JP2003326367A - Method of producing pipe made of titanium for forming bellows - Google Patents

Method of producing pipe made of titanium for forming bellows

Info

Publication number
JP2003326367A
JP2003326367A JP2002135717A JP2002135717A JP2003326367A JP 2003326367 A JP2003326367 A JP 2003326367A JP 2002135717 A JP2002135717 A JP 2002135717A JP 2002135717 A JP2002135717 A JP 2002135717A JP 2003326367 A JP2003326367 A JP 2003326367A
Authority
JP
Japan
Prior art keywords
bellows
titanium
pipe
welding
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002135717A
Other languages
Japanese (ja)
Other versions
JP3919595B2 (en
Inventor
Yuzo Hayashi
雄造 林
Yoshihiro Kato
良浩 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Irie Koken Co Ltd
Original Assignee
Irie Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irie Koken Co Ltd filed Critical Irie Koken Co Ltd
Priority to JP2002135717A priority Critical patent/JP3919595B2/en
Publication of JP2003326367A publication Critical patent/JP2003326367A/en
Application granted granted Critical
Publication of JP3919595B2 publication Critical patent/JP3919595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the hardening of a pipe caused by a chemical change in titanium by using Ar and He as a shielding gas on plasma welding. <P>SOLUTION: In the method of producing a pipe made of titanium for forming bellows, hardening caused by the chemical change in titanium is prevented by using a gaseous mixture of argon and helium as a shielding gas on plasma welding in the production of a pipe stock (5). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、チタン製成形ベロ
ーズ用パイプの製造方法に関し、特に、素管の作製に
は、プラズマ溶接におけるシールドガスとしてアルゴン
と水素の混合ガスを用いずにアルゴンとヘリウムの混合
ガスを用い、プラズマアークの収束度の減少を少なく
し、かつ、チタンの化学変化による硬化を生じさせない
で溶接するための新規な改良に関する。 【0002】 【従来の技術】従来、用いられていたこの種のチタン製
成形ベローズ用パイプの製造方法としては、例えば、特
許第2525960号公報に開示された「チタン製防食
ベローズの製造方法」を挙げることができ、その方法に
おいては、板状のチタン素材を円筒形に成形し、対向す
る端部を溶接して素管を作製し、前記素管を液圧成形法
もしくはロール成形法によりベローズ成形するチタン製
ベローズの製造方法において、前記素管の作製にはTI
G溶接を適用し、溶接継手の厚さは素管の厚さの1.0
5倍以上1.2倍以下にし、溶接後のエリクセン値を母
材並みの11.4mm以上13.5mm以下にしてベロ
ーズ成形することであった。 【0003】 【発明が解決しようとする課題】従来のチタン製成形ベ
ローズ用パイプの製造方法は、以上のように構成されて
いたため、次のような課題が存在していた。すなわち、
真空用ベローズにおいては、板厚が0.1から0.3m
mのチタンの極薄板からパイプ(素管)を製作して、ベ
ローズを製作する。この極薄板の溶接には微小溶接電流
で安定な溶接熱源が必要となり、それには通常のTIG
溶接機では非常に難しく、プラズマ溶接が使用されてい
る。しかしながら、通常のプラズマ溶接はセンターガス
(プラズマガス)にアルゴン、シールドガスにアルゴン
と水素の混合ガスが用いられるが、シールドガスの水素
添加混合ガスを使用するのは、水素ガスの高温分解、再
結合によるサーマルピンチ効果でプラズマアーク柱を収
束し、微小電流において安定なアークを得るためであ
る。従って、チタンは高温で水素と反応し、硬化するこ
とが知られており、チタンの溶接においてはシールドガ
スに水素が存在すると熔融金属部の硬化、脆化が生じ、
健全な溶接継手が得られなかった。従って、通常のプラ
ズマ溶接は適用できず、又、溶接速度が遅いと入熱量が
過大となりがちなため、溶接継手部の硬度上昇が著し
く、成形のためには熱処理が必要で、それも真空熱処理
が必要とされ、その製造工程が複雑化して、量産におけ
る障害となっていた。 【0004】本発明は、以上のような課題を解決するた
めになされたもので、特に、素管の作製には、プラズマ
溶接におけるシールドガスとしてアルゴンと水素の混合
ガスを用いずにアルゴンとヘリウムの混合ガスを用い、
プラズマアークの収束度の減少を少なく、かつ、チタン
の化学変化による硬化を生じさせないで溶接するように
したチタン製成形ベローズ用パイプの製造方法を提供す
ることを目的とする。 【0005】 【課題を解決するための手段】本発明によるチタン製成
形ベローズ用パイプの製造方法は、板状のチタン素材を
円筒形に成形し、対向する各端部を溶接して素管を作製
し、前記素管を液圧成形法もしくはロール成形法により
ベローズにベローズ成形するチタン製成形ベローズ用パ
イプの製造方法において、前記素管の作製にはプラズマ
溶接におけるシールドガスとしてアルゴンとヘリウムの
混合ガスを用いる方法である。 【0006】 【発明の実施の形態】以下、図面と共に本発明によるチ
タン製成形ベローズ用パイプの製造方法の好適な実施の
形態について説明する。図1はベローズの製造工程を示
すもので、チタン製の0.2mm厚のチタン素材1のロ
ール状のコイル2を繰出してカッターで切断してチタン
板3とし、このチタン板3をロール加工して円筒状と
し、その対向する各端部4a、4bをプラズマ溶接によ
って溶接して素管5とする。この素管5の長手溶接部6
をチェックした後、液圧成形部7(ロール成形法による
場合もある)でベローズ状に成形してベローズ8を成形
し、このベローズ8の両端面8a、8bを切断除去する
と、ベローズ8が得られる。このベローズ8を脱脂、洗
浄後に、金具9a、9bを取付けることによってベロー
ズ成品10が得られる。 【0007】前記素管5は、図2に示されるように、長
手溶接部6が長手溶接継手6Aとして形成され、この長
手溶接継手6Aは、拡大して示すと図4のように形成さ
れている。すなわち、その板厚Tは、長手溶接継手6A
の長手溶接部板厚Tとほぼ同一となるように構成され
ている。 【0008】前記ベローズ8は、図5及び図6に示され
るように、成形ベローズ8Aとベローズ谷部8Bとによ
って蛇腹状に伸縮変化可能で、例えば、真空ゲート弁等
に用いられる。 【0009】前記長手溶接部6は、プラズマ溶接によっ
て形成され、このプラズマ溶接に用いるセンターガスは
アルゴンガス(Ar)を使用し、シールドガスとしては
従来のAr+Hに代ってAr+Heを使用している。 【0010】実施例 0.2mm板厚の純チタンベローズの製作を行った。成
形ベローズ製造工程を図1に示しているが、工程中のロ
ール成形後の溶接(造管溶接)における溶接において、
溶接電流8〜8.5A、 センターガス:アルゴン 0.3L/min シールドガス:アルゴン 10L/min ヘリウム 0.2〜0.5L/min 溶接速度 900mm/min 以上の溶接条件で図2の素管5となるように長手溶接
し、パイプ(ベローズ素管)を製作した。その後、図1
の工程に従い、液圧成形を行い健全なベローズを製作す
ることができた。製作したベローズの疲労寿命も設計値
を越える性能が確認された。溶接管を用いた成形ベロー
ズにおいては成形時のおける拡管工程で、長手溶接継手
が不健全な場合、破裂し、拡管することができない。長
手溶接部の熔融金属の硬度が母材部とより著しく高い
(伸びが少ないと)熱影響部から亀裂が生じ、破断し、
ベローズ成形を行うことができない。(従来では熱処理
を行うことにより熔融金属部や熱影響部の組織を変え、
延性を確保している。) ヘリウム混合ガスの効果を確認するために以下の試験を
実施した。シールドガスの混合ガスが水素の場合とヘリ
ウムの場合、各々同一溶接条件でチタンの極薄板の長手
継手を溶接し、その溶接部近傍の硬度を測定した。その
結果を表1、2の第1表及び第2表及び図7、8に示し
た。第1表、図7がヘリウムを混合した場合、第2表、
図8が水素を加えた場合の結果である。 【0011】 【表1】 【0012】 【表2】【0013】これらの表と図から、ヘリウム混合の方が
熔融金属部の平均硬度(ビッカース硬度)は約10程
度、明らかに低いことが分かる。このことから水素脆化
を生じさせることなく、且つ、熱処理を行うことなく、
成形加工が可能な素管を製作することができたものと考
えられる。シールドガスをヘリウムのみで行うことも可
能であるが、ヘリウムガスは大気より軽いため大気を巻
き込み易いことや拡散速度が速いためシールド効果が少
なくなり、熔融部や熱影響部が酸化されやすい。従っ
て、混合ガスが最も有効である。TIG溶接における比
較試験も行ったが、TIGの場合、溶接速度が遅くなる
ため、熱影響部が広くなり、又、熔融部の硬度は水素混
合シールドガスの場合と同程度であった。 【0014】 【発明の効果】本発明によるチタン製成形ベローズ用パ
イプの製造方法は、以上のように構成されているため、
次のような効果を得ることができる。すなわち、素管を
形成する長手溶接部の形成が、シールドガスをArとH
eを用いてプラズマ溶接を行っているため、溶接部の硬
度上昇を少なくした溶接継手が得られ、そのことによ
り、ステンレス製の成形ベローズと同等の作業性(高速
溶接、熱処理なし)でチタン製成形ベローズが製作で
き、その経済効果は極めて大きいものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bellows pipe made of titanium, and more particularly to a method for manufacturing a raw tube, which uses argon and hydrogen as shielding gases in plasma welding. The present invention relates to a new improvement for welding using a mixed gas of argon and helium without using a mixed gas of (1), reducing a decrease in convergence of a plasma arc, and preventing hardening due to a chemical change of titanium. 2. Description of the Related Art Conventionally, as a method of manufacturing this type of pipe for forming a bellows made of titanium, for example, a "method of manufacturing a titanium anticorrosion bellows" disclosed in Japanese Patent No. 2525960 is disclosed. In the method, a plate-shaped titanium material is formed into a cylindrical shape, and the opposite ends are welded to produce a raw tube, and the raw tube is bellowed by a hydraulic forming method or a roll forming method. In the method for producing a titanium bellows to be molded, the raw pipe is manufactured by using TI.
G welding is applied, and the thickness of the weld joint is 1.0
Bellows molding was to be performed at a rate of 5 times or more and 1.2 times or less, and with an Erichsen value after welding of 11.4 mm or more and 13.5 mm or less, which is equivalent to that of the base material. [0003] The conventional method of manufacturing a pipe for forming a bellows made of titanium has the following problems because it has been configured as described above. That is,
For vacuum bellows, plate thickness is 0.1 to 0.3m
A bellows is manufactured by manufacturing a pipe (base tube) from an ultrathin plate of m titanium. Welding of this ultra-thin plate requires a welding heat source that is stable with a small welding current.
It is very difficult with a welding machine, and plasma welding is used. However, in normal plasma welding, argon is used as the center gas (plasma gas) and a mixed gas of argon and hydrogen is used as the shielding gas. This is because the plasma arc column is converged by the thermal pinch effect due to the coupling, and a stable arc is obtained at a small current. Therefore, it is known that titanium reacts with hydrogen at high temperature and hardens, and in the welding of titanium, if hydrogen is present in the shielding gas, hardening and embrittlement of the molten metal part occurs,
Sound weld joints could not be obtained. Therefore, normal plasma welding cannot be applied, and if the welding speed is low, the heat input tends to be excessive, so that the hardness of the welded joint increases significantly and heat treatment is required for forming, which is also a vacuum heat treatment. Is required, and the manufacturing process is complicated, which has been an obstacle in mass production. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In particular, in manufacturing a raw tube, argon and helium are used without using a mixed gas of argon and hydrogen as a shielding gas in plasma welding. Using a mixed gas of
It is an object of the present invention to provide a method of manufacturing a pipe for forming a bellows made of titanium, in which a reduction in the degree of convergence of a plasma arc is reduced and welding is performed without causing hardening due to chemical change of titanium. A method for manufacturing a pipe for forming a bellows made of titanium according to the present invention is to form a plate-shaped titanium material into a cylindrical shape, and weld each of the opposing ends to form a raw tube. In the method of manufacturing a pipe for forming a bellows made of titanium, which is formed and bellows formed into a bellows by a hydroforming method or a roll forming method, a mixture of argon and helium is used as a shielding gas in plasma welding. This is a method using gas. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for manufacturing a titanium bellows pipe according to the present invention will be described below with reference to the drawings. FIG. 1 shows a bellows manufacturing process, in which a roll-shaped coil 2 of a titanium material 1 made of titanium and having a thickness of 0.2 mm is fed out and cut by a cutter to form a titanium plate 3. Each of the opposed ends 4a and 4b is welded by plasma welding to form a raw tube 5. Longitudinal welded portion 6 of this raw tube 5
After being checked, the bellows 8 is formed in a bellows shape by a hydraulic forming part 7 (which may be a roll forming method), and both end surfaces 8a and 8b of the bellows 8 are cut and removed to obtain the bellows 8. Can be After the bellows 8 has been degreased and washed, fittings 9a and 9b are attached to obtain a bellows product 10. As shown in FIG. 2, the raw tube 5 has a longitudinal welded portion 6 formed as a longitudinal welded joint 6A, and this longitudinal welded joint 6A is formed as shown in FIG. I have. That is, the thickness T of the longitudinal welded joint 6A
And it is configured to be substantially identical to the longitudinal weld thickness T 1. As shown in FIGS. 5 and 6, the bellows 8 can be changed in bellows by a formed bellows 8A and a bellows valley 8B, and is used for a vacuum gate valve, for example. [0009] The longitudinal welds 6 are formed by plasma welding, center gas used for the plasma welding using argon gas (Ar), as the shielding gas by using Ar + the He in place of the conventional Ar + H 2 I have. EXAMPLE A pure titanium bellows having a thickness of 0.2 mm was manufactured. FIG. 1 shows the manufacturing process of the formed bellows. In the welding after the roll forming in the process (pipe welding),
Welding current 8 to 8.5 A, center gas: argon 0.3 L / min shielding gas: argon 10 L / min helium 0.2 to 0.5 L / min welding speed 900 mm / min To produce a pipe (bellows base pipe). Then, FIG.
According to the above process, hydroforming was performed to produce a sound bellows. The fatigue life of the manufactured bellows was confirmed to exceed the design value. In the case of a bellows formed using a welded pipe, if the longitudinal weld joint is unhealthy in the pipe expanding step during forming, the pipe will burst and cannot be expanded. The hardness of the molten metal in the longitudinal weld is significantly higher than that of the base metal (if the elongation is small), cracks occur from the heat-affected zone and break,
Bellows molding cannot be performed. (Conventionally, the structure of the molten metal part and the heat affected zone was changed by performing heat treatment,
Ensures ductility. The following test was conducted to confirm the effect of the helium mixed gas. When the mixed gas of the shielding gas was hydrogen and helium, the longitudinal joint of an ultrathin titanium plate was welded under the same welding conditions, and the hardness near the weld was measured. The results are shown in Tables 1 and 2 of Tables 1 and 2 and FIGS. Table 1 and FIG. 7 show the case where helium is mixed.
FIG. 8 shows the result when hydrogen was added. [Table 1] [Table 2] From these tables and figures, it can be seen that the average hardness (Vickers hardness) of the molten metal portion is clearly lower by about 10 when helium is mixed. From this, without causing hydrogen embrittlement and without performing heat treatment,
It is probable that a raw tube that could be formed was manufactured. Although it is possible to use only helium as the shielding gas, the helium gas is lighter than the atmosphere, so it is easy to get into the atmosphere, and the diffusion speed is high, so that the shielding effect is reduced and the melted part and the heat-affected zone are easily oxidized. Therefore, a mixed gas is most effective. A comparative test in TIG welding was also performed, but in the case of TIG, the welding speed was slow, so that the heat-affected zone was widened, and the hardness of the melted portion was almost the same as that in the case of the hydrogen-mixed shielding gas. [0014] The method for manufacturing a titanium bellows pipe according to the present invention is configured as described above.
The following effects can be obtained. In other words, the formation of the longitudinal welds forming the raw pipe is achieved by changing the shielding gas between Ar and H.
e, plasma welding is performed, so that a welded joint with a reduced increase in hardness at the welded portion can be obtained, and as a result, it is made of titanium with the same workability as a stainless steel bellows (high-speed welding, no heat treatment). Molded bellows can be manufactured, and the economic effect is extremely large.

【図面の簡単な説明】 【図1】本発明によるチタン製成形ベローズ用パイプの
製造方法を示す製造工程図である。 【図2】図1で作製した素管を示す側面図である。 【図3】図1の右側面図である。 【図4】図3のA部を示す拡大図である。 【図5】図1のベローズを示す拡大半断面図である。 【図6】図5の右側面図である。 【図7】本発明によるシールドガスを用いた場合の長手
溶接継手部分の硬度変化を示す特性図である。 【図8】従来のシールドガスを用いた場合の長手溶接継
手部分の硬度変化を示す特性図である。 【符号の説明】 1 チタン素材 4a、4b 端部 5 素管 8 ベローズ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a manufacturing process diagram showing a method for manufacturing a titanium bellows pipe according to the present invention. FIG. 2 is a side view showing the raw tube manufactured in FIG. FIG. 3 is a right side view of FIG. 1; FIG. 4 is an enlarged view showing a portion A in FIG. 3; FIG. 5 is an enlarged half sectional view showing the bellows of FIG. 1; FIG. 6 is a right side view of FIG. 5; FIG. 7 is a characteristic diagram showing a change in hardness of a longitudinal weld joint when a shielding gas according to the present invention is used. FIG. 8 is a characteristic diagram showing a change in hardness of a longitudinally welded joint portion when a conventional shielding gas is used. [Explanation of Signs] 1 Titanium material 4a, 4b End 5 Raw tube 8 Bellows

Claims (1)

【特許請求の範囲】 【請求項1】 板状のチタン素材(1)を円筒形に成形
し、対向する各端部(4a、4b)を溶接して素管(5)を作製
し、前記素管(5)を液圧成形法もしくはロール成形法に
よりベローズ(8)にベローズ成形するチタン製成形ベロ
ーズ用パイプの製造方法において、 前記素管(5)の作製にはプラズマ溶接におけるシールド
ガスとしてアルゴンとヘリウムの混合ガスを用いること
を特徴とするチタン製成形ベローズ用パイプの製造方
法。
Claims: 1. A plate-shaped titanium material (1) is formed into a cylindrical shape, and opposite ends (4a, 4b) are welded to produce a raw pipe (5). In a method for manufacturing a pipe for forming a bellows made of titanium by bellows forming a raw pipe (5) into a bellows (8) by a hydraulic forming method or a roll forming method, the raw material pipe (5) is used as a shielding gas in plasma welding. A method for producing a titanium bellows pipe, characterized by using a mixed gas of argon and helium.
JP2002135717A 2002-05-10 2002-05-10 Manufacturing method of pipe for bellows made of titanium Expired - Lifetime JP3919595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135717A JP3919595B2 (en) 2002-05-10 2002-05-10 Manufacturing method of pipe for bellows made of titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135717A JP3919595B2 (en) 2002-05-10 2002-05-10 Manufacturing method of pipe for bellows made of titanium

Publications (2)

Publication Number Publication Date
JP2003326367A true JP2003326367A (en) 2003-11-18
JP3919595B2 JP3919595B2 (en) 2007-05-30

Family

ID=29697974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135717A Expired - Lifetime JP3919595B2 (en) 2002-05-10 2002-05-10 Manufacturing method of pipe for bellows made of titanium

Country Status (1)

Country Link
JP (1) JP3919595B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159870A (en) * 2009-01-08 2010-07-22 Spf:Kk Zirconium (zr) bellows
CN102294533A (en) * 2011-07-26 2011-12-28 浙江五环钛业股份有限公司 titanium and titanium alloy welding process
CN103042085A (en) * 2012-12-21 2013-04-17 山东恒通膨胀节制造有限公司 Method for forming nonferrous metal corrugated pipes such as titanium, zirconium and hafnium corrugated pipes
JP2016205437A (en) * 2015-04-16 2016-12-08 櫻護謨株式会社 Pipeline for alignment and alignment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159870A (en) * 2009-01-08 2010-07-22 Spf:Kk Zirconium (zr) bellows
CN102294533A (en) * 2011-07-26 2011-12-28 浙江五环钛业股份有限公司 titanium and titanium alloy welding process
CN103042085A (en) * 2012-12-21 2013-04-17 山东恒通膨胀节制造有限公司 Method for forming nonferrous metal corrugated pipes such as titanium, zirconium and hafnium corrugated pipes
JP2016205437A (en) * 2015-04-16 2016-12-08 櫻護謨株式会社 Pipeline for alignment and alignment method

Also Published As

Publication number Publication date
JP3919595B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
US5118028A (en) Diffusion bonding method for corrosion-resistant materials
JP6571937B2 (en) Heat-resistant pipe welded structure
RU2461452C2 (en) METHOD OF MAKING WELDING STRUCTURE FROM ALLOY FeNi 36
EP1020539A3 (en) Super-high-strength line pipe excellent in low temperature toughness and production method thereof
US6007923A (en) Titanium alloy, member made of the titanium alloy and method for producing the titanium alloy member
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
JP2003326367A (en) Method of producing pipe made of titanium for forming bellows
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP2669283B2 (en) Pipe welding method for thick and large diameter welded steel pipe
US20030230557A1 (en) Use of helium/nitrogen gas mixtures for the laser welding of stainless steel pipes
JPS6167594A (en) Carbon dioxide gas arc welding wire which is excellent in arc stability, and its manufacture
JPH1094879A (en) Pipe frame joined structure and joining method therefor
JPS5832583A (en) Tube welding method for large diameter steel tube
JPH03291176A (en) Multiple heat source pipe-making welding method
JPH0813428B2 (en) Clad steel pipe joining method
JP2658612B2 (en) Manufacturing method of composite slab for hot rolling
JP2607885B2 (en) Manufacturing method of exhaust manifold for automotive internal combustion engine
JPS62166074A (en) Manufacture of sleeve by overlay welding
JP2002307189A (en) High toughness and low temperature transformation flux-cored wire
JP2920431B2 (en) Manufacturing method of flux cored wire for welding
JPH04258390A (en) Manufacture of ferritic stainless steel welded tube
JP4505076B2 (en) Electron beam welding method for obtaining weld metal with excellent low temperature toughness
JPS6261798A (en) Composite wire for multi-electrode submerged arc welding
JP2005118811A (en) Tube stock for hydroforming and manufacturing method for the same, and hydroformed product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3919595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term