JP2003322655A - Apparatus for measuring concentration of endotoxin - Google Patents

Apparatus for measuring concentration of endotoxin

Info

Publication number
JP2003322655A
JP2003322655A JP2002130811A JP2002130811A JP2003322655A JP 2003322655 A JP2003322655 A JP 2003322655A JP 2002130811 A JP2002130811 A JP 2002130811A JP 2002130811 A JP2002130811 A JP 2002130811A JP 2003322655 A JP2003322655 A JP 2003322655A
Authority
JP
Japan
Prior art keywords
measuring
endotoxin
measurement
concentration
sample liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002130811A
Other languages
Japanese (ja)
Other versions
JP3814559B2 (en
Inventor
Kiyoshi Ishii
清 石井
Tokuzo Harada
徳三 原田
Kaoru Miura
薫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CENTRAL FILTER Manufacturing CO LD
Daicen Membrane Systems Ltd
Original Assignee
CENTRAL FILTER Manufacturing CO LD
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CENTRAL FILTER Manufacturing CO LD, Daicen Membrane Systems Ltd filed Critical CENTRAL FILTER Manufacturing CO LD
Priority to JP2002130811A priority Critical patent/JP3814559B2/en
Publication of JP2003322655A publication Critical patent/JP2003322655A/en
Application granted granted Critical
Publication of JP3814559B2 publication Critical patent/JP3814559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring the concentration of endotoxin capable of incorporating part of a specimen liquid such as drugs from a storage tank, etc., for the specimen liquid by a pipe and continuously monitoring the concentration of endotoxin of a liquid of a low concentration of 50 EU/L or less in a short time. <P>SOLUTION: The apparatus for measuring the concentration of the endotoxin comprises a means for incorporating the specimen liquid containing the endotoxin in a measuring circuit and sealing it; a means for circulating the sealed specimen liquid in the measuring circuit; a means for injecting a limulus reagent in the circulating specimen liquid and mixing both liquids; a particulate counting means for continuously measuring the concentration of particulates with the passage of time which occur in the mixed liquids introduced to a measuring cell; and a means for discharging the mixed liquids from the measuring circuit and cleaning the measuring circuit. By measuring the time required for a count value of the particulate counting means to reach a predetermined amount of change or the rate of change of the amount of change with the passage of time, the concentration of the endotoxin is computed in the apparatus for measuring the concentration of the endotoxin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンドトキシン濃
度の測定装置に関し、更に詳しくは注射液、輸液、透析
液などの医薬品と、その中間製品、これらの原料の一部
となる精製水中に存在すると、多彩な生物活性を示し弊
害があるエンドトキシンの濃度を測定し、医療に使用
中、或いは医薬品として製造中、または貯蔵中の注射
液、輸液、透析液などの医薬品と、その中間製品、又は
これらの原料の一部となる精製水の品質管理等に役立て
るために使用するエンドトキシン濃度の測定装置に関す
る。
TECHNICAL FIELD The present invention relates to a device for measuring endotoxin concentration, and more specifically, it is present in pharmaceutical products such as injection solutions, infusion solutions, dialysis solutions, intermediate products thereof, and purified water which is a part of these raw materials. , The concentration of endotoxin, which exhibits various biological activities and has harmful effects, is measured, and pharmaceuticals such as injections, infusions, dialysis fluids, and the like, which are in use during medical treatment or during manufacture or storage as pharmaceuticals, and their intermediate products, or these The present invention relates to an endotoxin concentration measuring device used for quality control and the like of purified water, which is a part of the raw material.

【0002】[0002]

【従来の技術】エンドトキシンは、グラム陰性細菌の外
膜に存在する耐熱性の毒素であり菌体内毒素と言われ、
本体はリポ多糖であるとされている。リポ多糖はリピド
Aとよばれる脂質と糖鎖からなるが、エンドトキシンと
しての活性中心はリピドAにあり、分離したリピドAで
ほぼすべての活性が再現される。
2. Description of the Related Art Endotoxin is a thermostable toxin existing in the outer membrane of Gram-negative bacteria and is called endotoxin.
The body is said to be lipopolysaccharide. Lipopolysaccharide consists of lipid called lipid A and sugar chain, but the active center as endotoxin is lipid A, and almost all the activities are reproduced by separated lipid A.

【0003】エンドトキシンは血液凝固線の反応促進、
血小板・白血球の減少、血圧の低下、ショックなど循環
系への影響、発熱、サイトカインの誘導、免疫系への影
響など多彩な生物活性を示す(竹沢真吾編、透析液エン
ドトキシンがよくわかる本、15〜24頁及び45〜5
1頁(1995)、東京医学社)。エンドトキシンを一
構成成分としているグラム陰性細菌は、空気中、水中あ
るいは食品中に存在し、菌体が機械的損傷を受けたり、
死菌が溶解したりあるいは菌体の分裂に際してエンドト
キシンが溶液中に放出され、溶液中に存在することとな
る。
Endotoxin promotes the reaction of blood coagulation lines,
Exhibits a variety of biological activities such as a decrease in platelets and white blood cells, a decrease in blood pressure, effects on the circulatory system such as shock, fever, induction of cytokines, effects on the immune system (edited by Shingo Takezawa, book on dialysate endotoxin, 15 -24 pages and 45-5
1 page (1995), Tokyo Medical Co., Ltd.). Gram-negative bacteria that have endotoxin as a component exist in the air, water, or foods, and the microbial cells are mechanically damaged,
Endotoxin is released into the solution when the dead cells are dissolved or the cells are divided, and the endotoxin is present in the solution.

【0004】したがって、エンドトキシンは、直接的ま
たは間接的に、注射液、輸液、透析液などの医薬品と、
その中間製品、これらの原料の一部となる精製水中に混
入したり、存在したりすると、上記した多彩な生物活性
を示す弊害があるので、エンドトキシンの濃度を測定す
ることは、医療に使用中、或いは医薬品として製造中ま
たは貯蔵中の注射液、輸液、透析液などの医薬品と、そ
の中間製品、又はこれらの原料の一部となる精製水の品
質管理に必要である。また、エンドトキシンの濃度をモ
ニターすることは、生菌の増殖を早期に検出する手段と
しても有効である。しかし、現状ではエンドトキシン濃
度をモニターする装置は存在せず、検体液を採取してオ
フラインでエンドトキシン濃度を測定して、これらの品
質管理に役立てている。
[0004] Therefore, endotoxin is directly or indirectly associated with pharmaceutical products such as injectable solutions, infusion solutions and dialysates.
If mixed or present in the intermediate product or purified water that is a part of these raw materials, there is an adverse effect of exhibiting various biological activities as described above.Therefore, it is important to measure the concentration of endotoxin during medical use. Alternatively, it is necessary for quality control of pharmaceuticals such as injections, infusions, and dialysis fluids that are being manufactured or stored as pharmaceuticals, and intermediate products thereof, or purified water that is a part of these raw materials. Monitoring the endotoxin concentration is also effective as a means for early detection of the growth of viable bacteria. However, at present, there is no device that monitors the endotoxin concentration, and a sample solution is collected and the endotoxin concentration is measured off-line, which is useful for quality control.

【0005】エンドトキシンの濃度を定量測定する方法
としては、唯一リムルス試験(Limulus tes
t)がある。 この方法は、カブトガニ(Limulu
spolyphemus)の血球中に存在する前凝固性
酵素(Proclotting Enzyme)をエン
ドトキシンが活性化し、凝固酵素(Clotting
Enzyme)とする反応を利用したものであり、カブ
トガニ血球抽出成分(Limulus amebocy
te lysate)を試薬として使用する方法であ
り、ゲル化法と、高感度測定法として比濁法と比色法と
の三つの方法がある。
The only method for quantitatively measuring the concentration of endotoxin is the Limulus test.
There is t). This method is based on the Limulus
Endotoxin activates the procoagulant enzyme (Proclotting Enzyme) present in the blood cells of
Enzyme) is used, and it is a component of Limulus amebocyte extract from Limulus amebocyte.
lysate) is used as a reagent, and there are three methods, a gelation method and a highly sensitive measurement method, a turbidimetric method and a colorimetric method.

【0006】高感度測定法の比濁法では、カブトガニ血
球中に存在している凝固性蛋白(Coagguloge
n)に前記凝固酵素が作用して、凝固蛋白(Coagg
ulin)にして、ゲルを形成する(エンドトキシン濃
度が低い場合は全体をゲル化させるには至らないが、)
過程で発生する濁度変化を光学分析装置により測定する
方法であり、これにはエンドポイント法とカイネティッ
ク法があり定量的な方法である。エンドポイント法は、
一定時間内に到達する濁度(吸光度)がエンドトキシン
濃度に比例することに基づく方法である。カイネティッ
ク法には、濁度(吸光度)の経時変化率がエンドトキシ
ン濃度に比例することに基づく比濁反応速度法と濁度の
変化率が予め設定した閾値に達する時間の対数がエンド
トキシン濃度の対数に反比例することに基づく比濁反応
時間法がある。カイネティック法が一般に用いられてい
る(竹沢真吾編、透析液エンドトキシンがよくわかる
本、36〜39頁(1995)、東京医学社)。
According to the turbidimetric method, which is a highly sensitive assay method, the coagulant protein (Coaggulogue) present in the horseshoe crab blood cells is used.
The coagulation enzyme acts on n), and coagulation protein (Coagg
to form a gel (although if the endotoxin concentration is low, it does not lead to gelation of the whole)
This is a method of measuring the turbidity change occurring in the process by an optical analyzer, and there are an endpoint method and a kinetic method, which are quantitative methods. The endpoint method is
This is a method based on the fact that the turbidity (absorbance) that reaches within a certain period of time is proportional to the endotoxin concentration. The kinetic method is a turbidimetric reaction rate method based on the rate of change in turbidity (absorbance) with time being proportional to endotoxin concentration, and the logarithm of the time when the rate of change in turbidity reaches a preset threshold is the logarithm of endotoxin concentration. There is a turbidimetric reaction time method based on the inverse proportion to. The kinetic method is generally used (Takezawa Shingo ed., Book on dialysate endotoxin, page 36-39 (1995), Tokyo Medical Co., Ltd.).

【0007】既存の比濁法によるエンドトキシン濃度測
定機器では、濃度1EU/Lまで検出するには90〜1
50分の反応時間が必要である(竹沢真吾、石崎允監
修、南東北水質検討会編集、透析液エンドトキシン実測
集、93頁(1997)、(株)メディカ出版)。エン
ドトキシン濃度50EU/L以下の低濃度液、特に10
〜<1EU/Lレベルが要求されるHDF透析液のエン
ドトキシン濃度のモニターとしては時間がかかりすぎ不
充分であった。また、測定検体量は、リムルス試薬量
(0.1〜0.05cm)と等量の制約から測定セル
などの容積が制限され、まして、混合液を循環すること
は困難であった。
With an existing endotoxin concentration measuring instrument by the nephelometric method, it is 90 to 1 to detect a concentration of 1 EU / L.
A reaction time of 50 minutes is required (supervised by Shingo Takezawa, Yoshi Ishizaki, edited by the Minami Tohoku Water Quality Study Group, dialysate endotoxin measurement collection, page 93 (1997), Medica Publishing Co., Ltd.). Low concentration liquid with endotoxin concentration of 50 EU / L or less, especially 10
It took too much time and was insufficient as a monitor of the endotoxin concentration of the HDF dialysate requiring a <1 EU / L level. In addition, the volume of the measurement cell and the like is limited due to the constraint that the amount of the sample to be measured is equal to the amount of Limulus reagent (0.1 to 0.05 cm 3 ), and it was difficult to circulate the mixed solution.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点に鑑み、注射液、輸液、透析液などの医薬
品と、その中間製品、精製水などの検体液の貯蔵タンク
又は供給ラインから、検体液の一部をパイプで取込みエ
ンドトキシンの濃度を連続的にモニターすることがで
き、かつエンドトキシンの濃度が50EU/L以下の低
濃度液、特に10〜<1EU/Lレベルの極低濃度液で
あってもモニターでき、しかもエンドトキシンの濃度を
短時間にモニターできるエンドトキシン濃度の測定装置
の提供を課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a storage tank or supply for medicines such as injections, infusions and dialysates, and intermediate products thereof, and specimen liquids such as purified water. A part of the sample solution can be taken in from the line with a pipe to continuously monitor the endotoxin concentration, and the endotoxin concentration is a low-concentration liquid of 50 EU / L or less, especially an extremely low level of 10 to <1 EU / L. An object of the present invention is to provide an endotoxin concentration measuring device capable of monitoring even a concentration liquid, and capable of monitoring the concentration of endotoxin in a short time.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記の課
題に鑑み、注射液、輸液、透析液などの医薬品と、その
中間製品、精製水などの検体液の貯蔵タンク又は供給ラ
インから、検体液の一部を取込み、エンドトキシンが低
濃度でも測定できる特定の濁度計を採用し、濃度を測定
した検体液を排出することを可能とするように、各手段
を特定に結合すると、良好な結果が得られることを見出
し、本発明を完成させた。
SUMMARY OF THE INVENTION In view of the above problems, the inventors of the present invention have proposed a storage tank or a supply line for a pharmaceutical product such as an injection solution, an infusion solution, a dialysate solution, an intermediate product thereof, and a sample solution such as purified water. By incorporating a part of the sample liquid, adopting a specific turbidimeter that can measure endotoxin even at low concentrations, and by combining each means to enable discharging the sample liquid whose concentration was measured, The inventors have found that good results can be obtained and completed the present invention.

【0010】すなわち、本発明の第1の発明によれば、
エンドトキシンを含む検体液を測定セルを含む測定回路
内に取込み封鎖する手段と、取込み封鎖された検体液を
測定回路内で循環させる手段と、循環する検体液に所定
量のリムルス試薬を注入して両液を混合させる手段と、
測定セルに導入された混合液中に発生する濁度の原因と
なる微粒子の濃度の経時変化を連続的に測定する微粒子
計数手段と、測定後に混合液を測定回路内から排出し、
測定回路を洗浄する手段と、からなるエンドトキシン濃
度の測定装置であって、上記微粒子計数手段で、計数値
が所定変化量に到達する時間又は該変化量の経時変化率
を測定することにより検体液中に含まれるエンドトキシ
ンの濃度を算定することを特徴とするエンドトキシン濃
度の測定装置が提供される。
That is, according to the first aspect of the present invention,
Means for capturing and sealing the sample liquid containing endotoxin in the measurement circuit including the measurement cell, means for circulating the captured and blocked sample liquid in the measurement circuit, and injecting a predetermined amount of Limulus reagent into the circulating sample liquid Means for mixing both solutions,
Fine particle counting means for continuously measuring the time-dependent change in the concentration of fine particles causing turbidity generated in the mixed solution introduced into the measurement cell, and the mixed solution is discharged from the measurement circuit after the measurement,
A device for measuring an endotoxin concentration, comprising: a means for washing a measurement circuit, wherein the fine particle counting means measures the time for the count value to reach a predetermined change amount or the rate of change over time of the change amount. An endotoxin concentration measuring device is provided, which is characterized by calculating the concentration of endotoxin contained therein.

【0011】また、本発明の第2の発明によれば、第1
の発明において、エンドトキシンを含む検体液を測定回
路内に取込む前に、予め微粒子計数手段が計数する最小
径以上の粒子を除去できる濾過手段を設けることを特徴
とする請求項1に記載のエンドトキシン濃度の測定装置
が提供される。
According to the second aspect of the present invention, the first aspect
2. The endotoxin according to claim 1, wherein before the sample liquid containing endotoxin is taken into the measurement circuit, a filtering means capable of removing particles having a minimum diameter or more counted by the fine particle counting means is provided in advance. An apparatus for measuring concentration is provided.

【0012】また、本発明の第3の発明によれば、第1
の発明において、微粒子計数手段は、計数する微粒子の
最小直径を0.5μm以下とする微粒子計数計と、その
計数値から変化量が所定量に到達する時間、または、変
化量の経時変化率を算定して、予め作成された検量線と
対比して検体液中のエンドトキシン濃度を算定する電子
回路からなることを特徴とするエンドトキシン濃度の測
定装置が提供される。
According to the third aspect of the present invention, the first aspect
In the present invention, the fine particle counting means is a fine particle counter for setting the minimum diameter of fine particles to be 0.5 μm or less, and the time for the change amount to reach a predetermined amount from the count value or the change rate of the change amount with time. There is provided an endotoxin concentration measuring device, which comprises an electronic circuit for calculating and comparing the endotoxin concentration in a sample solution with a calibration curve prepared in advance.

【0013】さらに、本発明の第4の発明によれば、第
1の発明において、複数の測定系を検体液の流路に並列
に切換え可能に結合して、順繰りに自動的に切換えて、
微粒子の測定と、測定セルを含む測定回路の洗浄を並行
して行い、或いは、1回の測定に要する時間よりも短い
間隔で連続測定することを特徴とするエンドトキシン濃
度の測定装置が提供される。
Further, according to a fourth aspect of the present invention, in the first aspect, a plurality of measurement systems are switchably coupled in parallel to the flow path of the sample liquid, and are automatically switched in sequence.
There is provided an endotoxin concentration measuring device characterized in that measurement of fine particles and washing of a measuring circuit including a measuring cell are performed in parallel, or continuous measurement is performed at intervals shorter than the time required for one measurement. .

【0014】さらに、本発明の第5の発明によれば、第
4の発明において、複数の測定系は、単一の光源とそれ
に対応する光検出器を固定した回転軸を中心軸とする同
心円周上に配置した複数の測定セルを含む測定回路とか
らなることを特徴とする請求項4に記載のエンドトキシ
ン濃度の測定装置が提供される。
Further, according to a fifth aspect of the present invention, in the fourth aspect, the plurality of measurement systems are concentric circles having a rotation axis on which a single light source and a corresponding photodetector are fixed as a central axis. An endotoxin concentration measuring apparatus according to claim 4, comprising a measuring circuit including a plurality of measuring cells arranged on the circumference.

【0015】さらに、本発明の第6の発明によれば、第
4の発明において、複数の測定系は、一列に並置した複
数の測定セルに対して併進往復する単一の光源とそれに
対応する光検出器とからなることを特徴とする請求項4
に記載のエンドトキシン濃度の測定装置が提供される。
Further, according to the sixth invention of the present invention, in the fourth invention, the plurality of measurement systems correspond to a single light source that reciprocates in parallel with respect to the plurality of measurement cells arranged in a line. 5. A photodetector. 5.
An apparatus for measuring the endotoxin concentration is provided.

【0016】さらに、本発明の第7の発明によれば、第
1〜6のいずれかの発明において、検体液中のエンドト
キシン濃度が低レベルの場合に、検体液量をリムルス試
薬量に対して10倍量〜1000倍量とした後、両液を
混合して得られる混合液を測定することを特徴とするエ
ンドトキシン濃度の測定装置が提供される。
Further, according to the seventh invention of the present invention, in any one of the first to sixth inventions, when the endotoxin concentration in the sample liquid is at a low level, the sample liquid amount is relative to the Limulus reagent amount. An endotoxin concentration-measuring device is provided, which comprises measuring a mixed solution obtained by mixing the two solutions after mixing them in an amount of 10 times to 1000 times.

【0017】[0017]

【発明の実施の形態】以下、本発明のエンドトキシン濃
度の測定装置について、各項目毎に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The endotoxin concentration measuring apparatus of the present invention will be described in detail below for each item.

【0018】1. エンドトキシンを含む検体液を測定
セルを含む測定回路内に取込み封鎖する手段
1. Means for capturing and sealing the sample liquid containing endotoxin in the measuring circuit including the measuring cell

【0019】1.1 エンドトキシンを含む検体液 本発明においてエンドトキシンを含む検体液とは、注射
液、輸液、透析液などの医薬品と、その中間製品、又は
これらの原料の一部となる精製水などであり、検体液は
貯糟、タンク、ガラス瓶、プラスチック容器、プラスチ
ックバッグ等の貯蔵手段に貯蔵されており、検体液を本
来の目的で使用するときは、貯蔵手段の一部を出発点と
するパイプ、管、ホース等の輸送手段(1)で検体液が
使用される使用場所や使用機器に送られる。上記貯蔵手
段(図示せず)に貯蔵されている検体液又は上記輸送手
段(1)中を流れる検体液の一部を、本発明のエンドト
キシン濃度の測定装置に導入しエンドトキシンの濃度を
測定するが、サンプリングするためには、上記輸送手段
(1)の一部に別のパイプ、管、ホース等の輸送手段
(2)(図2の7)を設け、支流として検体液の一部を
本発明のエンドトキシン濃度の測定装置の測定回路(図
3(A)の15)内に取込む。
1.1 Sample Liquid Containing Endotoxin In the present invention, the sample liquid containing endotoxin includes pharmaceutical products such as injectable solutions, infusion solutions and dialysates, and intermediate products thereof, or purified water as a part of these raw materials. The sample liquid is stored in a storage means such as a storage tank, a tank, a glass bottle, a plastic container, and a plastic bag, and when the sample liquid is used for its original purpose, a part of the storage means is used as a starting point. The sample liquid is sent to a place of use or a device to be used by a transportation means (1) such as a pipe, a pipe, or a hose. A part of the sample liquid stored in the storage means (not shown) or the sample liquid flowing in the transport means (1) is introduced into the endotoxin concentration measuring device of the present invention to measure the endotoxin concentration. For sampling, another transport means (2) (7 in FIG. 2) such as a pipe, pipe, hose or the like is provided in a part of the transport means (1), and a part of the sample liquid is used as a tributary of the present invention. Into the measurement circuit (15 in FIG. 3 (A)) of the endotoxin concentration measuring device of FIG.

【0020】1.2 測定セル 本発明において測定セル(図3(B)の16、図4の1
6)とは、検体液中のエンドトキシンの濃度を測定する
セル(部屋)であり、本発明で使用する微粒子計数計の
一部を構成し、エンドトキシンとリムルス試薬が反応し
て凝固蛋白(微粒子)を発生した混合液に、ここにおい
て光源からの光束を照射し微粒子の数を計測する。測定
セルは下記にて詳細に説明する測定回路の一部である。
測定セルの素材としては、光に対する透明性が要求され
るので高純度ガラス、石英ガラスなどが好ましい。
1.2 Measurement Cell In the present invention, the measurement cell (16 in FIG. 3 (B), 1 in FIG. 4)
6) is a cell (room) for measuring the concentration of endotoxin in the sample liquid, which constitutes a part of the particle counter used in the present invention, and the endotoxin reacts with the Limulus reagent to coagulate protein (particles). The luminous flux from the light source is radiated to the mixed liquid in which the particle is generated, and the number of fine particles is measured. The measuring cell is part of the measuring circuit described in detail below.
As the material for the measuring cell, high-purity glass, quartz glass and the like are preferable because transparency to light is required.

【0021】1.3 測定回路 本発明において測定回路(図3(A)の15、図4の1
5)とは、検体液をリサイクル(循環)させる回路であ
り、上記した測定セルを一部に含み、残部は検体液をリ
サイクルできる構造であれば如何なる構造であってもよ
いが、円形のパイプ(管)で構成されていることが好ま
しい。パイプ(管)の材質については、特に限定されな
いが、ポリ四弗化エチレン(テフロン(R))、弗素樹
脂、ライニングした金属、非ライニング金属、セラミッ
クス等が挙げられ、非吸着性、洗浄性等の観点からポリ
四弗化エチレン(テフロン(R))が特に好ましい。な
お、混合液量は少量に限られるが、本発明においては、
測定回路内を循環させることによって微粒子計数計によ
る測定の必要条件である測定セル内の流動状態を継続さ
せることができるとともに、検体液とリムルス試薬の混
合と反応を均一にして測定精度を高める効果があり、本
発明で始めて提案されたものである。測定回路の一部に
スタティックミキサーを設けることによって、混合を早
く確実にすることができる。
1.3 Measuring Circuit In the present invention, the measuring circuit (15 in FIG. 3A, 1 in FIG. 4)
5) is a circuit that recycles (circulates) the sample liquid, and may have any structure as long as it includes the above-described measurement cell in part and the rest can recycle the sample liquid, but it is a circular pipe. It is preferably composed of (tube). The material of the pipe (tube) is not particularly limited, and examples thereof include polytetrafluoroethylene (Teflon (R)), fluorine resin, lined metal, non-lined metal, ceramics, etc. From the viewpoint of, polytetrafluoroethylene (Teflon (R)) is particularly preferable. Although the mixed liquid amount is limited to a small amount, in the present invention,
By circulating in the measurement circuit, it is possible to continue the flow state in the measurement cell, which is a necessary condition for measurement by the particle counter, and to improve the measurement accuracy by uniformly mixing and reacting the sample liquid and Limulus reagent. And is the first proposed in the present invention. By providing a static mixer in a part of the measuring circuit, the mixing can be ensured quickly.

【0022】1.4 取込み手段 本発明において取込みとは、エンドトキシンを含む検体
液を測定セルを含む測定回路内に取込むことであり、そ
の手段としては、上記1.1にて説明したパイプ、菅、
ホース等の輸送手段(2)(図2の7)である。輸送手
段(2)の構造は、検体液を輸送できる構造であれば如
何なる構造であってもよいが、円形のパイプ(管)で構
成されていることが好ましい。パイプ(管)の材質につ
いては、特に限定されないが、ポリ四弗化エチレン(テ
フロン(R))、弗素樹脂、ライニングした金属、非ラ
イニング金属、セラミックス等が挙げられ、非吸着性、
洗浄性等の観点からポリ四弗化エチレン(テフロン
(R))が特に好ましい。なお、検体液の取込みポンプ
4は補助的なポンプであり、検体液が圧送されているラ
インから取込む場合は省略できる。また、検体液の濾過
フィルター5は、検体液中の微粒子計数計が計数する最
小径以上の微粒子の数が少ない場合は省略することがで
きる。
1.4 Incorporation Means Incorporation in the present invention means incorporation of a sample liquid containing endotoxin into a measurement circuit containing a measurement cell, which is carried out by the pipe described in 1.1 above. Kan,
It is a transportation means (2) such as a hose (7 in FIG. 2). The structure of the transportation means (2) may be any structure as long as it can transport the sample liquid, but it is preferably composed of a circular pipe. The material of the pipe (tube) is not particularly limited, and examples thereof include polytetrafluoroethylene (Teflon (R)), fluororesin, lined metal, non-lined metal, ceramics, etc.
Polytetrafluoroethylene (Teflon (R)) is particularly preferable from the viewpoint of detergency. The sample liquid intake pump 4 is an auxiliary pump, and can be omitted when the sample liquid is taken in from the line under pressure. Further, the sample solution filtration filter 5 can be omitted when the number of particles having a minimum diameter or more counted by the particle counter in the sample solution is small.

【0023】1.5 封鎖する手段 本発明において封鎖とは、エンドトキシンを含む検体液
を測定セルを含む測定回路内に封鎖することであり、測
定回路の入口と出口を封鎖し、測定回路を形成させ、エ
ンドトキシンを含む検体液を測定回路内で循環できるよ
うにするものであり、封鎖手段としては、測定回路の入
口と出口を封鎖できれば如何なる構造のものであっても
よいが、仕切弁(ゲートバルブ)、球形弁(グローブバ
ルブ)、コック(プラグバルブ)、ボールバルブ等が挙
げられる。洗浄液を注入する弁9とリムルス試薬を注入
する弁12は、チェックバルブまたは注射針などの細管
による穿孔を、細管を抜去すれば自己閉鎖する能力を持
つ仕切りにすることができる。具体的には、図3におい
て、V1、V3、V4等のバルブ、または、開閉可能な
仕切りを閉じた状態にしておけばよい。V3の替わりに
リスムス試薬注入器10を設けた場合は、リスムス試薬
注入器が閉の状態にしておけばよい。
1.5 Means for Blocking In the present invention, the term “blocking” means blocking a sample liquid containing endotoxin in a measurement circuit containing a measurement cell, and blocking the inlet and outlet of the measurement circuit to form the measurement circuit. The sample liquid containing endotoxin can be circulated in the measurement circuit, and the sealing means may have any structure as long as it can block the inlet and the outlet of the measurement circuit. Valve), spherical valve (globe valve), cock (plug valve), ball valve and the like. The valve 9 for injecting the washing liquid and the valve 12 for injecting the Limulus reagent can be used as a partition having the ability to self-close a perforation by a check valve or a thin tube such as an injection needle by removing the thin tube. Specifically, in FIG. 3, valves such as V1, V3, and V4 or partitions that can be opened and closed may be closed. When the Lithmus reagent injector 10 is provided instead of V3, the Lithmus reagent injector may be closed.

【0024】2. 取込み封鎖された検体液を測定回路
内で循環させる手段 本発明において、取込み封鎖された検体液を測定回路内
で循環させる手段としては、ポンプ(図3の17、図4
の17)を使用する。
2. Means for Circulating the Incorporated and Blocked Sample Liquid in the Measurement Circuit In the present invention, a means for circulating the captured and blocked sample liquid in the measurement circuit is a pump (17 in FIG. 3, FIG. 4).
17) is used.

【0025】3. 循環する検体液に所定量のリムルス
試薬を注入して両液を混合させる手段 本発明において、循環する検体液に所定量のリムルス試
薬を注入して両液を混合し混合液をつくる手段として
は、ポンプを使用するが、上記の2.に記載したポンプ
を兼用してもよい。ポンプは洗浄し易いダイヤフラムポ
ンプの使用が好ましい。なお、測定回路内に、両液の混
合を良くするために、ミキサー18をオプションとして
設置してもよい。ミキサー18としては、各種スタティ
クミキサー、繊維集合体等がある。リムルス試薬を注入
する手段は、リムルス試薬を注入できる形態であれば、
いかなる形態であってもよいが、例えば、マイクロポン
プ(吐出口のチェックバルブが弁12を兼ねても良
い)、又はマイクロモーターで位置制御可能な注入針付
きマイクロシリンジ(リムルス試薬注入器10と呼ぶこ
ともある)等が挙げられる。リムルス試薬注入器10を
用いる場合は、開閉バルブ12の位置に開閉バルブに替
えて注射針などの細管による穿孔を、細管を抜去すれば
自己閉鎖する能力を持つ仕切りにする。この場合、リム
ルス試薬注入パイプ11は、使用しなくてもよい。
3. Means for injecting a predetermined amount of Limulus reagent into the circulating sample liquid to mix both liquids In the present invention, as a means for injecting a predetermined amount of Limulus reagent into the circulating sample liquid and mixing both liquids to form a mixed liquid , A pump is used, but the above 2. The pump described in 1 may also be used. It is preferable to use a diaphragm pump that is easy to clean. The mixer 18 may be optionally installed in the measurement circuit in order to improve the mixing of the two liquids. As the mixer 18, there are various static mixers, fiber aggregates and the like. The means for injecting the Limulus reagent is a form in which the Limulus reagent can be injected,
Although it may be in any form, for example, a micropump (the check valve at the discharge port may also serve as the valve 12) or a microsyringe with an injection needle whose position can be controlled by a micromotor (referred to as a Limulus reagent injector 10) In some cases) etc. When the Limulus reagent injector 10 is used, the opening / closing valve 12 is replaced with an opening / closing valve to form a perforation by a thin tube such as an injection needle, and a partition having the ability to self-close when the thin tube is removed. In this case, the Limulus reagent injection pipe 11 may not be used.

【0026】4. 微粒子計数手段 本発明において、微粒子計数手段とは、測定回路に導入
された混合液中に発生する濁度の原因となる微粒子の計
数値の経時変化を連続的に測定し、その測定値を処理し
て検体中のエンドトキシン濃度を算定する手段であり、
光源(図4の13、図5の13)と、光検出器(図4の
14、図5の14)と、光検出器の出力を演算し、表
示、記録する電子回路と、測定セルから構成される。か
かる微粒子計数手段に使用できる微粒子計数計の一例と
しては、日本特許第3151036号に記載されている
下記の手段が挙げられる。すなわち、微粒子計数手段は
コヒーレント光源13と、このコヒーレント光源からの
光を集光する光学系と、この光学系で集光された光束の
焦点の近傍に配置され且つ内部を微粒子を含む流体の流
れが通過する測定セル16と、光束の光路上で且つ測定
セル16に対して光束の光源とは反対側に配置された光
検出器14と、この光検出器14からの電気信号から流
体中の微粒子の個数を計測する電気回路23とによって
構成することができる。コヒーレント光源からの光束の
集光はレンズで行うことができる。
4. Fine particle counting means In the present invention, the fine particle counting means is a continuous measurement of the time-dependent change in the count value of fine particles that causes turbidity generated in the mixed solution introduced into the measurement circuit, and the measured value is processed. Is a means for calculating the endotoxin concentration in the sample,
From the light source (13 in FIG. 4, 13 in FIG. 5), the photodetector (14 in FIG. 4, 14 in FIG. 5), the electronic circuit that calculates, displays, and records the output of the photodetector, and the measurement cell. Composed. An example of a particle counter that can be used for such particle counting means is the following means described in Japanese Patent No. 3151036. That is, the particle counting means is arranged near the coherent light source 13, an optical system that collects the light from the coherent light source, and the focal point of the light beam collected by this optical system, and the flow of the fluid that contains particles inside. Is passed through the measurement cell 16, a photodetector 14 arranged on the optical path of the light flux and on the side opposite to the light source of the light flux with respect to the measurement cell 16, and an electrical signal from the photodetector 14 determines that the And an electric circuit 23 for measuring the number of fine particles. A light beam from the coherent light source can be collected by a lens.

【0027】測定セルはガラス等の任意の材料で作るこ
とができるが、光束が通過する部分は透明でなければな
らない。コヒーレント光源としては半導体レーザを用い
ることができ、光検出器はフォトダイオードにすること
ができる。コヒーレント光源はレーザ発振器とコリメー
タレンズとで構成することができる。レーザー発振器と
しては任意のものを用いることができるが、発振波長が
短ければ短いほど検出感度は向上する。検出方法の特徴
は光源に発振出力の小さいレーザー発振器、例えば半導
体レーザーを用いることができる点にある。出力が1m
W以下、具体的には0.2mWの半導体レーザーでも測
定が可能である。
The measuring cell can be made of any material such as glass, but the part through which the light flux passes must be transparent. A semiconductor laser can be used as the coherent light source, and the photodetector can be a photodiode. The coherent light source can be composed of a laser oscillator and a collimator lens. Any laser oscillator can be used, but the shorter the oscillation wavelength, the higher the detection sensitivity. A feature of the detection method is that a laser oscillator having a small oscillation output, for example, a semiconductor laser can be used as a light source. Output is 1m
It is possible to measure even with a semiconductor laser of W or less, specifically 0.2 mW.

【0028】集光系と光学レンズ の焦点距離は検出し
たい微粒子の大きさによって選択する。例えば粒径が
0.2μmの微粒子を検出する場合にはf=10mmの
焦点距離のレンズを用いることができる。測定セルは、
少なくとも集束光の受光面および透過面を透明にする必
要がある。この測定セルは迷光を心配する必要がないの
で、単純な構造にすることができるが、微粒子を含んだ
被検流体の流れに乱流が発生しないようにする手段、例
えば層流板を光学セル内に設けておくのが好ましい。実
際の装置では、レーザーから出て集束された集束光が測
定セルの所定の位置、例えば測定セルの中心に集光され
るように光学レンズを配置するための位置調節手段を設
けるのが好ましい。
The focal lengths of the focusing system and the optical lens are selected according to the size of the fine particles to be detected. For example, when detecting fine particles having a particle diameter of 0.2 μm, a lens having a focal length of f = 10 mm can be used. The measuring cell is
It is necessary to make at least the light receiving surface and the transmitting surface of the focused light transparent. Since this measuring cell does not need to worry about stray light, it can have a simple structure, but means for preventing turbulence from occurring in the flow of the test fluid containing fine particles, for example, a laminar flow plate as an optical cell. It is preferable to provide it inside. In an actual device, it is preferable to provide position adjusting means for arranging the optical lens so that the focused light emitted from the laser is focused at a predetermined position of the measurement cell, for example, the center of the measurement cell.

【0029】光検出器14の役目は透過光に隠れている
回折像を検出することにあるので、感度はそれほど必要
としない。原理的には単一のフォトダイオードを用いる
ことができるが、フォトダイオードアレイを用いるのが
好ましい。このフォトダイオードアレイは被検出粒子を
含む流れの方向に対しては垂直に配置し且つ光軸に対し
ても垂直に配置するのが好ましい。上記の微粒子計数手
段を用いて、コヒーレント光源からの光束を集光し、微
粒子を含む流体の流れを集束された光束の焦点の近くを
通過させ、流体中の微粒子によって回折された回折光を
微粒子を含む流体の流れに対して光束の光源とは反対側
の光束の光路上に配置した光検出器によって検出して電
気信号に変換し、この電気信号から流体中の微粒子の個
数を計測することにより最小直径が0.5μm以下の微
粒子の検出(測定)を行うことができる。
Since the function of the photodetector 14 is to detect the diffraction image hidden in the transmitted light, the sensitivity is not so required. A single photodiode can be used in principle, but it is preferable to use a photodiode array. This photodiode array is preferably arranged perpendicular to the direction of the flow containing the particles to be detected and also perpendicular to the optical axis. Using the above-mentioned particle counting means, the light flux from the coherent light source is condensed, the flow of the fluid containing the fine particles is passed near the focus of the focused light flux, and the diffracted light diffracted by the fine particles in the fluid is converted into fine particles. A photodetector placed on the optical path of the light flux on the side opposite to the light source of the light flux with respect to the fluid flow containing Thus, it is possible to detect (measure) fine particles having a minimum diameter of 0.5 μm or less.

【0030】5. 排出する手段 本発明において排出とは、エンドトキシンを含む検体液
を測定セルを含む測定回路内に取込み、取込み封鎖され
た検体液を測定回路内で循環させ、循環する検体液に所
定量のリムルス試薬を注入して両液を混合させ、混合液
の微粒子の経時変化を連続的に測定後に、該混合液を測
定回路内から排出することであり、その手段としては、
パイプ、管、ホース等の輸送手段(図3の20)と、輸
送動力源としての循環ポンプである。なお、排出パイプ
の開閉バルブは、混合液を測定回路内で循環させるとき
は、閉まった状態になっており、混合液を排出させる場
合は、開いた状態になっている。
5. Means for discharging In the present invention, discharging means that a sample liquid containing endotoxin is taken into a measuring circuit including a measuring cell, and the blocked sample liquid is circulated in the measuring circuit, and a predetermined amount of limulus reagent is circulated in the circulating sample liquid. Is injected to mix both solutions, and after continuously measuring the change with time of the fine particles of the mixed solution, the mixed solution is discharged from the measurement circuit.
A transport means such as a pipe, a pipe and a hose (20 in FIG. 3) and a circulation pump as a transport power source. The open / close valve of the discharge pipe is in a closed state when the mixed liquid is circulated in the measurement circuit, and is in an open state when the mixed liquid is discharged.

【0031】輸送手段の構造は、検体液を輸送できる構
造であれば如何なる構造であってもよいが、円形のパイ
プ(管)で構成されていることが好ましい。パイプ
(管)の材質については、特に限定されない。軟質チュ
ーブ(シリコーンゴム、軟質PVC)の使用も可能であ
る。
The structure of the transportation means may be any structure as long as it can transport the sample liquid, but it is preferable that it is constituted by a circular pipe. The material of the pipe (pipe) is not particularly limited. It is also possible to use a soft tube (silicone rubber, soft PVC).

【0032】6. 濾過手段 本発明において、濾過手段とは、エンドトキシンを含む
検体液を測定回路内に取込む前に、微粒子計数手段が計
数する最小径以上の粒子を予め除去できる手段(図2の
5、図4の5)であり、検体液中の活性成分を吸着し難
いセラミック製マイクロフィルター、弗素樹脂製マイク
ロフィルター等が特に好ましい。なお、マイクロフィル
ターの後に気泡を除去する脱気手段(図示せず)を設け
ることが好ましい。この項における手段の説明は、請求
項2に対応するものである。
6. Filtration Means In the present invention, the filtration means is means for removing particles having a minimum diameter or more counted by the fine particle counting means in advance before the sample liquid containing endotoxin is taken into the measurement circuit (5 in FIG. 2, FIG. 4). 5), and a ceramic microfilter, a fluororesin microfilter, or the like, which does not easily adsorb the active ingredient in the sample liquid, is particularly preferable. In addition, it is preferable to provide a deaeration means (not shown) for removing bubbles after the microfilter. The description of the means in this section corresponds to claim 2.

【0033】7. 複数測定系の自動切換え連続測定手
段 本発明において、複数測定系の自動切換え連続測定手段
とは、請求項4の「複数の測定系を検体液の流路に並列
に切換え可能に結合して、順繰りに自動切換えて連続測
定する手段」であり、2つのケースがあり、請求項5の
「複数の測定系は、単一の光源とそれに対応する光検出
器を固定した回転軸を中心軸とする同心円周上に配置し
た複数の測定セルとからなる」ケースと、請求項6の
「複数の測定系は、複数の測定セルに対して併進往復す
る単一の光源とそれに対応する光検出器とからなる」ケ
ースがある。請求項5のケースは、下記の7.1に、請
求項6のケースは、下記の7.2に更に詳細に説明す
る。
7. Automatic switching continuous measuring means for a plurality of measurement systems In the present invention, the automatic switching continuous measuring means for a plurality of measurement systems is defined in claim 4 as "a plurality of measurement systems are switchably coupled in parallel to a sample liquid flow path, There are two cases of "means for automatically switching sequentially and continuously measuring", and the "plurality of measurement systems has a single light source and a corresponding rotation axis on which a photodetector is fixed as a central axis. And a plurality of measuring cells arranged on a concentric circle, and a plurality of measuring systems include a single light source that reciprocates in parallel with respect to the plurality of measuring cells and a photodetector corresponding thereto. There is a case that consists of. The case of claim 5 will be described in more detail in 7.1 below, and the case of claim 6 will be described in more detail in 7.2 below.

【0034】ここにおいて、複数の測定系とは、単数の
測定系が2つ以上並列に配置されたものを意味する。単
数の測定系とは、図1の(A)に概念図を示すように、
検体液を取込み封鎖する手段1、検体液の測定手段2及
び検体液を排出し封鎖する手段3からなる1ユニットの
エンドトキシン濃度の測定装置における測定手段2であ
り、2つの測定系とは図1の(B)に示すように、1つ
(単数)の測定系が2系列あり、並列になっているもの
であり、これを更に具体的に構成したものを図4に示
す。3つの測定系とは図1の(C)に示すように、1つ
(単数)の測定系が3系列あり、並列になっているもの
である。
Here, a plurality of measuring systems means a system in which two or more single measuring systems are arranged in parallel. A singular measurement system is as shown in the conceptual diagram of FIG.
The measuring means 2 in one unit of the endotoxin concentration measuring device comprising a means 1 for taking in and sealing the sample liquid, a measuring means 2 for the sample liquid, and a means 3 for discharging and sealing the sample liquid. As shown in FIG. 4B, one (single) measurement system has two series, which are arranged in parallel. FIG. 4 shows a more specific configuration of this. As shown in FIG. 1C, the three measurement systems are one (single) measurement system in three series, which are arranged in parallel.

【0035】なお、検体液を取込み封鎖する手段1と
は、上記した各手段の結合構造であり、図2(A)に示
した結合構造であり、検体液取込みパイプ7と、濾過フ
ィルター5、洗剤液注入パイプ8と、検体液開閉バルブ
6と、洗剤液開閉バルブ9から構成される。なお、濾過
フィルター5の後に、脱気手段(図示せず)を設けても
よい。検体液の測定手段2とは、図3(A)と、図3
(B)に示した結合構造であり、測定回路15と、測定
セル16と、光源13と、検出器14と、循環ポンプ1
7と、リムルス試薬注入パイプ11と、開閉バルブ12
と、ミキサー18(オプション)から構成される。検体
液を排出し封鎖する手段3とは、図3(A)に示した、
排出パイプ20と、排出パイプの開閉バルブ19との結
合構造である。
The means 1 for taking in and sealing the sample liquid is the connecting structure of the above-mentioned means, that is, the connecting structure shown in FIG. 2A, and the sample liquid taking-in pipe 7 and the filtration filter 5, It is composed of a detergent liquid injection pipe 8, a sample liquid opening / closing valve 6, and a detergent liquid opening / closing valve 9. A deaerator (not shown) may be provided after the filtration filter 5. The measuring means 2 for the sample liquid is as shown in FIG.
It is the coupling structure shown in (B), and has a measuring circuit 15, a measuring cell 16, a light source 13, a detector 14, and a circulation pump 1.
7, Limulus reagent injection pipe 11, open / close valve 12
And a mixer 18 (optional). The means 3 for discharging and sealing the sample liquid is shown in FIG.
This is a connection structure of the discharge pipe 20 and the opening / closing valve 19 of the discharge pipe.

【0036】なお、複数の測定系の場合、検体液の取込
み手段の一部は兼用できるので、図2の(B)や(C)
のように、濾過フィルター5を含めた部分より上流は、
1つの検体液の取込みパイプ7と1つの濾過フィルター
5より構成され、これらより下流は兼用できないので、
パイプも、2本や3本に分かれている。複数の測定系に
するほど、図6に示すようにエンドトキシンの濃度測定
の間隔を短縮することが可能となる効果がある。
In the case of a plurality of measurement systems, a part of the sample liquid intake means can also be used, and therefore (B) and (C) in FIG.
As shown in, the upstream of the part including the filtration filter 5 is
It is composed of one sample liquid intake pipe 7 and one filtration filter 5, and since it cannot be used downstream from these,
The pipe is also divided into two or three. The use of a plurality of measurement systems has the effect of making it possible to shorten the interval for measuring the endotoxin concentration as shown in FIG.

【0037】7.1 単一の光源とそれに対応する光検
出器を固定した回転軸を中心軸とする同心円上に配置し
た複数の測定セル 本発明においては、原則として1つの測定系(測定セ
ル)に対して、一組の光源と光検出器を用いるが、光源
と光検出器は高価格のものであるから、複数の測定系
(測定セル)の場合に各測定系(測定セル)に一組の光
源と光検出器を付けるとコストアップとなるので、単一
の光源とそれに対応する光検出器を測定装置の特定部分
に固定し、その特定部分を複数の測定セルに対して回転
して各測定系に順次対応させて、測定セル内の微粒子の
数を測定する。コストと濃度測定装置の容積や重量を省
き、小型化し、省スペースと持ち運びを容易にし、メイ
ンテナンスの回数も減らせる効果がある。
7.1 Plural Measuring Cells Arranged on Concentric Circles with a Single Light Source and a Photodetector Corresponding to the Single Light Source Fixed as a Center of Rotation Axis In the present invention, one measuring system (measuring cell ), A set of light source and photodetector is used. However, since the light source and photodetector are expensive, in case of multiple measurement systems (measurement cells) Attaching a pair of light source and photodetector increases cost, so fix a single light source and its corresponding photodetector to a specific part of the measuring device, and rotate that specific part to multiple measuring cells. Then, the number of fine particles in the measurement cell is measured by sequentially corresponding to each measurement system. It has the effects of reducing the cost and volume and weight of the concentration measuring device, making it compact, saving space and making it easy to carry, and reducing the number of maintenances.

【0038】この項における手段の説明は、請求項5に
対応するものであり、図5(A)と(B)に基づき更に
詳細に説明する。図5(A)では、1つの測定系(測定
セル16)に対して、一組の光源13と検出器14を用
いており、この一組13+14を長方形で囲んで表現し
てある。図5(B)では、上段に4つの測定系(測定セ
ル16がと4個並べてある。)が示してあり、
中段に固定された回転移動可能な一組の光源13と光検
出器14があり、13+14を長方形で囲んで表現して
ある。複数の測定系は、単一の光源とそれに対応する光
検出器を固定した回転軸を中心軸とする同心円周上に配
置した複数の測定セルを含む測定回路とからなり、上段
の左端に固定された一つの測定系(測定セル16)
に、中段にある回転移動可能な一組の光源13と光検出
器14が移動して合体し、下段のの状態になり、微粒
子の数が測定される。ついで、上段の左から2番目の固
定された一つの測定系(測定セル16)に、中段にあ
る回転移動可能な一組の光源13と光検出器14が移動
して合体し、下段のの状態になり、微粒子の数が測定
される。順次、及びの微粒子の数が測定される。回
転軸を固定して、同心円周上に配置した複数の測定セル
を含む測定回路を回転させてもよい。
The description of the means in this section corresponds to claim 5, and will be described in more detail with reference to FIGS. 5 (A) and 5 (B). In FIG. 5A, one set of light source 13 and detector 14 is used for one measurement system (measurement cell 16), and this set of 13 + 14 is represented by being enclosed by a rectangle. In FIG. 5B, four measurement systems (four measurement cells 16 are arranged) are shown in the upper stage,
There is a set of rotatably movable light source 13 and photodetector 14 fixed in the middle stage, and 13 + 14 is shown surrounded by a rectangle. The multiple measurement systems consist of a single light source and a measurement circuit that includes multiple measurement cells arranged concentrically around a rotation axis that has a fixed photodetector and is fixed to the upper left end. One measuring system (measurement cell 16)
Then, a pair of light sources 13 and photodetectors 14 in the middle stage, which are rotatable and movable, are moved and united to be in the state of the lower stage, and the number of fine particles is measured. Then, a pair of light sources 13 and photodetectors 14 in the middle stage, which are rotatably movable, are moved and united with the second fixed measurement system (measurement cell 16) from the left in the upper stage. Then, the number of fine particles is measured. Sequentially, and the number of fine particles is measured. The rotation axis may be fixed and the measurement circuit including a plurality of measurement cells arranged on the concentric circumference may be rotated.

【0039】7.2 複数の測定セルに対して併進往復
する単一の光源とそれに対応する光検出器 本発明においては、原則として1つの測定系(測定セ
ル)に対して、一組の光源と光検出器を用いるが、光源
と光検出器は高価格のものであるから、複数の測定系
(測定セル)の場合に各測定系(測定セル)に一組の光
源と光検出器を付けるとコストアップとなるので、複数
の測定セルに対して併進往復する単一の光源とそれに対
応する光検出器を付け、コストダウンと濃度測定装置の
容積や重量を省き、小型化し、省スペースと持ち運びを
容易にし、メインテナンスの回数も減らせる効果があ
る。
7.2 A single light source that reciprocates in parallel to a plurality of measurement cells and a photodetector corresponding thereto In the present invention, in principle, one set of light sources is provided for one measurement system (measurement cell). However, in the case of multiple measurement systems (measurement cells), one set of light source and photodetector is used for each measurement system (measurement cell). Attaching a single light source that moves back and forth in parallel to multiple measurement cells and a photodetector corresponding to it will reduce the cost and reduce the volume and weight of the concentration measurement device, downsize it, and save space. It has the effect of making it easy to carry and reducing the number of maintenance.

【0040】この項における手段の説明は、請求項6に
対応するものであり、図6(A)と(B)に基づき更に
詳細に説明する。図6(A)では、1つの測定系(測定
セル16)に対して、一組の光源13と光検出器14を
用いており、この一組13+14を長方形で囲んで表現
してある。図6(B)では、上段に移動可能な一組の光
源13と光検出器14が示してあり、13+14を長方
形で囲んで表現してある。矢印で移動を示し、下段にそ
れぞれ固定されている4個所の測定系(測定セル16が
と4個並べてある。)に合体する。すなわち、
移動可能な一組の光源13と光検出器14の一組(13
+14)が、下段のの状態にある測定系(測定セル1
6)に合体し微粒子の数が測定される。次いで、移動可
能な一組の光源13と光検出器14の一組(13+1
4)が、下段のの状態にある測定系(測定セル16)
に合体し微粒子の数が測定される。さらに、および
の状態にある測定系(測定セル16)に合体し微粒子の
数が測定される。
The description of the means in this section corresponds to claim 6, and will be described in more detail with reference to FIGS. 6A and 6B. In FIG. 6 (A), one set of light source 13 and photodetector 14 is used for one measurement system (measurement cell 16), and this set of 13 + 14 is surrounded by a rectangle. In FIG. 6B, a pair of light sources 13 and photodetectors 14 that can move to the upper stage are shown, and 13 + 14 is surrounded by a rectangle. The movement is indicated by an arrow, and the measurement system is combined with four measurement systems (four measurement cells 16 are arranged side by side) which are fixed to the lower stage. That is,
One set of movable light source 13 and one set of photodetector 14 (13
+14) is the measurement system (measurement cell 1
6) and the number of fine particles is measured. Then, a pair of movable light source 13 and photodetector 14 (13 + 1
4) is the measurement system in the lower state (measurement cell 16)
And the number of fine particles is measured. Furthermore, the number of fine particles is measured by incorporating the measurement system (measurement cell 16) in the states of and.

【0041】8. エンドトキシン濃度の測定装置 本発明のエンドトキシン濃度の測定装置とは、上記した
各手段を有機的に結合した構造体である。上位概念的に
は、単数の測定系の場合、図1の(A)に概念図を示す
ように、検体液を取込み封鎖する手段1、検体液の測定
手段2及び検体液を排出し封鎖する手段3からなる1ユ
ニットのエンドトキシン濃度の測定装置である。2つの
測定系の場合は、図1の(B)に示すように、1つ(単
数)の測定系が2系列あり、並列になっている2ユニッ
トのエンドトキシン濃度の測定装置である。これを更に
具体的に構成したものを図4に示す。3つの測定系の場
合は、図1の(C)に示すように、1つ(単数)の測定
系が3系列あり、並列になっている3ユニットのエンド
トキシン濃度の測定装置である。
8. Endotoxin Concentration Measuring Device The endotoxin concentration measuring device of the present invention is a structure in which the above-mentioned means are organically combined. As a superordinate concept, in the case of a single measurement system, as shown in the conceptual diagram of FIG. 1A, a means 1 for taking in and blocking a sample solution, a measuring means 2 for a sample solution, and discharging and blocking the sample solution It is a device for measuring the endotoxin concentration of 1 unit, which is Means 3. In the case of two measurement systems, as shown in FIG. 1 (B), there is one (single) measurement system in two series, and two units are in parallel to measure the endotoxin concentration. A more specific configuration of this is shown in FIG. In the case of three measurement systems, as shown in (C) of FIG. 1, there is one (single) measurement system in three series, which is an apparatus for measuring endotoxin concentration of three units in parallel.

【0042】9. エンドトキシン濃度の測定方法 本発明において、本発明のエンドトキシン濃度の測定装
置をもちいて、下記の方法でエンドトキシンの濃度を測
定する。まず、エンドトキシンを含む検体液(注射液、
輸液、透析液などの医薬品と、その中間製品又はこれら
の原料の一部となる精製水など)が貯蔵されている貯
糟、タンク、ガラス瓶、プラスチック容器、プラスチッ
クバッグ等の貯蔵手段から、または、これらが流れてい
る供給ラインからパイプなどの取込み手段により、検体
液を測定セルを含む測定回路にポンプで輸送する。な
お、圧送されている供給ラインからの場合は、ポンプは
省略できる。この場合、測定回路内に取込む前に、前記
パイプの一部に設けられている濾過器で、微粒子計数手
段が計数する最小径以上の粒子を除去する。次いで、測
定回路内に検体液を入れたのち、測定回路の入口と入口
のバルブを閉じて測定回路を閉回路とする。
9. Method of Measuring Endotoxin Concentration In the present invention, the endotoxin concentration is measured by the following method using the endotoxin concentration measuring device of the present invention. First, a sample liquid containing endotoxin (injection liquid,
Medicines such as infusions and dialysates, and intermediate products or purified water that is a part of these raw materials) are stored in storage tanks, tanks, glass bottles, plastic containers, storage means such as plastic bags, or A sample liquid is pumped from a supply line through which these are flowing to a measuring circuit including a measuring cell by a means such as a pipe. The pump can be omitted when the pressure is fed from the supply line. In this case, before being taken into the measuring circuit, a filter provided in a part of the pipe removes particles having a minimum diameter or more counted by the particle counting means. Then, after the sample liquid is put into the measurement circuit, the inlet of the measurement circuit and the valve at the inlet are closed to close the measurement circuit.

【0043】次いで、測定回路内の検体液を循環させ
る。リムルス試薬注入パイプのバルブを開き、測定回路
内の循環している検体液に所定量のリムルス試薬を注入
し、検体液とリムルス試薬を循環させ両者の混合液をつ
くり、ゲル化反応の過程で発生する微粒子の経時変化を
連続的に測定する微粒子計数手段で測定してエンドトキ
シンの濃度を算定する。測定の終了後、混合液を測定回
路内から排出する。そのためには、取入れバルブ6と排
出パイプのバルブ19を開き、新たに取入れる検体液で
測定回路内の測定すみ混合液を排出パイプから廃棄す
る。この場合、測定回路内を洗浄するために、洗浄液パ
イプのバルブ9を開き、洗浄液を測定回路内に導入し、
内部を洗浄し、または、一定時間循環・滞留させた後、
測定回路内の混合液を洗浄液と共に流出させ廃棄しても
よい。
Then, the sample liquid in the measuring circuit is circulated. Open the valve of the Limulus reagent injection pipe, inject a predetermined amount of Limulus reagent into the circulating sample liquid in the measurement circuit, circulate the sample liquid and Limulus reagent to make a mixed solution of both, and in the process of gelation reaction The concentration of endotoxin is calculated by measuring with a particle counting means for continuously measuring the time-dependent change of the generated particles. After the measurement is completed, the mixed solution is discharged from the measuring circuit. For that purpose, the intake valve 6 and the valve 19 of the discharge pipe are opened, and the sample solution to be measured in the measuring circuit is discarded from the discharge pipe with the sample liquid to be newly introduced. In this case, in order to clean the inside of the measurement circuit, the valve 9 of the cleaning liquid pipe is opened and the cleaning liquid is introduced into the measurement circuit,
After cleaning the inside, or circulating and retaining for a certain time,
The mixed solution in the measurement circuit may be discharged together with the cleaning solution and discarded.

【0044】10. 検体液中のエンドトキシン濃度が
低レベルの場合の測定方法 通常は、検体液量とリムルス試薬量は1:1の比率で両
液を混合して得られる0.1〜0.2mlの混合液の濁
度を静止状態で測定してエンドトキシンの濃度測定を行
う。しかしながら、濁りの原因である微粒子の数(から
演算して濃度)を微粒子計数計で測定するためには、混
合液を光束を横切って流動させることが必要条件であ
る。しかし、通常の混合液体0.1〜0.2mlでは、
循環であっても、そのための余分の容積が必要になって
流動させることが非常に困難である。混合液をふやそう
としても、リムルス試薬は非常に高価格のものであるか
ら、検体液量に対して使用量を等量で増やすことは経済
的な負担増が非常に大きくなり、微粒子計数計で測定す
る場合の大きい障害になる。通常量の検体液と混合させ
たリムルス試薬の大部分は、検体液のエンドトキシン濃
度が低い場合はエンドトキシンと反応しないで残ると考
えられる。したがって試薬量に対して10倍量〜100
0倍量の検体液を混合しても、検体液中のエンドトキシ
ンがリムルス試薬と反応する量は等量混合の場合と殆ど
変わらないと考えられる。即ち、本発明では、エンドト
キシンの濃度が低い検体液を対象として測定するので、
検体液量をリムルス試薬量に対して10倍量〜1000
倍量とした後、両液を混合して得られる混合液を使用す
ることによってしてゲル化反応の過程で発生する微粒子
を測定することが、始めて可能となった。この項におけ
る方法の説明は、請求項7に対応するものである。
10. Measuring method when the endotoxin concentration in the sample solution is low level Usually, the sample solution amount and the Limulus reagent amount are 0.1: 1 of a mixed solution of 0.1 to 0.2 ml obtained by mixing both solutions at a ratio of 1: 1. Endotoxin concentration is measured by measuring the turbidity at rest. However, in order to measure the number of fine particles (concentration calculated from them) that is the cause of turbidity with a fine particle counter, it is a necessary condition to flow the mixed solution across the light flux. However, with a normal mixed liquid of 0.1 to 0.2 ml,
Even in the case of circulation, it is very difficult to make it flow because it requires an extra volume for it. Even if you try to sprinkle the mixed solution, the Limulus reagent is very expensive, so increasing the amount used to the amount of the sample liquid will result in a significant economic burden, and the particle counting It becomes a big obstacle when measuring with a meter. It is considered that most of the Limulus reagent mixed with the normal amount of the sample solution remains without reacting with the endotoxin when the endotoxin concentration of the sample solution is low. Therefore, 10 times to 100 times the amount of reagent
It is considered that even if 0 times the amount of the sample solution is mixed, the amount of the endotoxin in the sample solution that reacts with the Limulus reagent is almost the same as in the case of mixing the same amount. That is, in the present invention, since the measurement is performed on a sample liquid having a low endotoxin concentration,
The amount of sample liquid is 10 times the amount of Limulus reagent to 1000
For the first time, it was possible to measure fine particles generated during the gelation reaction by using a mixed solution obtained by mixing both solutions after doubling the amount. The description of the method in this section corresponds to claim 7.

【0045】11. 並列の測定セルが3系列の場合の
自動切替えダイアグラム 図1(C)に示すように、測定セルが3系列の場合に
は、第1系列、第2系列、及び第3系列が一定の時間の
間隔をおいて、順次、微粒子の測定を行い、次いで各系
列の洗浄液による洗浄を一定の時間の間隔をおいて、順
次行う。洗浄が終われば、また順次微粒子の測定を行
う。並列の測定セルが3系列の場合の自動切替えダイア
グラムを図9に示した。なお、本発明において、洗浄液
は糖脂質と蛋白を溶解するものであって、微量が残留し
た場合でも、検体液、エンドトキシン、リムルス試薬な
どに悪影響を及ぼさず、エンドトキシンとリムルス試薬
との反応を促進したり阻害しないものであれば、いかな
るタイプのものであってもよく、塩酸水溶液や界面活性
剤から選択することができる。
11. Automatic switching diagram when parallel measurement cells are 3 series As shown in FIG. 1C, when the measurement cells are 3 series, the first series, the second series, and the third series have constant time intervals. Fine particles are sequentially measured at intervals, and then cleaning with each series of cleaning solutions is sequentially performed at regular intervals. When the washing is completed, the fine particles are measured again. FIG. 9 shows an automatic switching diagram in the case where three parallel measurement cells are used. In the present invention, the washing solution dissolves glycolipids and proteins, and even if a trace amount remains, it does not adversely affect the sample solution, endotoxin, limulus reagent, etc., and promotes the reaction between endotoxin and limulus reagent. Any type may be used as long as it does not inhibit or inhibit, and it can be selected from an aqueous hydrochloric acid solution and a surfactant.

【0046】12. 特に好ましい実施の形態 エンドトキシンとリムルス試薬が反応して発生する濁度
を測定する比濁法において、エンドトキシン濃度が低い
検体液の測定法として、予め設定した濁度に到達する時
間を測定する比濁反応時間法、または、濁度の経時変化
率を測定する比濁反応速度法がよく用いられる(竹沢真
吾編、透析液エンドトキシンがよくわかる本、37〜3
8頁(1995)、東京医学社)。
12. Particularly preferred embodiment In the turbidimetric method for measuring the turbidity generated by the reaction between endotoxin and Limulus reagent, the turbidimetric method for measuring the time to reach a preset turbidity is used as a method for measuring a sample solution having a low endotoxin concentration. The reaction time method or the turbidimetric reaction rate method for measuring the rate of change of turbidity with time is often used (Takezawa Shingo, ed.
Page 8 (1995), Tokyo Medical Co., Ltd.).

【0047】エンドトキシンの濃度が低い場合は、予め
設定した濁度に到達する時間の対数がエンドトキシン濃
度の対数または2回対数に反比例して長くなるため、設
定濁度を測定可能な最低値に設定して測定時間を最短に
することがモニターに要求される。従って、より低い濁
度で測定することが重要である。そこで、高感度測定法
として、濁度計に替えて微粒子計数計を使用することが
考えられる。
When the concentration of endotoxin is low, the logarithm of the time to reach the preset turbidity increases in inverse proportion to the logarithm of the endotoxin concentration or the logarithm of twice, so the set turbidity is set to the lowest measurable value. Therefore, the monitor is required to minimize the measurement time. Therefore, it is important to measure at lower turbidity. Therefore, it is conceivable to use a fine particle counter instead of the turbidimeter as a highly sensitive measuring method.

【0048】しかし、微粒子計数計の光束は細く、その
中に微粒子を捕捉する(=計数する)のは確率的な現象
になるので、統計的に信頼できる計数(数十個以上)ま
で対象液を走査し(光束を固定して液を横断的に流
し)、光束を横切った容積(横断流量×時間)で除して
濃度を求める。即ち、微粒子の濃度が低くなると測定す
る容積を逆比例して大きくすることが必要になって、測
定時間が一層長くなる。更に、濁度計の測定対象が限ら
れた空間に保持されるのに対して、微粒子計数計の測定
対象は光束を横切って流動させることが必須条件なの
で、測定対象である検体とリムルス試薬を混合した反応
液の容積が0.2〜0.1cmと少量のため、反応液
を測定セルに閉鎖系で循環させるとしても容易ではな
い。
However, since the light flux of the fine particle counter is thin and trapping (= counting) fine particles in it is a stochastic phenomenon, the target liquid can be counted up to a statistically reliable count (several tens or more). Is scanned (the light flux is fixed and the liquid is made to flow transversely), and the concentration is obtained by dividing the light flux by the volume (transverse flow rate × time) across the light flux. That is, when the concentration of the fine particles becomes low, it is necessary to increase the volume to be measured in inverse proportion, and the measurement time becomes longer. Furthermore, the measurement target of the turbidimeter is held in a limited space, whereas the measurement target of the particle counter is required to flow across the light flux, so the sample to be measured and the Limulus reagent are Since the volume of the mixed reaction solution is as small as 0.2 to 0.1 cm 3 , it is not easy to circulate the reaction solution in the measurement cell in a closed system.

【0049】[実施態様1]複数の装置を検体の流路に
並列に切換え可能に結合して、順繰りに自動切換えて連
続測定する方式の基本的な例として、2組の装置(1組
の光源と受光器を共用することは可能)を対象液の流路
に並列に切換え可能に結合して、順繰りに自動切換えて
連続測定する実施態様を図5に示す。並列の装置が3系
列の場合の自動切換え操作ダイアグラムの例を図9に示
す。
[Embodiment 1] As a basic example of a system in which a plurality of devices are switchably connected in parallel to a flow path of a sample and automatically switched in sequence to perform continuous measurement, two sets of devices (one set of FIG. 5 shows an embodiment in which a light source and a light receiver can be shared) is connected to the flow path of the target liquid in parallel in a switchable manner, and is automatically switched in sequence to perform continuous measurement. FIG. 9 shows an example of an automatic switching operation diagram when the parallel devices are three series.

【0050】[実施態様2]測定する反応液の量は、通
常使用する試薬の量と等量の検体を混合して調製するの
で、0.1〜0.2cmと少量である。このため測定
セルの内容積を0.1cm以下にすることが必要にな
る。しかし、リムルス試薬は、濃度10EU/L桁以
上のエンドトキシンに対応できる量の活性成分を、通常
の使用量0.1〜0.05cm中に含有している筈で
ある。従って、10EU/L桁のレベルの検体の場合
は、通常量の検体液と混合させたリムルス試薬の大部分
はエンドトキシンと反応しないで残ると考えられる。試
薬量に対して10倍量〜1000倍量の検体液を混合し
ても、検体液中のエンドトキシンがリムルス試薬と反応
する量は等量混合の場合と殆ど変わらないと考えられ
る。本発明では、エンドトキシンの濃度が低い検体液を
対象として測定するので、検体液量をリムルス試薬量に
対して10倍量〜1000倍量とした後、両液を混合し
て得られる混合液を使用してゲル化反応の過程で発生す
る微粒子を測定することが、始めて可能となった。即
ち、混合液量は1〜20cmになり、混合液を測定セ
ルに循環することが混合液量が0.1〜0.2cm
場合に比較して格段に容易にできる。
[Embodiment 2] The amount of the reaction solution to be measured is as small as 0.1 to 0.2 cm 3 because it is prepared by mixing the same amount of the sample as the amount of the reagent usually used. Therefore, it is necessary to set the internal volume of the measuring cell to 0.1 cm 3 or less. However, the Limulus reagent should contain an active ingredient in an amount of 0.1 to 0.05 cm 3 which is usually used, in an amount capable of coping with endotoxin having a concentration of 10 3 EU / L or more. Therefore, in the case of the 10 1 EU / L digit level sample, it is considered that most of the Limulus reagent mixed with the normal amount of the sample solution remains without reacting with endotoxin. Even if 10 times to 1000 times the amount of the sample liquid is mixed with respect to the amount of the reagent, the amount of the endotoxin in the sample liquid that reacts with the Limulus reagent is considered to be almost the same as in the case of mixing the same amount. In the present invention, since a sample liquid having a low endotoxin concentration is measured, the amount of the sample liquid is adjusted to 10 times to 1000 times the amount of Limulus reagent, and then a mixed liquid obtained by mixing both liquids is used. For the first time, it has become possible to measure the fine particles generated during the gelation reaction. That is, the amount of the mixed liquid is 1 to 20 cm 3 , and it is much easier to circulate the mixed liquid in the measurement cell as compared with the case where the amount of the mixed liquid is 0.1 to 0.2 cm 3 .

【0051】[実施態様3]濁度計が測定する微粒子の
寸法を小さくすることで感度を高くすることが期待され
る。エンドトキシンとリムルス試薬が反応して濁りの原
因である微少な凝固体(微粒子)を発生し、会合して最
終的にゲル化する過程で微粒子数は寸法の約三乗に逆比
例して減少する。従って、測定する微粒子の寸法を小さ
く設定することは、光束を細く絞ることによって測定す
る混合液の容積は減少するが、それ以上に光束を横切る
微粒子の頻度が高くなり、結局、測定時間は微粒子数の
寸法に略々逆比例して短くなる。また、検出寸法を小さ
く設定できることはエンドトキシンとリムルス試薬のゲ
ル化反応の過程の早い時期に測定できることになり、測
定時間の短縮に貢献することになる。
[Embodiment 3] It is expected that the sensitivity is increased by reducing the size of fine particles measured by a turbidimeter. The number of microparticles decreases in inverse proportion to the cube of the size during the process where endotoxin reacts with Limulus reagent to generate minute coagulation bodies (microparticles) that cause turbidity and associate with each other to finally gelate. . Therefore, if the size of the fine particles to be measured is set small, the volume of the mixed solution to be measured is reduced by narrowing the light beam, but the frequency of the fine particles crossing the light beam becomes higher, and the measurement time is Shortening is almost inversely proportional to the size of the number. Also, the fact that the detection size can be set small enables measurement at an early stage of the gelation reaction of endotoxin and Limulus reagent, which contributes to reduction in measurement time.

【0052】エンドトキシン濃度が1[EU/L]と極
低い検体液の凝固体微粒子濃度(計数的濃度)を推定す
ると、エンドトキシンの重量濃度は0.2[ng/L]
(E.coli 0113:H10由来の場合、既出
「透析液ETのよくわかる本」ページ29)になり、透
析液中のエンドトキシンは会合した状態で分子量が約1
[g/mol]程度なので、1.2x10[個/
L]程度の個数濃度になる。他方、分子量が約10
両親媒性会合体の直径は約(1〜2)×10−2[μ
m]と推定され、これらがリムルス試薬との反応で発生
した凝固体が段々集合して、微粒子計数計の下限寸法、
例えば、直径0.1→0.5→0.1[μm]に成長す
ると、最初の未反応ETの微粒子としての濃度約1.2
×10[個/L]は直径比の3乗に逆比例して減少
し、微粒子計数計の検出下限、例えば、0.1[μm]
で10〜10個/mL、0.5[μm]で10
10個/mL、1[μm]で10−2〜10−1個/
mLになる。
The weight concentration of endotoxin was 0.2 [ng / L] when the concentration of coagulant fine particles (counting concentration) in the sample liquid having an extremely low endotoxin concentration of 1 [EU / L] was estimated.
(If it is derived from E. coli 0113: H10, it will be the already-explained “Dialysate ET well-known book” page 29), and endotoxin in the dialysate has a molecular weight of about 1 in an associated state.
Since it is about 0 6 [g / mol], 1.2 × 10 8 [pieces /
The number density is about L]. On the other hand, the diameter of the amphipathic aggregate having a molecular weight of about 10 6 is about (1-2) × 10 −2
m], the solidified bodies generated by the reaction with the Limulus reagent are gradually aggregated, and the lower limit of the particle counter,
For example, when the diameter grows from 0.1 to 0.5 to 0.1 [μm], the concentration of the first unreacted ET as fine particles is about 1.2.
× 10 8 [pieces / L] decreases in inverse proportion to the cube of the diameter ratio, and the lower limit of detection of the particle counter, for example, 0.1 [μm]
At 10 2 to 10 3 cells / mL, at 0.5 [μm] 10 0 to
10 1 / mL, 10 −2 to 10 −1 / [μm]
Becomes mL.

【0053】この凝固体濃度を微粒子計数器で測定しよ
うとする場合、透析液中に存在する気泡(予め脱気して
除去する)や塵などの微粒子(予め濾過して除去する)
の除去しきれなかったものがノイズとして妨害するた
め、エンドトキシン由来の微粒子の計数がノイズ数のレ
ベルまで低下した状態で測定することは測定値の信頼度
を失う。従って、検体のエンドトキシン濃度が低い程、
凝固体微粒子径が小さい段階で測定することが必要であ
る。エンドトキシン濃度が1EU/Lの場合は、0.5
μmまで成長した段階で10個/mL以下になると推
算され、検体によってはノイズに埋没する場合もあるた
め、少なくとも0.5μm程度以下、好ましくは0.2
〜0.1μm程度で計数することが微粒子計数型濁度計
でエンドトキシン濃度を測定する必須条件になる。この
条件は、エンドトキシンとリムルス試薬の反応の早い段
階で測定することによって測定時間を短縮する目的にも
一致する。
When it is attempted to measure the concentration of the coagulated substance with a fine particle counter, fine particles such as air bubbles (preliminarily degassed and removed) and dust existing in the dialysate (preliminarily filtered and removed).
Those that cannot be completely removed interfere with noise, so that measurement with the count of microparticles derived from endotoxin lowered to the level of the noise number loses the reliability of the measured value. Therefore, the lower the endotoxin concentration of the sample,
It is necessary to measure at the stage where the diameter of the coagulated body particles is small. 0.5 when the endotoxin concentration is 1 EU / L
It is estimated that it will be 10 1 / mL or less at the stage of growth up to μm, and it may be buried in noise depending on the sample, so it is at least about 0.5 μm or less, preferably 0.2 μm or less.
Counting at about 0.1 μm is an essential condition for measuring the endotoxin concentration with a fine particle counting turbidimeter. This condition also matches the purpose of shortening the measurement time by measuring at an early stage of the reaction of endotoxin and Limulus reagent.

【0054】[0054]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例によって限定さ
れるものではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by these examples.

【0055】[実施例1]検体液取込みパイプ7、開閉
バルブ6、洗剤液注入パイプ8(図省略)、開閉バルブ
9(図省略)、濾過フィルター5(図省略)、脱気装置
(図省略)、リムルス試薬注入パイプ11、開閉バルブ
12、測定回路15、測定セル16、循環ポンプ17、
スタティックミキサー18(図省略)、開閉バルブ1
9、排出パイプ20、恒温槽21(図省略)及び移動可
能な光源13と光検出器14の結合体からなる1系列の
エンドトキシン濃度測定装置が、並列に3系列が並び設
置されたエンドトキシン濃度測定装置を作成した。これ
を図7に示す。
[Example 1] Sample liquid intake pipe 7, opening / closing valve 6, detergent liquid injection pipe 8 (not shown), opening / closing valve 9 (not shown), filtration filter 5 (not shown), deaeration device (not shown) ), Limulus reagent injection pipe 11, opening / closing valve 12, measuring circuit 15, measuring cell 16, circulation pump 17,
Static mixer 18 (not shown), open / close valve 1
9, a series of endotoxin concentration measuring devices consisting of a combination of a discharge pipe 20, a thermostat 21 (not shown), a movable light source 13 and a photodetector 14, and 3 series of endotoxin concentration measuring devices arranged in parallel. Created the device. This is shown in FIG.

【0056】[実施例2]実施例1において、リムルス
試薬注入パイプ11及び開閉バルブ12に替えて、マイ
クロモーターで位置制御可能な注入針付きマイクロシリ
ンジ(リムルス試薬注入器10)を採用した以外は、実
施例1の装置と同様な構造のエンドトキシン濃度測定装
置を作成した。
[Embodiment 2] In Embodiment 1, the limulus reagent injection pipe 11 and the on-off valve 12 were replaced with a microsyringe (limulus reagent injector 10) with an injection needle whose position can be controlled by a micromotor. An endotoxin concentration measuring device having the same structure as the device of Example 1 was prepared.

【0057】[0057]

【発明の効果】本発明の装置によれば、注射液、輸液、
透析液などの医薬品と、その中間製品、精製水などの検
体液の貯蔵タンク又は供給ラインから、検体液の一部を
パイプで取込みエンドトキシンの濃度を連続的にモニタ
ーすることができ、かつエンドトキシンの濃度が50E
U/L以下の低濃度液、特に10〜<1EU/Lレベル
の極低濃度液であってもモニターでき、しかもエンドト
キシンの濃度を短時間にモニターできる効果がある。
According to the device of the present invention, an injection solution, an infusion solution,
From the storage tank or supply line of the drug such as dialysate and its intermediate product, the sample liquid such as purified water, a part of the sample liquid can be taken in with a pipe and the concentration of endotoxin can be continuously monitored. Concentration is 50E
Even a low-concentration liquid of U / L or less, particularly an extremely low-concentration liquid of 10 to <1 EU / L level can be monitored, and the endotoxin concentration can be monitored in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】装置の構成を示す概念図である。図(A)は、
検体液を取込み封鎖する手段と、検体液の測定手段と、
検体液を排出し封鎖する手段が1系列の場合であり、図
(B)は、2系列の場合であり、図(C)は、3系列の
場合である。
FIG. 1 is a conceptual diagram showing a configuration of a device. Figure (A) shows
Means for capturing and sealing the sample liquid, means for measuring the sample liquid,
The means for discharging and blocking the sample liquid is one series, FIG. (B) is two series, and FIG. (C) is three series.

【図2】検体液を取込み封鎖する手段の例を示す図であ
る。図(A)は、混合液が測定回路を循環している場合
であり、図(B)は、測定回路の上部の一部は測定セル
となっていることを示す図である。
FIG. 2 is a diagram showing an example of means for taking in and sealing a sample liquid. FIG. (A) shows a case where the mixed liquid circulates in the measurement circuit, and FIG. (B) shows that a part of the upper portion of the measurement circuit is a measurement cell.

【図3】検体液の測定手段の例を示す図である。図
(A)は、1系列の場合であり、図(B)は、2系列の
場合であり、図(C)は3系列の場合である。
FIG. 3 is a diagram showing an example of means for measuring a sample liquid. The figure (A) shows the case of one series, the figure (B) shows the case of two series, and the figure (C) shows the case of three series.

【図4】複数の装置を並列に設置して、自動切換えて順
繰りに連続測定する装置の例を示す図である。
FIG. 4 is a diagram showing an example of a device in which a plurality of devices are installed in parallel and are automatically switched to successively measure in sequence.

【図5】単一の光源とそれに対応する光検出器を中心と
して回転する複数の測定セルを示す図である。
FIG. 5 shows a plurality of measuring cells rotating around a single light source and its corresponding photodetector.

【図6】複数の測定セルに対して併進往復する単一の光
源とそれに対応する検出器を示す図である。
FIG. 6 is a diagram showing a single light source that moves back and forth in parallel with respect to a plurality of measurement cells and a corresponding detector.

【図7】複数の測定系は、一列に並置した複数の測定セ
ルに対して併進往復する単一の光源とそれに対応する光
検出器とからなり、それを示す装置図である。図(A)
は鳥瞰図、図(B)は側面図、(C)は平面図である。
FIG. 7 is a device diagram showing a plurality of measurement systems, each of which is composed of a single light source that reciprocates in parallel with respect to a plurality of measurement cells juxtaposed in a row and a photodetector corresponding thereto, and FIG. Figure (A)
Is a bird's-eye view, FIG. (B) is a side view, and (C) is a plan view.

【図8】複数の測定系は、単一の光源とそれに対応する
光検出器を固定した回転軸を中心軸とする同心円周上に
配置した複数の測定セルを含む測定回路とからなり、そ
れを示す装置図である。図(A)は鳥瞰図、図(B)は
側面図、(C)は平面図である。
FIG. 8 is a view showing a plurality of measurement systems each including a single light source and a measurement circuit including a plurality of measurement cells arranged concentrically around a rotation axis having a fixed photodetector as a central axis; FIG. Figure (A) is a bird's eye view, Figure (B) is a side view, and (C) is a plan view.

【図9】並列の測定セルが3系列の場合の自動切替えダ
イアグラムを示す図である。
FIG. 9 is a diagram showing an automatic switching diagram in the case where three parallel measurement cells are provided.

【符号の説明】[Explanation of symbols]

1 検体液を取込み封鎖する手段 2 検体液の測定手段 3 検体液を排出し封鎖する手段 4 検体液の取込みポンプ 5 検体液の濾過フィルター 6 検体液取込みパイプの開閉バルブ 7 検体液取込みパイプ 8 洗剤液注入パイプ 9 洗剤液注入パイプの開閉バルブ 10 リムルス試薬注入器 11 リムルス試薬注入パイプ 12 リムルス試薬注入パイプの開閉バルブ、また
は仕切り 13 光源 14 光検出器 15 測定回路 15−1 循環混合液入口 15−2 循環混合液出口 16 測定セル 17 循環ポンプ(取込みポンプ、洗浄・排出ポン
プを兼ねる) 18 スタティックミキサー 19 排出パイプの開閉バルブ 20 排出パイプ 21 恒温槽 22 光束 23 電気回路(演算部)
1 Means for Capturing and Sealing Sample Liquid 2 Means for Measuring Sample Liquid 3 Means for Discharging and Sealing Sample Liquid 4 Pump for Capturing Sample Liquid 5 Filtration Filter 6 for Sample Liquid 6 Opening / closing valve for sample liquid intake pipe 7 Sample liquid intake pipe 8 Detergent Liquid injection pipe 9 Open / close valve for detergent liquid injection pipe 10 Limulus reagent injector 11 Limulus reagent injection pipe 12 Open / close valve or partition for Limulus reagent injection pipe 13 Light source 14 Photodetector 15 Measuring circuit 15-1 Circulating mixture inlet 15- 2 Circulating mixed liquid outlet 16 Measuring cell 17 Circulating pump (also serves as intake pump, cleaning / discharging pump) 18 Static mixer 19 Discharge pipe opening / closing valve 20 Discharge pipe 21 Constant temperature bath 22 Luminous flux 23 Electric circuit (calculation unit)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 徳三 大阪府大阪市阿倍野区王子町3−13−2 (72)発明者 三浦 薫 千葉県浦安市当代島2−8−1−401 Fターム(参考) 2G052 AA06 AB18 AB22 AD06 AD26 AD49 BA03 BA14 CA03 CA04 CA12 CA20 CA35 EA03 FB03 FB06 FC04 FC11 FC15 GA09 GA11 HC07 HC10 HC39 JA07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tokuzo Harada             3-13-2 Ojimachi, Abeno-ku, Osaka-shi, Osaka (72) Inventor Kaoru Miura             2-8-1-401 Todaishima, Urayasu City, Chiba Prefecture F term (reference) 2G052 AA06 AB18 AB22 AD06 AD26                       AD49 BA03 BA14 CA03 CA04                       CA12 CA20 CA35 EA03 FB03                       FB06 FC04 FC11 FC15 GA09                       GA11 HC07 HC10 HC39 JA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 エンドトキシンを含む検体液を測定セル
を含む測定回路内に取込み封鎖する手段と、取込み封鎖
された検体液を測定回路内で循環させる手段と、循環す
る検体液に所定量のリムルス試薬を注入して両液を混合
させる手段と、測定セルに導入された混合液中に発生す
る濁度の原因となる微粒子の濃度の経時変化を連続的に
測定する微粒子計数手段と、測定後に混合液を測定回路
内から排出し、測定回路を洗浄する手段と、からなるエ
ンドトキシン濃度の測定装置であって、 上記微粒子計数手段で、計数値が所定変化量に到達する
時間又は該変化量の経時変化率を測定することにより検
体液中に含まれるエンドトキシンの濃度を算定すること
を特徴とするエンドトキシン濃度の測定装置。
1. A means for capturing and sealing a sample liquid containing endotoxin in a measuring circuit including a measuring cell, a means for circulating the captured and blocked sample liquid in the measuring circuit, and a predetermined amount of limulus in the circulating sample liquid. A means for injecting a reagent to mix both solutions, a particle counting means for continuously measuring the time-dependent change in the concentration of particles causing turbidity generated in the mixed solution introduced into the measurement cell, and after measurement A device for measuring the endotoxin concentration, which comprises a means for discharging the mixed solution from the inside of the measurement circuit and washing the measurement circuit, wherein the time for the count value to reach a predetermined change amount in the fine particle counting means or the change amount An endotoxin concentration measuring device, wherein the concentration of endotoxin contained in a sample liquid is calculated by measuring the rate of change over time.
【請求項2】 エンドトキシンを含む検体液を測定回路
内に取込む前に、予め微粒子計数手段が計数する最小径
以上の粒子を除去できる濾過手段を設けることを特徴と
する請求項1に記載のエンドトキシン濃度の測定装置。
2. The filtering means for removing particles having a minimum diameter or more counted by the particle counting means in advance before the sample liquid containing endotoxin is taken into the measuring circuit. Measuring device for endotoxin concentration.
【請求項3】 微粒子計数手段は、計数する微粒子の最
小直径を0.5μm以下とする微粒子計数計と、その計
数値から変化量が所定量に到達する時間、または、変化
量の経時変化率を算定して、予め作成された検量線と対
比して検体液中のエンドトキシン濃度を算定する電子回
路からなることを特徴とする請求項1に記載のエンドト
キシン濃度の測定装置。
3. The fine particle counting means is a fine particle counter for setting the minimum diameter of fine particles to be counted to 0.5 μm or less, and the time for the amount of change to reach a predetermined amount from the count value, or the rate of change over time. The endotoxin concentration measuring device according to claim 1, further comprising an electronic circuit for calculating the endotoxin concentration in the sample liquid by comparing with the calibration curve prepared in advance.
【請求項4】 複数の測定系を検体液の流路に並列に切
換え可能に結合して、順繰りに自動的に切換えて、微粒
子の測定と、測定セルを含む測定回路の洗浄を並行して
行い、或いは、1回の測定に要する時間よりも短い間隔
で連続測定することを特徴とする請求項1に記載のエン
ドトキシン濃度の測定装置。
4. A plurality of measurement systems are switchably coupled in parallel to a flow path of a sample liquid and are automatically switched in sequence to measure fine particles and wash a measurement circuit including a measurement cell in parallel. The endotoxin concentration measuring apparatus according to claim 1, wherein the endotoxin concentration measuring method is performed or continuously measured at intervals shorter than a time required for one measurement.
【請求項5】 複数の測定系は、単一の光源とそれに対
応する光検出器を固定した回転軸を中心軸とする同心円
周上に配置した複数の測定セルを含む測定回路とからな
ることを特徴とする請求項4に記載のエンドトキシン濃
度の測定装置。
5. A plurality of measuring systems comprises a single light source and a measuring circuit including a plurality of measuring cells arranged concentrically around a rotation axis having a fixed photodetector as a central axis. The endotoxin concentration measuring device according to claim 4.
【請求項6】 複数の測定系は、一列に並置した複数の
測定セルに対して併進往復する単一の光源とそれに対応
する光検出器とからなることを特徴とする請求項4に記
載のエンドトキシン濃度の測定装置。
6. The plurality of measurement systems comprises a single light source that reciprocates in parallel with respect to a plurality of measurement cells juxtaposed in a row, and a photodetector corresponding to the single light source. Measuring device for endotoxin concentration.
【請求項7】 検体液中のエンドトキシン濃度が低レベ
ルの場合に、検体液量をリムルス試薬量に対して10倍
量〜1000倍量とした後、両液を混合して得られる混
合液を測定することを特徴とする請求項1〜6のいずれ
かに記載のエンドトキシン濃度の測定装置。
7. When the endotoxin concentration in the sample liquid is at a low level, the amount of the sample liquid is adjusted to 10 times to 1000 times the amount of Limulus reagent, and then a mixed liquid obtained by mixing both liquids is used. It measures, The measuring apparatus of the endotoxin density | concentration in any one of Claims 1-6 characterized by the above-mentioned.
JP2002130811A 2002-05-02 2002-05-02 Endotoxin concentration measuring device Expired - Fee Related JP3814559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130811A JP3814559B2 (en) 2002-05-02 2002-05-02 Endotoxin concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130811A JP3814559B2 (en) 2002-05-02 2002-05-02 Endotoxin concentration measuring device

Publications (2)

Publication Number Publication Date
JP2003322655A true JP2003322655A (en) 2003-11-14
JP3814559B2 JP3814559B2 (en) 2006-08-30

Family

ID=29543729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130811A Expired - Fee Related JP3814559B2 (en) 2002-05-02 2002-05-02 Endotoxin concentration measuring device

Country Status (1)

Country Link
JP (1) JP3814559B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098062A (en) * 2001-09-21 2003-04-03 Sefa Technology Kk Sedimentation velocity measuring method and its device
JP2007033354A (en) * 2005-07-29 2007-02-08 Fuji Electric Systems Co Ltd Fine particle measuring method and fine particle measuring instrument
WO2008038329A1 (en) * 2006-09-25 2008-04-03 Kowa Kabushiki Kaisha Apparatus for gelation measurement and sample cell
WO2009078465A1 (en) * 2007-12-19 2009-06-25 Kowa Company, Ltd. Method for measuring endotoxin and reagent kit for measuring endotoxin
WO2009148132A1 (en) * 2008-06-05 2009-12-10 興和株式会社 Method of assaying physiologically active substance of biological origin, kit for assaying physiologically active substance of biological origin and apparatus for assaying physiologically active substance of biological origin
JP4551980B2 (en) * 2008-03-19 2010-09-29 徹 小幡 Gel particle measuring device
JP2012255679A (en) * 2011-06-08 2012-12-27 Kowa Co Method and apparatus for measuring bio-based physiological active substance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098062A (en) * 2001-09-21 2003-04-03 Sefa Technology Kk Sedimentation velocity measuring method and its device
JP2007033354A (en) * 2005-07-29 2007-02-08 Fuji Electric Systems Co Ltd Fine particle measuring method and fine particle measuring instrument
JPWO2008038329A1 (en) * 2006-09-25 2010-01-28 興和株式会社 Gelation measuring device and sample cell
WO2008038329A1 (en) * 2006-09-25 2008-04-03 Kowa Kabushiki Kaisha Apparatus for gelation measurement and sample cell
KR101285643B1 (en) * 2006-09-25 2013-07-12 토루 오바타 Apparatus for gelation measurement and sample cell
CN101535803B (en) * 2006-09-25 2012-09-26 兴和株式会社 Apparatus for gelation measurement and sample cell
JP4886785B2 (en) * 2006-09-25 2012-02-29 興和株式会社 Gelation measuring device and sample cell
JP2009150723A (en) * 2007-12-19 2009-07-09 Kowa Co Method for measuring endotoxin and reagent kit for measuring endotoxin
US8211651B2 (en) 2007-12-19 2012-07-03 Kowa Company, Ltd. Method for measuring endotoxin and reagent kit for measuring endotoxin
WO2009078465A1 (en) * 2007-12-19 2009-06-25 Kowa Company, Ltd. Method for measuring endotoxin and reagent kit for measuring endotoxin
JP4551980B2 (en) * 2008-03-19 2010-09-29 徹 小幡 Gel particle measuring device
JPWO2009116633A1 (en) * 2008-03-19 2011-07-21 小幡 徹 Gel particle measuring device
US8462340B2 (en) 2008-03-19 2013-06-11 Toru Obata Gel particle measuring apparatus
JP2009294113A (en) * 2008-06-05 2009-12-17 Kowa Co Endotoxin measuring method, endotoxin measuring kit and endotoxin measuring instrument
WO2009148132A1 (en) * 2008-06-05 2009-12-10 興和株式会社 Method of assaying physiologically active substance of biological origin, kit for assaying physiologically active substance of biological origin and apparatus for assaying physiologically active substance of biological origin
JP2012255679A (en) * 2011-06-08 2012-12-27 Kowa Co Method and apparatus for measuring bio-based physiological active substance

Also Published As

Publication number Publication date
JP3814559B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
CN107106095B (en) Apparatus, system and method for urinalysis
JP3542595B2 (en) Liquid sampling module
JP4676144B2 (en) Automated fluid filtration system for performing separation processes and acquiring and recording data about them
JP7297687B2 (en) Automated method and apparatus for preparing bioprocess solutions
CN103119414B (en) Method, system and the medical treatment device of detection leakage
JP2008511439A (en) Low volume type tangential flow filtration process automatic development equipment
JPH06508551A (en) mixing device
CN1955714A (en) Dissolution test equipment and methods for testing having improved filtration system
JP2003322655A (en) Apparatus for measuring concentration of endotoxin
CN104737026A (en) Optical fill detection
CN104122387A (en) Apparatus for measuring blood cells and immunity from whole blood
RU2753649C1 (en) Device and method for determining erythrocyte sedimentation rate and other related parameters
JP3913132B2 (en) Endotoxin measuring method and apparatus, and endotoxin measuring system
JP3814564B2 (en) Endotoxin concentration measuring device
Carvalho et al. Reflection about the hemodialysis water microbiological quality in Brazil
CN110215564B (en) Infusion control device
FR3074581B1 (en) REAGENT PREPARATION DEVICE FOR PARTICLE ANALYSIS DEVICES
Choi et al. Nanodome sensor tubing for monitoring of intravenous drug infusion and metabolites
JPH02264862A (en) Elution tester
JPS59208439A (en) Particle counter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees