid level further rises and the float 3 reaches a predetermined height, the snap mechanism 5 snaps and the operation rod 15 is instantaneously displaced upward. Due to the upward displacement of the operating rod 15, the working steam discharge valve body 16 closes the working steam discharge port 7, and the introduction valve body 19 opens the working steam introduction port 6, so that high-pressure steam is supplied into the container. Then, the accumulated liquid is pressure-fed from the float valve 4 and the liquid discharge port 9 to a predetermined location. [0007] When the liquid level is reduced due to the pressure of the liquid, the float 3 also lowers, and when it reaches a predetermined height, the snap mechanism 5 snaps again to the opposite side, whereby the working steam inlet 6 is closed and the working steam inlet 6 is closed. The vapor discharge port 7 is opened, the float valve 4 is also closed, and the pumping of the liquid is stopped. At the same time, the liquid flows from the liquid inlet 8 into the container again, and the above cycle is repeated. The liquid can be pumped to a predetermined location by such an operation cycle. [0008] In the above-mentioned conventional liquid pumping apparatus, there is a problem that it is unclear how much working steam is consumed for pumping the liquid. That is, the conventional liquid pumping apparatus does not have a function of measuring the amount of working steam consumed, and cannot measure the amount. Measuring the amount of working steam consumed in a liquid pumping system is important for energy management. Accordingly, an object of the present invention is to provide a monitoring system for a liquid pumping apparatus which can automatically and accurately measure the amount of working fluid consumed in the liquid pumping apparatus. Means for Solving the Problems The technical means of the present invention which has been taken to solve the above-mentioned problems is that a high-pressure working fluid inlet and a high-pressure working fluid outlet and a high-pressure working fluid are fed into a sealed container. A liquid inlet and a liquid outlet are provided, and the working fluid inlet is opened according to the level of the liquid stored in the container, and the working fluid outlet is closed. In a liquid pumping device for pumping from the outlet to the outside of the container,
A pressure detecting means for detecting the pressure in the container, and calculating the number of times of operation of the liquid pumping device from the detected pressure, and calculating the number of times of the working fluid introduced into the container in one operation and the number of times of operation by the liquid pumping device. And a working fluid amount calculating means for calculating an amount of consumed working fluid. The pressure in the container rises when the working fluid inlet is opened and the working fluid outlet is closed, and falls when the working fluid inlet is closed and the working fluid outlet is opened. The number of actuations of the pumping device can be calculated. In addition, since the volume between the water level and the ceiling wall at the lower limit of the float 3 shown in FIG. 2 is the volume in the container into which the working fluid is introduced by one operation, the working fluid is reduced by this one operation. When the compressed air is used as the working fluid, the detected pressure is used as the working fluid, and the reciprocal of the specific volume of the saturated steam based on the detected pressure is used as the working fluid. That is, the specific weight is multiplied to calculate the amount of working air or working steam introduced into the container in one operation. Then, the amount of working fluid consumed by the liquid pumping apparatus is calculated by multiplying the calculated amount of working air or working steam by the number of times of operation. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG.
A pressure sensor 23 as pressure detection means attached to the liquid pumping device 21, a working fluid amount calculation means 25 connected to the pressure sensor 23, and a remote monitoring device 27 capable of communicating with the working fluid amount calculation means 25. Constitutes the monitoring system of the liquid pumping device. The liquid pumping device 21 is shown in FIG.
The basic structure is the same as that of the conventional example shown in FIG. 1 and a working steam inlet 6 and a working steam outlet 7, a liquid inlet 8 and a liquid outlet 9 are provided, and a pressure sensor 23 and a working fluid amount calculating means are provided. 25 is newly attached. The pressure sensor 23 detects the pressure in the liquid pumping device 21. The pressure in the liquid pumping device 21 rises when the working steam inlet 6 is opened and the working steam outlet 7 is closed, and falls when the working steam inlet 6 is closed and the working steam outlet 7 is opened. The amount calculating means 25 calculates the number of times of operation of the liquid pumping device 21 from the pressure in the liquid pumping device 21 detected by the pressure sensor 23. Since the volume between the water level and the ceiling wall at the lower limit of the float 3 shown in FIG. 2 is the volume in the container into which the working steam is introduced by one operation, the working fluid amount calculating means 25 In this case, a storage unit (not shown) previously stores the volume in the container into which the working steam is introduced by this one operation, and also stores the relationship between the pressure of the saturated steam and the specific volume in advance. The working fluid amount calculating means 25 calculates the specific volume of the saturated steam based on the pressure in the liquid pumping device 21 detected by the pressure sensor 23 in the volume in the container into which the working steam is introduced in one operation. Is multiplied by the specific weight to calculate the amount of working steam introduced in one operation, and the calculated amount of working steam is multiplied by the number of times of operation to calculate the amount of working steam consumed by the liquid pumping device 21. Is calculated, the calculated amount of working steam is stored in the storage unit, and the display unit 2
9 is displayed. When compressed air is used as the working fluid, the volume in the container into which the working air is introduced in one operation is multiplied by the pressure in the liquid pumping device 21 detected by the pressure sensor 23. The amount of working air introduced in one operation is calculated, and the calculated amount of working air is multiplied by the number of times of operation to calculate the amount of working air consumed in the liquid pumping device 21. The amount of air is stored in the storage unit and displayed on the display unit 29. The working fluid amount calculating means 25 has a built-in communication means capable of wirelessly communicating the amount of working steam or working air stored in the storage section from the antenna 31 to the remote monitoring device 27. The remote monitoring device 27 is disposed at a position distant from the liquid pumping device 21, for example, in a centralized control monitoring room of a factory plant. The amount of working steam or working air consumed at 21 is displayed on the display unit 35. According to the monitoring system for a liquid pumping apparatus of the present invention, the flow rate of the working fluid consumed by the liquid pumping apparatus is provided by providing the liquid pumping apparatus with pressure detecting means and working fluid amount calculating means. Has an excellent effect that can be measured automatically and accurately.

【図面の簡単な説明】 【図1】本発明の液体圧送装置のモニタリングシステム
を示す構成図。 【図2】従来例を示す液体圧送装置の断面図。 【符号の説明】 6 作動蒸気導入口 7 作動蒸気排出口 8 液体流入口 9 液体排出口 21 液体圧送装置 23 圧力センサ 25 作動流体量算出手段 27 遠隔監視装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a monitoring system for a liquid pumping device according to the present invention. FIG. 2 is a cross-sectional view of a liquid pumping device showing a conventional example. [Description of Signs] 6 Working steam inlet 7 Working steam outlet 8 Liquid inlet 9 Liquid outlet 21 Liquid pumping device 23 Pressure sensor 25 Working fluid amount calculating means 27 Remote monitoring device

Claims (1)

【特許請求の範囲】 【請求項1】 密閉状容器に高圧の作動流体導入口と作
動流体排出口、及び、圧送される液体流入口と液体排出
口を設けて、容器内に溜まった液体の液位に応じて作動
流体導入口が開口すると共に、作動流体排出口が閉口し
て、容器内に溜まった液体を液体排出口から容器の外部
へ圧送する液体圧送装置において、容器内の圧力を検出
する圧力検出手段と、検出された圧力から液体圧送装置
の作動回数を算出すると共に1回の作動で容器内に導入
される作動流体の量と作動回数から液体圧送装置で消費
される作動流体の量を算出する作動流体量算出手段とを
具備することを特徴とする液体圧送装置のモニタリング
システム。
Claims: 1. An airtight container is provided with a high-pressure working fluid inlet and a working fluid outlet, and a liquid inlet and a liquid outlet to be fed under pressure, so that the liquid accumulated in the container can be removed. The working fluid inlet is opened according to the liquid level, the working fluid outlet is closed, and the liquid pumping device for pumping the liquid accumulated in the container from the liquid outlet to the outside of the container is used to reduce the pressure in the container. Pressure detecting means for detecting, and the number of times of operation of the liquid pumping device is calculated from the detected pressure, and the amount of working fluid introduced into the container in one operation and the working fluid consumed by the liquid pumping device based on the number of times of operation. And a working fluid amount calculating means for calculating an amount of the fluid.
JP2002139638A 2002-05-15 2002-05-15 Monitoring system of liquid pressure feeding device Pending JP2003329194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139638A JP2003329194A (en) 2002-05-15 2002-05-15 Monitoring system of liquid pressure feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139638A JP2003329194A (en) 2002-05-15 2002-05-15 Monitoring system of liquid pressure feeding device

Publications (1)

Publication Number Publication Date
JP2003329194A true JP2003329194A (en) 2003-11-19

Family

ID=29700730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139638A Pending JP2003329194A (en) 2002-05-15 2002-05-15 Monitoring system of liquid pressure feeding device

Country Status (1)

Country Link
JP (1) JP2003329194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270597A1 (en) 2003-04-09 2011-01-05 Nikon Corporation Exposure method and apparatus and device manufacturing method
JP2011106548A (en) * 2009-11-16 2011-06-02 Tlv Co Ltd Monitoring system for condensed water pressure feeding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270597A1 (en) 2003-04-09 2011-01-05 Nikon Corporation Exposure method and apparatus and device manufacturing method
JP2011106548A (en) * 2009-11-16 2011-06-02 Tlv Co Ltd Monitoring system for condensed water pressure feeding device

Similar Documents

Publication Publication Date Title
KR102095688B1 (en) A fluid flow meter
WO2019148641A1 (en) One-way flow monitoring apparatus
CN210532056U (en) Self-pressure type power drainage device
US20220059854A1 (en) Flushing system and method for monitoring same
JP2003329194A (en) Monitoring system of liquid pressure feeding device
JP2003329195A (en) Monitoring system of liquid pressure feeding device
JP2002213399A (en) Monitoring system of liquid press-feeding device
JP5313110B2 (en) Condensate pumping device monitoring system
JP5839665B2 (en) Liquid pumping device monitoring system
JP5806533B2 (en) Liquid pumping device monitoring system
JP4854844B2 (en) Liquid pumping device monitoring system
CN2935101Y (en) Differential pressure water level meter of room temperature single-chamber balance vessel
JP2002213400A (en) Monitoring system of liquid press-feeding device
JP6392990B2 (en) Position detection sensor
JPH0320192A (en) Steam trap
JP5107150B2 (en) Liquid pumping device
JPH11294398A (en) Pressure feeding device of liquid
JP2002181287A (en) Monitoring system of liquid force feeding device
JP2006226141A (en) Condensate pressure feeding device
US11326584B2 (en) Pumping water at a flow rate equal to a flow rate of a compressed air flowing into a reservoir having a stopper
JP5362647B2 (en) Liquid pumping device
JP4738939B2 (en) Liquid pumping device
JP5389526B2 (en) Liquid pumping device
CN201038923Y (en) Pure water ripple compensation device for water inside cooling generator unit
JP2017037730A (en) Position detection sensor