JP2003323469A - Method for designing balance of rigid rotor - Google Patents

Method for designing balance of rigid rotor

Info

Publication number
JP2003323469A
JP2003323469A JP2002129469A JP2002129469A JP2003323469A JP 2003323469 A JP2003323469 A JP 2003323469A JP 2002129469 A JP2002129469 A JP 2002129469A JP 2002129469 A JP2002129469 A JP 2002129469A JP 2003323469 A JP2003323469 A JP 2003323469A
Authority
JP
Japan
Prior art keywords
calculated
balancing
model
correction
residual unbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002129469A
Other languages
Japanese (ja)
Inventor
Ikuo Ishida
郁夫 石田
Shusuke Tsuruta
秀典 鶴田
Takahiro Matsubara
隆浩 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Manufacturing Co Ltd
Original Assignee
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Manufacturing Co Ltd filed Critical Tsurumi Manufacturing Co Ltd
Priority to JP2002129469A priority Critical patent/JP2003323469A/en
Publication of JP2003323469A publication Critical patent/JP2003323469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Testing Of Balance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly accurate and efficient method for designing the balance of a rigid rotor while overcoming the drawbacks of conventional CAD- based design techniques. <P>SOLUTION: A model of the rigid rotor is created using a three-dimensional CAD and the positions of two or more balancing planes perpendicular to its axis are designated. The amount of residual unbalance on each of the balancing planes is calculated on the basis of the state of mass distribution and a determination is made as to whether or not a balancing operation is needed, based on the calculated value. If it is determined to be necessary, balancing factors of the model are calculated from the designated balancing position and the amount of residual unbalance and the shape of the model is changed using the balancing factors to calculate balancing factors of the shape that has been either added or removed. The amount of residual unbalance on each of the balancing planes is calculated on the basis of the state of mass distribution which is re-calculated from the three-dimensional CAD using the balancing factors calculated. Designing is complete once a state is reached where the calculated value is nearly zero. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の技術分野】本発明は、例えば渦巻きポンプの羽
根車など、剛性回転体の釣合わせ設計法に関するもので
ある。 【0002】 【従来技術とその問題点】従来、ポンプ羽根車など剛性
回転体のCADによる設計時には、剛性回転体の不釣合
い遠心力(F)および不釣合いモーメント(N)をなく
することで、力学的にΣF=0、ΣN=0となるよう質
量分布修正を実施するため、仮想モデルを紙などで作成
して設計図面へ反映させようとする手法が採られいた。
しかしこの手法では綿密な計算による算出を実施してお
らず飽くまでも残留不釣合いの概略値を把握し得るに留
まり、設計者の経験や勘に頼った部分が多くて試作回数
を重ねることにより設計工数および時間が徒に費やされ
るという憾みがある。 【0003】また、構想段階での不釣合い遠心力および
不釣合いモーメントの同時消去等、細密な残留不釣合い
の消去は非常に難しく、この傾向は剛性回転体の形状が
軸方向への三次元的変化が大きいほど顕著に現われ、最
終的に残留不釣合い量を相当質量分の除去または付加に
よるアンバランス修正加工を施して対応しているのが現
状であり、この加工は、機能上質量の除去または付加に
よる形状変化が好ましくない部位、例えばポンプ羽根車
の翼面などの形状が設計時と異なる形状に仕上げられて
所定の性能が確保されなくなるという結果を招来する。 【0004】 【発明の目的】本発明の目的は、3次元CADを用いて
作成されたシュミレーションモデルをもとに、剛性回転
体の残留不釣合い量を算出して該算出値により釣合わせ
作業の要否を判断するという手順を踏んだ演算解析処理
を行うことにより、前述のような従来における設計技術
の欠点を払拭して、高精度で効率の良い剛性回転体の釣
合せ設計方法を提供することにある。 【0005】 【発明の構成】本発明に係る剛性回転体の釣合わせ設計
方法においては、3次元CADで剛性回転体のモデルを
作成して直交座標系の原点を決め、軸心と直交する2面
以上の修正面の位置を指定し、3次元CADから算出さ
れる質量分布状態により前記各修正面の残留不釣合い量
を算出し、該算出値がほぼゼロの場合は釣合わせ作業を
要しないものと判断して設計終了とするが、そうでない
場合は釣合わせ作業を要するものと判断してモデルの修
正を行わせるために、前記各修正面において修正すべき
半径方向位置を指定して該指定した修正位置と前記残留
不釣合い量からモデルの修正因子(質量と重心)を算出
し、該修正因子を用いモデル形状を変更して付加または
除去された形状の修正因子(質量と重心)を3次元CA
Dにより算出し、該算出された修正因子を用いてモデル
形状を変更したのちに、再び3次元CADから算出され
る前記質量分布状態により各修正面の残留不釣合い量を
算出し、該算出値がほぼゼロの状態に至れば設計終了と
する。 【0006】 【実施例】以下剛性回転体の具体例として、渦巻きポン
プ1の羽根車2を実施対象とした事例について説明をす
る。 【0007】先ず製造しようとするポンプ羽根車2のモ
デルを3次元CADで作成し、直交軸系の原点Oを決め
て軸心Zと直交する上部フランジ2aおよび下部フラン
ジ2bの平面上における修正面A,Bの位置を指定す
る。そして3次元CADから算出される質量分布状態よ
り前記各修正面A,Bにおける残留不釣合い量を算出
し、該算出値がほぼゼロの場合は釣合わせ作業を要しな
いものと判断して設計終了とするが、そうでない場合は
釣合わせ作業を要するものと判断してモデルの修正を行
わせるために、図1のないしの手順を繰返し、前記
各修正面A,Bにおいて修正すべき半径方向位置を指定
して該指定した修正位置と前記残留不釣合い量からモデ
ルの修正因子(質量と重心)を算出し、該修正因子を用
いモデル形状を変更して付加(肉厚増)または除去(肉
厚減)された形状の修正因子(質量と重心)を3次元C
ADにより算出し、該算出された修正因子を用いてモデ
ル形状を変更する。そして再び3次元CADから算出さ
れる前記質量分布状態により各修正面A,Bの残留不釣
合い量を算出し、前回同様にモデル形状変更後の残留不
釣合い量がほぼゼロの状態に至ればモデルの釣合せ作業
を要しなくなったものと判断して設計終了とする。もし
残留不釣合い量が未だ大きいと判断される場合には、更
に図1のないしの手順を繰返してモデルを修正し釣
合せを行うのである。 【0008】 【発明の効果】本発明方法を実施することにより、残留
不釣合いの修正加工が最小限に抑えられ、加工時間の短
縮につながりバランシング加工者の労力負担の軽減と加
工コストの低減が促進され、加工効率の大幅な向上を実
現することができる。また、設計手法のシステム化によ
り設計者の経験や勘に頼ることなく、設計段階で精度の
高く釣合い良さの優れた剛性回転体モデルの形成が可能
となり、かつ、設計者による結果の差異が生じることな
く、高品質で安定した機能・性能を有する製品を提供す
ることが可能となる。更に、形状変化を好まない部位の
除去や付加を最小限とさせるため、ポンプ羽根車に適用
した場合、揚水流れの安定化に繋がり、偏流による摩耗
やキャビテーション等に対する耐壊食性の向上が期待で
き、また、キャビテーションによる振動の抑制にも有効
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a balancing design method for a rigid rotating body such as an impeller of a centrifugal pump. 2. Description of the Related Art Conventionally, when a rigid rotating body such as a pump impeller is designed by CAD, the unbalanced centrifugal force (F) and the unbalanced moment (N) of the rigid rotating body are eliminated. In order to dynamically correct the mass distribution so that ΔF = 0 and ΔN = 0, a method of creating a virtual model on paper or the like and reflecting the model on a design drawing has been adopted.
However, this method does not carry out detailed calculations and can only get an idea of the approximate value of residual imbalance even if it gets tired. And there is the regret that time is spent unnecessarily. Further, it is very difficult to eliminate minute residual unbalance such as simultaneous elimination of unbalance centrifugal force and unbalance moment at the conception stage. This tendency is due to the fact that the shape of the rigid rotating body is three-dimensional in the axial direction. The larger the change, the more noticeable it is. At present, the residual unbalance amount is corrected by removing or adding a considerable amount of unbalance to correct the imbalance. Alternatively, a portion in which a change in shape due to addition is not preferable, for example, a shape of a blade surface of a pump impeller or the like is finished to a shape different from that at the time of design, resulting in a result that predetermined performance cannot be ensured. An object of the present invention is to calculate a residual unbalance amount of a rigid rotating body based on a simulation model created by using three-dimensional CAD, and to perform a balancing operation based on the calculated value. By performing an arithmetic analysis process in accordance with the procedure of determining necessity, it is possible to eliminate the drawbacks of the conventional design technology as described above, and to provide a highly accurate and efficient balance design method for a rigid rotating body. It is in. In the method of designing a rigid rotating body according to the present invention, a model of the rigid rotating body is created by three-dimensional CAD to determine the origin of an orthogonal coordinate system, and to determine the origin of the orthogonal coordinate system. Specify the position of the correction surface equal to or larger than the surface, calculate the residual unbalance amount of each correction surface based on the mass distribution state calculated from the three-dimensional CAD, and if the calculated value is almost zero, no balancing work is required. The design is determined to be completed, but if not, it is determined that a balancing operation is required, and in order to correct the model, a radial position to be corrected is designated on each of the correction surfaces and the design is performed. The correction factors (mass and center of gravity) of the model are calculated from the specified correction position and the residual unbalance amount, and the correction factors (mass and center of gravity) of the added or removed shape are changed by changing the model shape using the correction factors. 3D CA
D, and after changing the model shape using the calculated correction factors, the residual unbalance amount of each correction surface is calculated again based on the mass distribution state calculated from the three-dimensional CAD. Is completed, the design is terminated. An example in which an impeller 2 of a centrifugal pump 1 is implemented as a concrete example of a rigid rotating body will be described below. First, a model of the pump impeller 2 to be manufactured is created by three-dimensional CAD, the origin O of the orthogonal axis system is determined, and the correction surface on the plane of the upper flange 2a and the lower flange 2b orthogonal to the axis Z is determined. Specify the positions of A and B. Then, the amount of residual unbalance in each of the corrected surfaces A and B is calculated from the mass distribution state calculated from the three-dimensional CAD, and when the calculated value is substantially zero, it is determined that no balancing work is required, and the design is completed. However, if not, it is determined that a balancing operation is required, and the procedure shown in FIG. 1 is repeated to correct the model, and the radial position to be corrected on each of the correction planes A and B is determined. , The correction factor (mass and center of gravity) of the model is calculated from the specified correction position and the residual unbalance amount, and the model shape is changed using the correction factor to add (increase the thickness) or remove (the thickness). The correction factors (mass and center of gravity) of the reduced thickness
The model is calculated by AD, and the model shape is changed using the calculated correction factor. Then, the residual unbalance amount of each of the correction surfaces A and B is calculated again from the mass distribution state calculated from the three-dimensional CAD, and if the residual unbalance amount after the change of the model shape becomes almost zero as in the previous case, the model is changed. It is determined that the balancing work is no longer necessary, and the design is completed. If it is determined that the residual unbalance amount is still large, the procedure shown in FIG. 1 is repeated to correct and balance the model. By carrying out the method of the present invention, the processing for correcting the residual unbalance is minimized, which leads to a reduction in processing time, a reduction in the labor burden of the balancing processor, and a reduction in processing cost. It is possible to realize a great improvement in processing efficiency. In addition, the systematization of the design method enables the formation of a rigid rotating body model with high accuracy and excellent balance at the design stage without relying on the experience and intuition of the designer, and there is a difference in results depending on the designer. Without this, it is possible to provide products with high quality and stable functions and performance. Furthermore, when applied to a pump impeller to minimize the removal or addition of parts that do not like the shape change, it can lead to stabilization of the pumping flow, and can be expected to improve erosion resistance against wear due to drift and cavitation. It is also effective in suppressing vibration due to cavitation.

【図面の簡単な説明】 【図1】本発明方法の実施手順を示すフロー図である。 【図2】本発明方法の主な実施対象とされる渦巻きポン
プの縦断側面図である。 【図3】図2の渦巻きポンプにおける羽根車の外側面図
である。 【図4】図3の上から見た平面図である。 【図5】羽根車における修正面の部位と範囲を示した側
面図である。 【図6】羽根車における修正面の部位と範囲を示した平
面図である。 【符号の説明】 2 剛性回転体(ポンプ羽根車) A 修正面 B 修正面 O 直交座標系の原点 Z 軸心
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing a procedure for implementing a method of the present invention. FIG. 2 is a vertical sectional side view of a centrifugal pump to which the method of the present invention is mainly applied. FIG. 3 is an outer side view of an impeller in the centrifugal pump of FIG. 2; FIG. 4 is a plan view seen from above in FIG. 3; FIG. 5 is a side view showing a portion and a range of a correction surface in the impeller. FIG. 6 is a plan view showing a portion and a range of a correction surface in the impeller. [Explanation of Signs] 2 Rigid rotating body (pump impeller) A Correction plane B Correction plane O Origin Z axis of orthogonal coordinate system

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G021 AH18 AK10 5B046 AA00 DA09 FA04 JA01    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 2G021 AH18 AK10                 5B046 AA00 DA09 FA04 JA01

Claims (1)

【特許請求の範囲】 【請求項1】 3次元CADで剛性回転体のモデルを作
成して直交座標系の原点を決め、軸心と直交する2面以
上の修正面の位置を指定し、3次元CADから算出され
る質量分布状態により前記各修正面の残留不釣合い量を
算出し、該算出値がほぼゼロの場合は釣合わせ作業を要
しないものと判断して設計終了とするが、そうでない場
合は釣合わせ作業を要するものと判断してモデルの修正
を行わせるために、前記各修正面において修正すべき半
径方向位置を指定して該指定した修正位置と前記残留不
釣合い量からモデルの修正因子(質量と重心)を算出
し、該修正因子を用いモデル形状を変更して付加または
除去された形状の修正因子(質量と重心)を3次元CA
Dにより算出し、該算出された修正因子を用いてモデル
形状を変更したのちに、再び3次元CADから算出され
る前記質量分布状態により各修正面の残留不釣合い量を
算出し、該算出値がほぼゼロの状態に至れば設計終了と
することを特徴とした、剛性回転体の釣合わせ設計法。
Claims: 1. A model of a rigid rotating body is created by three-dimensional CAD, an origin of an orthogonal coordinate system is determined, and positions of two or more correction planes orthogonal to an axis are specified. The residual unbalance amount of each of the corrected surfaces is calculated based on the mass distribution state calculated from the dimension CAD, and when the calculated value is substantially zero, it is determined that no balancing work is required, and the design is completed. Otherwise, in order to determine that a balancing operation is required and to correct the model, a radial position to be corrected on each of the correction surfaces is specified, and the model is determined from the specified correction position and the residual unbalance amount. The correction factors (mass and center of gravity) are calculated, and the correction factors (mass and center of gravity) of the shape added or removed by changing the model shape using the correction factors are calculated in three-dimensional CA.
D, and after changing the model shape using the calculated correction factors, the residual unbalance amount of each correction surface is calculated again based on the mass distribution state calculated from the three-dimensional CAD. A design method for balancing a rigid rotating body, characterized in that the design is terminated when the value reaches almost zero.
JP2002129469A 2002-05-01 2002-05-01 Method for designing balance of rigid rotor Pending JP2003323469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129469A JP2003323469A (en) 2002-05-01 2002-05-01 Method for designing balance of rigid rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129469A JP2003323469A (en) 2002-05-01 2002-05-01 Method for designing balance of rigid rotor

Publications (1)

Publication Number Publication Date
JP2003323469A true JP2003323469A (en) 2003-11-14

Family

ID=29542859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129469A Pending JP2003323469A (en) 2002-05-01 2002-05-01 Method for designing balance of rigid rotor

Country Status (1)

Country Link
JP (1) JP2003323469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481582A (en) * 2010-06-28 2012-01-04 Rolls Royce Plc A method for predicting initial unbalance in a component such as a blisk
CN102941442A (en) * 2012-11-05 2013-02-27 宁夏天地奔牛实业集团有限公司 Static balance method for crushing knife toothholder
CN103257018A (en) * 2013-05-14 2013-08-21 上海工程技术大学 Rigid rotor dynamic balance obtaining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481582A (en) * 2010-06-28 2012-01-04 Rolls Royce Plc A method for predicting initial unbalance in a component such as a blisk
US8887564B2 (en) 2010-06-28 2014-11-18 Rolls-Royce Plc Method for predicting initial unbalance in a component
CN102941442A (en) * 2012-11-05 2013-02-27 宁夏天地奔牛实业集团有限公司 Static balance method for crushing knife toothholder
CN103257018A (en) * 2013-05-14 2013-08-21 上海工程技术大学 Rigid rotor dynamic balance obtaining method

Similar Documents

Publication Publication Date Title
JP4622873B2 (en) NC program creation method and program
JP5087794B2 (en) How to repair a workpiece such as a turbomachine blade of a dam blade
US7500299B2 (en) Method for introducing a deliberate mismatch on a turbomachine bladed wheel and bladed wheel with a deliberate mismatch
CN110909422B (en) Method for predicting and optimizing range of efficient working condition area of centrifugal pump impeller
JPWO2015132896A1 (en) Rotating fluid element and method for correcting unbalance of rotating fluid element
JP2011243028A (en) Blade profile designing method of turbomachinery and program of the same
JP2003323468A (en) Method for designing balance of rigid rotor
WO2018042704A1 (en) Command value generating device
JP2003323469A (en) Method for designing balance of rigid rotor
Hegde et al. Mistuned Forced response sensitivity of an embedded Compressor rotor: Effect of sideband travelling wave excitations
JP6807950B2 (en) Methods for contouring the blades of axial turbomachinery
JP6809904B2 (en) Blades, impellers, and turbo machines, and how to manufacture blades
CN105467928B (en) The engineering method for stablizing working process parameter figure is determined based on two-dimentional flutter instability limiting figure
Müller et al. Influence of intrarow interaction on the aerodynamic damping of an axial turbine stage
JP5737015B2 (en) Unbalance correction method for rotating body
CN107520582B (en) The processing method and device in bearing thrust face
Lotz Aerodynamic Optimization Process for Turbocharger Compressor Impellers
Maisuria et al. FE analysis of runner blade for small bulb turbine
CN114406203B (en) Rotor casting process for pre-controlling brake balance
CN111797580B (en) CFX software-based three-dimensional CFD automatic calculation method for turbine characteristics
Drewczynski et al. Dynamic stress analysis of a blade in a partially blocked engine inlet
Blocher et al. Flutter susceptibility approximation via curve fitting and MAC-analysis in an automated optimization design process
Kahl Mistuning and coupling effects in turbomachinery bladings
Wen et al. Meshfree Method Based on Point Collocation for Metal Forming Simulation
SU958887A1 (en) Article static balancing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116