JP2003322605A - Method of calculation for moisture permeable characteristics of moisture permeable film - Google Patents

Method of calculation for moisture permeable characteristics of moisture permeable film

Info

Publication number
JP2003322605A
JP2003322605A JP2002079600A JP2002079600A JP2003322605A JP 2003322605 A JP2003322605 A JP 2003322605A JP 2002079600 A JP2002079600 A JP 2002079600A JP 2002079600 A JP2002079600 A JP 2002079600A JP 2003322605 A JP2003322605 A JP 2003322605A
Authority
JP
Japan
Prior art keywords
water vapor
space
moisture permeable
relative humidity
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002079600A
Other languages
Japanese (ja)
Other versions
JP4097441B2 (en
Inventor
Kunitaka Mizobe
都孝 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002079600A priority Critical patent/JP4097441B2/en
Publication of JP2003322605A publication Critical patent/JP2003322605A/en
Application granted granted Critical
Publication of JP4097441B2 publication Critical patent/JP4097441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of calculation of transferring mass of water vapor under same partial vapor pressure under isobaric and isothermal condition wherein it is able to represent the moisture permeable characteristics of the moisture permeable film, and also to provide a calculation method of pressure ratio of transferring mass of water vapor useful for selection or design for vapor traveling control device for more than 3 sheets. <P>SOLUTION: The moisture permeable film is provided on the passage between two spaces of isothermal and isobar which are kept in temperature of -30 to 150°C, and in pressure of 0.5 to 800 mmHg. The relative humidity of one space is set at RH<SB>s</SB>of film characteristic inspection and that of another space is at RH<SB>h</SB>which is higher than the RH<SB>s</SB>, and the transfer mass m<SB>vh</SB>of the water vapor is measured with time. Then the relative humidity of former space is set at RH<SB>l</SB>lower than RH<SB>s</SB>, the transfer mass of water vapor m<SB>vl</SB>is measured with time. And the relative humidity of latter space is set at RH<SB>s</SB>same as that of the former space RH<SB>s</SB>, the transfer mass m<SB>v</SB>of the water vapor is calculated from m<SB>v</SB><SP>h</SP>, m<SB>v</SB><SP>l</SP>, RH<SB>h</SB>, RH<SB>l</SB>, and RH<SB>s</SB>being in proportional relation using eq. (1). m<SB>v</SB>=m<SB>vl</SB>+(m<SB>vh</SB>-m<SB>vl</SB>)*(RH<SB>s</SB>-RH<SB>l</SB>)/(RH<SB>h</SB>-RH<SB>l</SB>)...(1). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透湿膜の透湿の特
性を正確に評価できる等圧等温下の等相対湿度における
水蒸気の移動質量の算出方法及び透湿膜を3枚以上用い
た水蒸気移動制御装置の調湿設計の基礎となる各膜の水
蒸気の移動質量の圧力比率の算出方法に関する。特に湿
度・温度が変動する大気等の外部空間との間で水蒸気移
動制御装置を介して水蒸気の移動質量を調整することで
室空間の湿度を所定の湿度に調整する装置における透湿
膜の設計方法に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a method for calculating the moving mass of water vapor at equal relative humidity under isobaric and isothermal conditions capable of accurately evaluating the moisture permeation characteristics of a permeable membrane, and using three or more permeable membranes. The present invention relates to a method for calculating the pressure ratio of the moving mass of water vapor in each film, which is the basis of the humidity control design of a water vapor transfer control device. Especially, the design of the moisture permeable membrane in the device that adjusts the humidity of the room space to the specified humidity by adjusting the moving mass of the water vapor through the water vapor movement control device with the external space such as the atmosphere where the humidity and temperature fluctuate. Useful for methods.

【0002】[0002]

【従来の技術】従来の室空間の湿度を調整する装置は、
空調装置の除湿機能を用いてなされることが多い。空調
装置は、ファン、コンプレッサー、モータ・熱交換器を
必要とするもので大型で設備費が高く、ランニングコス
トも高いものであった。本発明者は、これらの問題を解
消し、小型で安価で且つランニングコストが不要な3つ
の透湿膜を用いてその膜間に少なくとも2つの小室を形
成した水蒸気移動制御装置を開発した。しかしながら、
透湿膜の選定及び設計が難しいものであった。膜の前後
の水蒸気分圧D1,D2の差は膜の前後の分圧差による推
進力Pmを決定する。このとき厚さLは関係し、α:透
湿係数が得られる。 Pm=α*(D1−D2)/L 従来の透湿膜の特性として、ガス透過法では、試料に1
atm加えた透湿特性をJISK7126で求める。ま
た水蒸気テスターLYSSYシステムでは、飽和水蒸気
に接した膜の水蒸気の透湿特性の測定時の圧力変化は温
度の測定に依存しており誤差が大きい。膜透湿のモデル
として、膜の前後のみの濃度差による場合、両者は膜内
の熱交換を無視した結果になりやすい。いずれも透湿膜
の正確な透湿特性を表すことができなかった。又そのた
め、水蒸気移動制御装置の設計も不正確なものとなって
いた。
2. Description of the Related Art A conventional device for adjusting the humidity in a room is
It is often done using the dehumidification function of the air conditioner. The air conditioner required a fan, a compressor, a motor and a heat exchanger, and was large, and the equipment cost was high, and the running cost was high. The present inventor has solved these problems and developed a water vapor transfer control device in which at least two small chambers are formed between three moisture-permeable membranes that are small in size, inexpensive and do not require running costs. However,
It was difficult to select and design the moisture permeable membrane. The difference between the water vapor partial pressures D 1 and D 2 before and after the membrane determines the propulsive force Pm due to the partial pressure difference before and after the membrane. At this time, the thickness L is related, and α: moisture permeability coefficient is obtained. Pm = α * (D 1 −D 2 ) / L As a characteristic of the conventional moisture permeable membrane, in the gas permeation method, 1 is applied to the sample.
The moisture permeability characteristics added with atm are determined according to JIS K7126. Further, in the steam tester LYSSY system, the pressure change at the time of measuring the moisture vapor transmission characteristics of the film in contact with the saturated steam depends on the temperature measurement, and thus the error is large. When the difference in concentration between the front and the rear of the membrane is used as a model of the membrane moisture permeability, both of them tend to result in neglecting the heat exchange in the membrane. None of them was able to express the accurate moisture permeability of the moisture permeable membrane. Therefore, the design of the water vapor transfer control device is also inaccurate.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は従来のこれらの問題を解決し、透湿膜の透湿
特性を正確に評価できる方法、即ち移動前後の分圧を等
しくして、圧の条件を等圧(大気圧が一般的)下にて求
め、膜の前後の水蒸気の濃度が等しい条件下の水蒸気の
移動特性を求める方法を提供する。この方法では、膜の
表面の温度変化や、熱交換の特性を精密に求めることが
できる。及び透湿膜を用いた水蒸気移動制御装置の設計
の指針を与える透湿膜の水蒸気の移動質量の圧力比率を
算出する方法を提供する。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to solve these problems in the prior art and to accurately evaluate the moisture permeability of a moisture permeable membrane, that is, to make the partial pressures before and after movement equal. Then, a method for determining the pressure condition under equal pressure (generally atmospheric pressure) and determining the water vapor transfer characteristics under the condition that the water vapor concentration before and after the film is equal is provided. With this method, it is possible to precisely determine the temperature change on the surface of the membrane and the characteristics of heat exchange. And a method of calculating the pressure ratio of the moving mass of water vapor in the water vapor permeable film, which provides a guideline for designing a water vapor transfer control device using the water vapor permeable film.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) 温度が−30℃〜150℃,圧力が0.5〜80
0mmHgの範囲の等圧等温の二つの空間の通気路に検
査する透湿膜を取付け、一方の空間の相対湿度を膜特性
検査の設定相対湿度RHsとし、他方の空間の相対湿度
をそれより高い相対湿度RHhとして膜を介しての水蒸
気の移動質量mvhを時間とともに計測し、次に他方の空
間の相対湿度を設定相対湿度RHsより低い相対湿度R
lとして膜を介しての水蒸気の移動質量mvlを時間と
ともに計測し、他方の空間が一方の空間と同じ設定相対
湿度RHsのときの水蒸気の移動質量mvを数式前記数1
によって算出する、膜の両側の空間が等圧等温で同じ水
蒸気分圧における透湿膜の水蒸気の移動質量の算出法 2) 調湿する室空間と湿度・温度が変動する外部空間
とを連通する通気路を設け、同通気路に少なくとも三つ
の透湿膜の第1膜,第2膜,第3膜を所定間隔離して設
けて膜間に小室を少なくとも二つ形成し、通気路と透湿
膜と小室とで水蒸気移動制御装置を構成し、同水蒸気移
動制御装置によって二つの空間間の水蒸気の移動質量を
制御して室内の湿度を調整する透湿膜を用いた水蒸気移
動制御装置において、外部空間の平均的圧力と平均的温
度の等圧等温における平均的な相対湿度を設定相対湿度
とする各透湿膜の移動質量mv1,mv2,mv3を透湿膜の
外部空間に面する膜面が一方の空間に面するように取付
けて前記1)の水蒸気の移動質量の算出法に基づいて算
出し、次に数式前記数2によって各透湿膜の水蒸気の移
動質量の圧力比率を算出する、水蒸気移動制御装置の透
湿膜の水蒸気の移動質量の圧力比率の算出法にある。
Means for Solving the Problems The constitution of the present invention which has solved the above problems is as follows: 1) Temperature is -30 ° C to 150 ° C and pressure is 0.5 to 80.
A moisture permeable membrane to be inspected is attached to the air passages of two spaces of equal pressure and isothermal in the range of 0 mmHg, the relative humidity of one space is set as the relative humidity RH s for the membrane characteristic inspection, and the relative humidity of the other space is The moving mass m vh of water vapor through the membrane is measured with time as the high relative humidity RH h , and then the relative humidity of the other space is set to a relative humidity R s lower than the set relative humidity RH s.
The moving mass m vl of water vapor through the membrane as H l is measured with time, and the moving mass m v of water vapor when the other space has the same set relative humidity RH s as one space is given by the above mathematical formula 1
Calculation method of the moving mass of water vapor of the moisture permeable membrane at the same water vapor partial pressure with equal pressure and isothermal space on both sides of the membrane, 2) Communicate between the room space for humidity control and the external space where humidity and temperature fluctuate An air passage is provided, and at least three moisture permeable membranes, the first film, the second film, and the third film, are provided in the same air passage at predetermined intervals to form at least two small chambers between the air passages and the moisture permeability. In a water vapor transfer control device using a moisture permeable membrane that configures a water vapor transfer control device with a membrane and a small chamber, and controls the moving mass of water vapor between two spaces by the water vapor transfer control device to adjust the indoor humidity, The moving masses m v1 , m v2 , m v3 of the moisture permeable membranes whose relative humidity is set as the average relative humidity at the isobaric isothermal of the average pressure and the average temperature of the external space are set on the external space of the moisture permeable membrane. Attach so that the membrane surface to face one of the spaces, and steam the water in 1) above. Of the moving mass of the water vapor of the moisture permeable membrane of the water vapor transfer control device for calculating the pressure ratio of the moving mass of the water vapor of each moisture permeable membrane by the mathematical formula 2 above. It is in the ratio calculation method.

【0005】[0005]

【発明の実施の形態】透湿膜は、膜素材,膜の積層構
造,及び膜表面又は膜表面に近接して設けた導電性メッ
シュ(多孔体)の有無によって透湿度,水蒸気の移動質
量の圧力比率,水蒸気移動の方向性等の特性が変えられ
る。従って、本発明の透湿膜の選定とは、透湿膜の素
材、積層構造・メッシュの有無等を異にする適切な透湿
膜を選定することである。本発明は、前記水蒸気の移動
質量が目的の室内の湿度に対応できる所定の値となるよ
うに透湿膜の選定・設計の基準にできるようにすること
にある。本発明の「室」とは、電気機器等を納めた箱
体,人間の居住空間,物品の収納庫,物品の収納室等
で、外部空間との空気・蒸気の移動が小さい空間を指称
する。本発明の数1,数2の式による計算において、計
測誤差,計測条件を考慮して計測値・数式に一部補正・
訂正することもできる。膜の断面構造が非対称の場合水
蒸気の移動質量の特性値は2通りできる。使用方法で使
用する特性値を決める。
BEST MODE FOR CARRYING OUT THE INVENTION The moisture permeable membrane has a moisture permeability and a moving mass of water vapor depending on the membrane material, the laminated structure of the membrane, and the presence or absence of the membrane surface or a conductive mesh (porous body) provided in the vicinity of the membrane surface. Characteristics such as pressure ratio and water vapor movement direction can be changed. Therefore, the selection of the moisture-permeable film of the present invention is to select an appropriate moisture-permeable film having different materials for the moisture-permeable film, the laminated structure, the presence / absence of a mesh, and the like. It is an object of the present invention to make it possible to use as a criterion for selecting and designing a moisture permeable membrane so that the moving mass of water vapor has a predetermined value that can correspond to the target indoor humidity. The "room" of the present invention refers to a box in which electric equipment or the like is housed, a living space for humans, a storage room for articles, a storage room for articles, or the like, and a space in which movement of air and vapor with respect to an external space is small. . In the calculation according to the formulas 1 and 2 of the present invention, the measurement value and the formula are partially corrected in consideration of the measurement error and the measurement condition.
It can be corrected. When the cross-sectional structure of the film is asymmetric, there are two characteristic values of the moving mass of water vapor. Determine the characteristic value to be used in the usage method.

【0006】[0006]

【実施例】以下、本発明の実施例及びその水蒸気移動に
ついての現象について説明する。図1は、実施例の水蒸
気移動制御装置による水蒸気移動制御を示す説明図であ
る。図2は、透湿膜の移動方向による水蒸気の移動質量
の時間変化図である。この図面は、不織布面から撥水面
方向の飽和水蒸気圧に不織布面が接した場合の各膜の吸
水量を示す。図3は、透湿膜の移動方向による水蒸気の
移動質量の時間変化図である。この図面は撥水面から不
織布面への移動のときの撥水面が飽和水蒸気に接した場
合の吸水量を示す。図2,図3は飽和水蒸気に接したと
きの吸水量なので、これで性能評価は得られない。移動
の抵抗表示となる。図4,5,6,7は、本発明の原理
説明の為の説明図である。図8は、65%RHの水蒸気
の移動質量の時間変化図である。図9は、膜の水蒸気の
65%RHの測定結果を使用し室内外の湿度の増圧因子
と考える説明図である。図10は、水蒸気の移動質量の
差を形成する境界面の水蒸気の移動質量を示す説明図で
ある。図11は、室内95%RH外気65%RH,21
℃の水蒸気の移動質量の圧力比率の時間変化図である。
図12は、室内65%RH外気95%RH,21℃の水
蒸気の移動質量の圧力比率の時間変化図である。図13
は、室内95%RH外気65%RH,21℃の水蒸気の
移動質量の圧力比率の時間変化図である。図14は、室
内95%RH外気65%RH,21℃の外気側に撥水面
を向けた場合と不織布面を向けた場合の相対湿度の時間
変化図である。図15は、室内65%RH外気95%R
H,21℃の外気側に撥水面を向けた場合の室内の相対
湿度の時間変化図である。図16は、室内95%RH外
気65%RH,21℃の場合と室内65%RH外気95
%RH,21℃の場合の室内の相対湿度の時間変化図で
ある。中間値は時間経過による調湿の能力を示す。図1
7は、外気21℃65%RH室内加湿のアクリル箱体の
室内の相対湿度の時間変化図である。図18は、外気2
1℃65%RH室内加湿のアクリル箱体の室内の温度の
時間変化図である。図19は、本実施例における温度補
正と水蒸気圧補正との手順を示す説明図である。図20
は、実施例の第1,第2,第3の透湿膜の断面説明図で
ある。図21は、実施例の水蒸気移動制御装置の調湿状
態を示す説明図である。図中、Rは箱体である室、RS
は室空間、OSは大気(外気とも表記)である外部空
間、CHDは水蒸気移動制御装置、APは同水蒸気移動
制御装置の通気路、F1は室内空間側に設けられた透湿
膜の第1膜、F2は中間に設けられた透湿膜の第2膜、
F3は外部空間OS側に設けた透湿膜の第3膜、SR
1,SR2は透湿膜の第1,2,3膜F1,F2,F3
の間に形成される小室である。第1,2,3膜F1,F
2,F3の断面図を図20に示している。上面の点線は
導電体のメッシュである。本明細書・図面中の「箱」,
「箱体」,「函体」とは室Rのことである。又、本明細
書・図面中「水蒸気移動量」「水蒸気移動質量」とは
「水蒸気の移動質量」のことである。
EXAMPLES Examples of the present invention and phenomena relating to water vapor transfer will be described below. FIG. 1 is an explanatory diagram showing the water vapor movement control by the water vapor movement control device of the embodiment. FIG. 2 is a time change diagram of the moving mass of water vapor depending on the moving direction of the moisture permeable membrane. This drawing shows the amount of water absorption of each film when the nonwoven fabric surface is in contact with the saturated water vapor pressure in the water repellent surface direction from the nonwoven fabric surface. FIG. 3 is a time change diagram of the moving mass of water vapor depending on the moving direction of the moisture permeable membrane. This drawing shows the amount of water absorption when the water repellent surface is in contact with saturated water vapor when moving from the water repellent surface to the nonwoven fabric surface. 2 and 3 show the amount of water absorption when in contact with saturated steam, the performance evaluation cannot be obtained. It becomes a resistance display for movement. 4, 5, 6, and 7 are explanatory views for explaining the principle of the present invention. FIG. 8 is a time change diagram of the moving mass of water vapor of 65% RH. FIG. 9 is an explanatory diagram in which the measurement result of 65% RH of water vapor in the film is used and is considered as a pressure increasing factor for indoor and outdoor humidity. FIG. 10: is explanatory drawing which shows the moving mass of the water vapor of the boundary surface which forms the difference of the moving mass of the water vapor. Fig. 11 shows 95% RH indoors and 65% RH outside air, 21
It is a time change figure of the pressure ratio of the moving mass of the steam of ° C.
FIG. 12 is a time change diagram of the pressure ratio of the moving mass of water vapor at 65% RH in the room, 95% RH in the outside air, and 21 ° C. FIG.
[Fig. 4] is a time change diagram of the pressure ratio of the moving mass of water vapor at room temperature of 95% RH and outside air of 65% RH and 21 ° C. FIG. 14 is a time change diagram of the relative humidity when the water repellent surface is directed to the outdoor air side of the room 95% RH outdoor air 65% RH and 21 ° C. and when the non-woven fabric surface is directed. Fig. 15 shows 65% RH indoor and 95% R outside air
It is a time change figure of relative humidity in a room when the water repellent surface is turned to the outside air side of H and 21 ° C. Fig. 16 shows the case of indoor 95% RH outside air 65% RH, 21 ° C and indoor 65% RH outside air 95
It is a time change figure of relative humidity in a room in case of% RH and 21 degreeC. The median value indicates the humidity control ability over time. Figure 1
FIG. 7 is a time change diagram of the relative humidity inside the room of the acrylic box body humidified by the outside air of 21 ° C. and 65% RH. FIG. 18 shows the outside air 2
It is a time change figure of the room temperature of the acrylic box which humidified 1 ° C 65% RH indoors. FIG. 19 is an explanatory diagram showing the procedure of temperature correction and water vapor pressure correction in this embodiment. Figure 20
[Fig. 4] is a cross-sectional explanatory view of the first, second, and third moisture permeable membranes of Examples. FIG. 21 is an explanatory diagram showing a humidity control state of the water vapor transfer control device according to the embodiment. In the figure, R is a box-shaped room, RS
Is a room space, OS is an outside space that is the atmosphere (also referred to as outside air), CHD is a water vapor transfer control device, AP is a ventilation path of the water vapor transfer control device, and F1 is a first moisture permeable membrane provided on the indoor space side. Membrane, F2 is the second membrane of the moisture permeable membrane provided in the middle,
F3 is a third film of a moisture permeable film provided on the external space OS side, SR
1, SR2 are the first, second and third films F1, F2, F3 of the moisture permeable film.
It is a small chamber formed between. First, second and third films F1, F
A cross-sectional view of F2 and F3 is shown in FIG. The dotted line on the top is a mesh of conductors. "Box" in the specification and drawings,
The “box” and the “box” are the room R. In addition, in the present specification and drawings, "water vapor transfer amount" and "water vapor transfer mass" mean "water vapor transfer mass".

【0007】以下、本実施例における水蒸気移動につい
てその現象・理論・データについて詳細に説明する。こ
の実施例では箱体である室R側に第1膜F1を配置し、
3枚の透湿膜の第1膜F1,第2膜F2,第3膜F3を
室側から順に設けた水蒸気移動制御装置CHDの例であ
る。保水率試験では、試作した水蒸気移動制御装置CH
Dの室側に配置した第1膜F1が、高い保水率を示して
いた。そこでこの含水が、気象条件のなかでもたとえば
霧などのミストの影響を受け、湿潤した場合について下
記に検討した。プロトタイプの膜の実効直径:23[m
m]、半径11.5[mm]小室SR1,SR2の断面
積の直径は25[mm]、2mmの差は接合部の寸法差
による。 膜面積は、1.15×1.15×3.14=4.152
65[cm2] 膜の単位面積あたりの質量を求めると、1.1416×
10-2[g/cm2]であり、又膜の面積の質量は、
0.04741[g]であった。同様に、含水した膜の
単位面積当たりの質量を求めると、2.3809×10
-2[g/cm2 ]で含水した膜の質量は、2.3809
×10-2×4.15265=0.09887[g]であ
った。従って、含水した水量mv は、 mv =0.09887−0.04741=0.0514
6[g] 屋外の長期試験に使用した室Rの容積Vは、 0.5×0.5×0.5=0.125[m3 ] 室Rの温度を20℃とすると、室R内の水蒸気圧:e
は、下記数3となる。
The phenomenon, theory and data of water vapor transfer in this embodiment will be described in detail below. In this embodiment, the first film F1 is arranged on the chamber R side, which is a box,
It is an example of a water vapor transfer control device CHD in which three moisture permeable membranes, a first film F1, a second film F2, and a third film F3 are sequentially provided from the chamber side. In the water retention test, a prototype steam transfer control device CH
The first membrane F1 arranged on the chamber side of D showed a high water retention rate. Therefore, the following study was made on the case where the water content was wet under the influence of mist such as fog even under the meteorological condition. Effective diameter of prototype membrane: 23 [m
m], radius 11.5 [mm], the diameter of the cross-sectional area of the small chambers SR1 and SR2 is 25 [mm], and the difference of 2 mm is due to the dimensional difference of the joint. The membrane area is 1.15 × 1.15 × 3.14 = 4.152.
The mass per unit area of the 65 [cm 2 ] film is 1.1416 ×
10 −2 [g / cm 2 ] and the mass of the membrane area is
It was 0.04741 [g]. Similarly, the mass per unit area of the hydrated membrane was calculated to be 2.3809 × 10.
The mass of the membrane hydrated at -2 [g / cm 2 ] is 2.3809.
It was x10 -2 x 4.1265 = 0.09887 [g]. Therefore, the water content m v is m v = 0.09887−0.04741 = 0.0514
6 [g] The volume V of the room R used for the outdoor long-term test is 0.5 × 0.5 × 0.5 = 0.125 [m 3 ] If the temperature of the room R is 20 ° C. Water vapor pressure: e
Is the following expression 3.

【0008】[0008]

【数3】 [Equation 3]

【0009】湿潤空気を理想気体として取り扱い、相対
湿度Uを求めると下記数4となる。
When wet air is treated as an ideal gas and the relative humidity U is obtained, the following equation 4 is obtained.

【0010】[0010]

【数4】 [Equation 4]

【0011】従って、最大の保水率をもつ、第1膜F1
に含まれる水分が、二つの小室SR1,SR2を経由し
て完全に室R内に蒸発したとしても、室R内の湿度上昇
は、調湿は相対湿度で発錆危険湿度を考察するので、相
対湿度にて2.39[%RH]増加するのみである。ま
た、温度が低くなりやすい方向に第3膜F3が位置する
ような場合では、第3膜F3は保水率は低い場合、この
影響は少なくなるものと考えられる。水蒸気の移動経過
を考える場合、通気により表面温度の変動が生じること
が、赤外線の撮像試験結果から得られているので、通気
速度の調湿への影響を考慮しなければならない。通気路
APを形成する小室SR1,SR2の効果を活用する場
合には、本論で述べた移動の境界をなす透湿膜部のみで
得られる調整量はわずかであり、あまり大きな除湿効果
は期待できない。前述した、熱交換装置に使用されるニ
ュートンの冷却法則による式を下記数5に示す。
Therefore, the first film F1 having the maximum water retention rate
Even if the water contained in is completely evaporated into the chamber R via the two small chambers SR1 and SR2, the humidity increase in the chamber R is such that the humidity control considers the rusting dangerous humidity in the relative humidity. It only increases by 2.39 [% RH] in relative humidity. Further, in the case where the third film F3 is positioned in the direction in which the temperature tends to be low, it is considered that this effect is reduced when the water retention rate of the third film F3 is low. When considering the movement of water vapor, the fact that the surface temperature fluctuates due to ventilation has been obtained from the infrared imaging test results, so the influence of the ventilation speed on humidity control must be taken into consideration. When utilizing the effects of the small chambers SR1 and SR2 forming the ventilation path AP, the adjustment amount obtained only by the moisture permeable membrane portion that forms the boundary of the movement described in this paper is small, and a very large dehumidifying effect cannot be expected. . The above-mentioned equation based on Newton's cooling law used in the heat exchange device is shown in the following expression 5.

【0012】[0012]

【数5】 [Equation 5]

【0013】水蒸気移動制御装置CHDに熱交換は常に
発生していることを考えれば、数5により熱伝導に関与
する面積による影響を考慮しなければならないことがわ
かる。ここで、通過経路の境界を形成する透湿膜部の透
過水蒸気量に関して、再度検討を行う。不織布面から撥
水面方向への移動の場合は図2の様になる。撥水面から
不織布面方向への移動の場合は図3の様になる。
Considering that heat exchange is always occurring in the water vapor transfer control device CHD, it can be seen from Equation 5 that the influence of the area involved in heat conduction must be taken into consideration. Here, the amount of permeated water vapor of the moisture permeable membrane portion that forms the boundary of the passage is examined again. The movement from the non-woven fabric surface toward the water repellent surface is as shown in FIG. The movement from the water repellent surface toward the nonwoven fabric surface is as shown in FIG.

【0014】前記水蒸気の移動質量について、各膜の移
動方向に従う水蒸気質量の差を図2,図3に示す。これ
らの結果は、透湿度測定結果をもとに、移動方向をもと
にまとめたものである。そこで、この結果は移動の境界
面が飽和水蒸気に接触した状態の移動質量と考えること
ができる。移動の境界部では、時間経過とともに、移動
方向や構成材質によって、水蒸気の移動質量に差が現れ
ており、この傾向は水蒸気の移動にとって大きな影響を
及ぼすことが考えられる。図2,図3から、移動方向に
より、境界面を形成する透湿膜は、軽度に湿潤する場合
があることがわかる。また、吸水性が高い材質からなる
不織布をもつ透湿膜では、吸水性の低い透湿膜に比較す
ると逆の性質を示している。
Regarding the moving mass of water vapor, the difference in the mass of water vapor depending on the moving direction of each film is shown in FIGS. These results are summarized based on the moving direction based on the results of moisture permeability measurement. Therefore, this result can be considered as the moving mass in the state where the boundary surface of the movement is in contact with the saturated steam. At the boundary of movement, the moving mass of water vapor varies depending on the moving direction and constituent materials with the passage of time, and this tendency is considered to have a great influence on the movement of water vapor. From FIGS. 2 and 3, it can be seen that the moisture permeable membrane forming the boundary surface may be slightly wet depending on the moving direction. Further, a moisture permeable membrane having a nonwoven fabric made of a material having a high water absorption exhibits the opposite property as compared with a moisture permeable membrane having a low water absorption.

【0015】従って、長時間の雨天時に、室R内の湿度
が調湿された状態に保たれる原因に、吸湿傾向が異る膜
を小室間に使用したことが図2,3から推察される。移
動方向に対して、各小室間には、水蒸気の透湿性が異る
膜が配置されている。しかし、3枚の膜のうち片方は外
部空間OSに、反対側は室Rに接続するので室Rの内部
と外部空間OSは、通気路APを通じて大気圧に連続す
る。急激な温度変化などが発生した場合を除いて考える
と、大気圧と等しい圧力が保たれる。そこで、水蒸気の
透湿量が時間的に変化する各透湿膜は、室Rと大気とに
挟まれて等圧変化を受け、水蒸気や空気の移動が行われ
る。このとき、吸湿により通気路の通気性が次第に減少
するとき、室Rと一つ隔てた外側小室SR1とは互いに
逆の方向に増湿または減湿する傾向をもつ膜から挟まれ
ている。そこで、飽和状態の水蒸気が3種類の透湿膜の
内部に吸湿が行われる経過を考えると、相反する逆方向
の水蒸気圧により移動が制限を受けることになる。
Therefore, it can be inferred from FIGS. 2 and 3 that the reason why the humidity in the room R is kept in a controlled state during long-time rainy weather is that a film having a different hygroscopic tendency is used between the small rooms. It Membranes having different moisture vapor permeability are arranged between the small chambers in the moving direction. However, since one of the three membranes is connected to the external space OS and the other side is connected to the chamber R, the inside of the chamber R and the external space OS are continuous to the atmospheric pressure through the ventilation path AP. Except when a sudden temperature change occurs, the pressure equal to the atmospheric pressure is maintained. Therefore, each moisture permeable film whose moisture vapor transmission rate changes with time is sandwiched between the chamber R and the atmosphere and undergoes a constant pressure change, and the vapor and air move. At this time, when the air permeability of the air passage gradually decreases due to moisture absorption, the chamber R and the outer small chamber SR1 separated by one are sandwiched by the membranes having a tendency to increase or decrease humidity in opposite directions. Therefore, considering the process in which saturated water vapor is absorbed inside the three types of moisture permeable membranes, the movement is limited by the opposite water vapor pressures in opposite directions.

【0016】調湿法の原理と構成に示した外部空間OS
条件の変動に基づく、水蒸気移動制御装置CHDによる
室R内部の湿度調整原理を示した図1では外部空間OS
の水蒸気圧が24時間周期で変動する条件を仮定する
と、水蒸気の通過を制限する、透湿膜の作用は、外部空
間OSの水蒸気熱量が、室R内部の水蒸気熱量に時間的
な遅れをもたらし、また振幅を小さくする作用があるこ
とを示す。この状態を図21に示す。この前提条件は標
準温度を21℃の一定値とした結果である。自然条件で
は、約20℃の上下動は頻繁に観察することができる。
外部空間OS条件が高湿度であるから、メンテナンスの
ために電気機器を収容する室Rを開放できないようでは
問題が生じる。そこで、調湿の他に短時間である程度結
露を予防できるレベルの湿度まで、室R内に侵入した水
蒸気を処理しなければならない。
External space OS shown in principle and structure of humidity control method
In FIG. 1, which shows the principle of adjusting the humidity inside the chamber R by the water vapor transfer control device CHD based on the fluctuation of the conditions, the external space OS is shown.
Assuming that the water vapor pressure of V fluctuates in a 24-hour cycle, the action of the moisture permeable membrane, which restricts the passage of water vapor, causes the heat of steam in the external space OS to cause a time delay in the heat of steam inside the chamber R. , And also has the effect of reducing the amplitude. This state is shown in FIG. This precondition is the result of the standard temperature being a constant value of 21 ° C. Under natural conditions, up and down movements of about 20 ° C. can be frequently observed.
Since the external space OS condition is high humidity, a problem arises if the room R accommodating the electric device cannot be opened for maintenance. Therefore, in addition to the humidity control, it is necessary to treat the water vapor that has entered the chamber R to a humidity level that can prevent dew condensation to some extent in a short time.

【0017】本発明の原理をRC回路を用いて説明す
る。図4は1膜による場合、図5は2膜1小室、図6は
3膜2小室を示す。これらの右端はそれぞれ室Rに接続
する。これは、それぞれ透気度測定結果から、メッシュ
のない場合の測定結果に近似した数値を上述の熱模擬回
路を4端子回路の集中定数として電気回路特性を評価し
たものである。周期関数は、固定値の代入により得た模
式図である。また、透過特性は初期値が約50%RHの
空気を100cc通過させるために要した時間[se
c]を用いた。ところが、実際の測定では、膜を通過す
る水蒸気濃度はわずかな変化が現れる。撥水面から不織
布面への移動方向と、不織布面から撥水面方向の数値に
大差はないので、グラフ上にも方向性による透湿特性の
影響は殆ど現れない。4端子モデルによる解析方法は、
水蒸気移動制御装置CHDを設定する環境が判り、水蒸
気移動制御装置CHDの基本的な通気路の膜の選択が固
まった後の評価手段として優れた手法と考えられる。ま
た、性能評価としてどの程度の湿度に安定するか、位相
がどのように現れ易いか、ということが評価できる。そ
れでは、モデル試験でも示したような、外部空間OSや
室R内部の湿度を65%RHとして、室R内部を急に9
5%RHに変化させた場合の特性はどのように設計する
かという点について述べる。室Rから外部空間OS(実
施例では大気:外気)への水蒸気の移動は、水蒸気分圧
の減少と考えられる。また反対に、外部空間OSから室
Rへの水蒸気の移動は、室R内部の水蒸気分圧の増圧と
考えられる。小室SR1,SR2を追加することで、室
Rと外部空間OSの移動経路には、移動元から移動先へ
は小室SR1,SR2の容積が増える。また、同小室
は、移動前と移動後の圧力を等圧変化で考える場合に、
移動経過で熱量が保存されるとき、移動元と移動先の間
に緩衝腔が設けられたことにもなる。
The principle of the present invention will be described using an RC circuit. 4 shows one membrane, FIG. 5 shows two membranes and one chamber, and FIG. 6 shows three membranes and two chambers. The right ends of these are connected to the chamber R, respectively. This is an evaluation of the electric circuit characteristics from the air permeability measurement results, using the above-mentioned thermal simulation circuit as the lumped constant of the four-terminal circuit based on the numerical values approximate to the measurement results without the mesh. The periodic function is a schematic diagram obtained by substituting fixed values. In addition, the permeation characteristic is the time [se required to pass 100 cc of air having an initial value of about 50% RH]
c] was used. However, in actual measurement, a slight change appears in the concentration of water vapor passing through the membrane. Since there is no great difference between the moving direction from the water repellent surface to the non-woven fabric surface and the numerical value from the non-woven fabric surface to the water repellent surface, the influence of the moisture permeability characteristics due to the directionality hardly appears on the graph. The analysis method using the 4-terminal model is
It is considered to be an excellent method as an evaluation means after the environment in which the water vapor transfer control device CHD is set is known and the selection of the basic air passage membrane of the water vapor transfer control device CHD is fixed. Further, as a performance evaluation, it is possible to evaluate how much humidity is stable and how the phase easily appears. Then, as shown in the model test, the humidity inside the room R is set to 65% RH and the inside of the room R is suddenly changed to 9%.
How to design the characteristics when changing to 5% RH will be described. The movement of water vapor from the chamber R to the external space OS (atmosphere: outside air in the embodiment) is considered to be a decrease in the water vapor partial pressure. On the contrary, the movement of water vapor from the external space OS to the chamber R is considered to be an increase in the partial pressure of water vapor inside the chamber R. By adding the small chambers SR1 and SR2, the volumes of the small chambers SR1 and SR2 increase from the movement source to the movement destination in the movement path of the chamber R and the external space OS. In addition, the same small chamber, when considering the pressure before and after the movement by equal pressure change,
When the amount of heat is stored during the movement, it also means that a buffer cavity is provided between the movement source and the movement destination.

【0018】水蒸気の熱量の移動は、移動先の熱伝導の
環境により影響を受けることが考えられる。熱エネルギ
ーの移動は、移動するものの熱エネルギーが保存され
ず、熱エネルギーの変動が自由にゆるされると、熱エネ
ルギーの変動が生じにくい条件に比較すると、熱エネル
ギーの移動が促進されることが知られている。定圧の温
度上昇では熱膨張により仕事量が消費されるが、定容の
温度上昇では膨張できないので、定圧比熱は定容比熱よ
りも大きい。室Rから外部空間OSへの移動では、外部
空間OSへの圧力の開放があるが、外部空間OSから室
Rへの移動が等圧から開始した場合には、室Rの内部の
水蒸気圧と外部空間OSの水蒸気圧との差圧分の駆動圧
が得られる。小室SR1,SR2を介すると、小室SR
1,SR2の容積は室Rに比べて小さいために、室Rか
ら外部空間OS方向では容積が減少した空間を通過す
る。逆に外部空間OSから室R方向へも小室SR1,S
R2を介して室Rへ移動する。等圧変化を考えると、V
=nRT/P,P=nRT/Vであるから、圧力の上昇
により、温度が上昇する。ところがこの圧力上昇が生じ
ないように移動するので、移動した水蒸気が熱の担体と
考えた移動熱量の温度上昇が室Rに現れることになる。
この温度の移動は外部空間OS方向へ向かうか、室R方
向へ向かうかという点で二つの方向に分けて考えること
ができる。
It is considered that the transfer of the heat quantity of water vapor is affected by the environment of heat conduction at the transfer destination. As for the transfer of thermal energy, it is known that the transfer of thermal energy is promoted as compared with the condition that the fluctuation of thermal energy is less likely to occur if the fluctuation of thermal energy is allowed to change freely because the thermal energy is not stored. Has been. Although the amount of work is consumed by the thermal expansion when the temperature of the constant pressure rises, the specific heat of the constant pressure is larger than the specific heat of the constant volume because the heat cannot be expanded when the temperature of the constant volume rises. In the movement from the chamber R to the external space OS, the pressure in the external space OS is released, but when the movement from the external space OS to the chamber R is started from the equal pressure, the vapor pressure inside the chamber R becomes The driving pressure corresponding to the pressure difference from the water vapor pressure in the external space OS can be obtained. Through the small chambers SR1 and SR2, the small chamber SR
Since the volumes of 1 and SR2 are smaller than that of the chamber R, they pass through the space having a reduced volume in the direction of the external space OS from the chamber R. On the contrary, small rooms SR1 and S from the external space OS in the room R direction
Move to room R via R2. Considering the equal pressure change, V
= NRT / P and P = nRT / V, the temperature rises as the pressure rises. However, since it moves so that this pressure increase does not occur, the temperature rise of the amount of heat transferred, which is considered that the moved water vapor is a heat carrier, appears in the chamber R.
The movement of the temperature can be divided into two directions depending on whether the movement is toward the external space OS or the room R.

【0019】前述したような水蒸気の移動の経過に熱交
換を考える場合、複雑になるという欠点がある。そこ
で、示すようにCがないRのみの回路を、直流電源に対
して考える。図7の場合には、時間遅れの要素は無く、
各抵抗を通過した水蒸気を、水蒸気の移動境界となる透
湿膜部の透過水蒸気として考える。このとき外部空間O
Sの温度変動は考えずに、一定温度で対流等の影響は考
えず、大気圧下の測定結果をもとに、膜の水蒸気の移動
質量からモデルの水蒸気移動を模擬計算する。
If heat exchange is considered in the course of the movement of water vapor as described above, there is a drawback that it becomes complicated. Therefore, as shown, a circuit of only R without C is considered for a DC power supply. In the case of FIG. 7, there is no element of time delay,
The water vapor that has passed through each resistance is considered as the permeated water vapor of the moisture permeable membrane part that becomes the moving boundary of the water vapor. External space O at this time
Without considering the temperature fluctuation of S, without considering the effect of convection at a constant temperature, the model water vapor transfer is simulated from the moving mass of water vapor in the film based on the measurement result under atmospheric pressure.

【0020】各抵抗間の膜間に伝達遅れを考えない場合 R=R1+R2+R3 定圧比熱は−30℃〜150℃、0.5〜800mmH
gまではほぼ一定とされており、Ja(=1.846
[kJ/(kg・K)]である。そこで、透湿量の測定
と透気度の測定による結果をもとに、65%RHのとき
の透湿曲線を求めることができる。
When the transmission delay between the films between the resistors is not considered R = R 1 + R 2 + R 3 constant pressure specific heat is -30 ° C to 150 ° C, 0.5 to 800 mmH
It is supposed to be almost constant up to g, and Ja (= 1.846)
It is [kJ / (kg · K)]. Therefore, the moisture permeability curve at 65% RH can be obtained based on the results of the moisture permeability measurement and the air permeability measurement.

【0021】これらの移動質量は、不織布面から撥水面
方向への水蒸気の透過質量と、撥水面から不織布面への
水蒸気の透過質量をそれぞれの膜について求める。図8
はその模式図である。95%RHから65%RHへの水
蒸気の移動質量は、前述した透湿度試験結果より単位面
積あたりの水蒸気の移動質量mvを求める。また、50
%RHから65%RHへの水蒸気の移動質量は、透気度
試験結果から単位膜面積に換算を行ないシリンダー下降
に伴う圧力補正を行った水蒸気の移動質量mvを求め
る。ここで、室Rと外部空間OSが均しく21℃、65
%RHに置かれた状態の水蒸気の移動質量mv を数1に
よって算出する。この関係を図9に示す。21℃,65
%RHを基準に考える理由は、平均湿度が65%RH近
辺にあり、測定結果が21℃に得られているためであ
る。室R内が95%RHになった場合には、+30%R
Hの水蒸気圧が室R内から外部空間OS方向へかけられ
る。また外部空間OSが+30%RH高い95%RHの
場合には、外部空間OSから室R方向へ水蒸気圧が与圧
される。21℃、65%RHの水蒸気の移動質量の測定
は、ほぼ1atmで測定した結果であるから、これらの
室Rや外部空間OSから加えられる与圧条件による移動
質量の変化を求めることができる。ただし、水蒸気の移
動の境界として設定した透湿膜間の水蒸気の移動を考え
る場合、モデル試験により得られた結果、温度を一定と
した場合には等圧変化を遂げているものと考える。ま
た、等圧変化を生じるためには、それぞれの膜の水蒸気
の移動質量は異るので、室Rへの接続により圧力比が求
められる。図10に室Rから第1,2,3膜を接続した
例を模式図として示す。
For these moving masses, the permeation mass of water vapor from the non-woven fabric surface toward the water repellent surface and the permeation mass of water vapor from the water repellent surface to the non-woven fabric surface are determined for each membrane. Figure 8
Is a schematic diagram thereof. For the moving mass of water vapor from 95% RH to 65% RH, the moving mass m v of water vapor per unit area is determined from the results of the moisture permeability test described above. Also, 50
The moving mass of water vapor from% RH to 65% RH is converted to a unit membrane area from the result of the air permeability test, and the moving mass m v of water vapor corrected for pressure due to cylinder lowering is obtained. Here, the room R and the external space OS are even at 21 ° C. and 65
The moving mass m v of water vapor in the state of being placed in% RH is calculated by the equation 1. This relationship is shown in FIG. 21 ° C, 65
The reason for considering based on% RH is that the average humidity is around 65% RH and the measurement result is obtained at 21 ° C. If the room R becomes 95% RH, + 30% R
The water vapor pressure of H is applied from the inside of the chamber R toward the external space OS. Further, when the external space OS is + 30% RH and 95% RH, the water vapor pressure is applied from the external space OS in the direction of the chamber R. The measurement of the moving mass of water vapor at 21 ° C. and 65% RH is the result of measurement at about 1 atm, and thus the change of the moving mass due to the pressurization condition applied from the chamber R or the external space OS can be obtained. However, when considering the movement of water vapor between the moisture permeable membranes, which is set as the boundary of water vapor movement, it is considered that the results of the model test show that the pressure change is constant when the temperature is constant. Further, since the moving masses of water vapor in the respective membranes are different in order to cause the isobaric change, the pressure ratio can be obtained by connecting to the chamber R. FIG. 10 is a schematic diagram showing an example in which the chamber R is connected to the first, second and third membranes.

【0022】[0022]

【数6】 [Equation 6]

【0023】この結果、室R圧を1として数6で求めた
1,P2,P3 の圧力を用いて、それぞれ第1,2,3
膜F1,F2,F3の移動水蒸気量を算出する。ここ
で、全ての移動の境界面で同時に水蒸気の移動が生じる
ものと仮定し、小室SR1,SR2内の対流や対流によ
る温度変化を考えない場合、mv1,mv2,mv3の移動は
同時に生じるものとする。この計算では、水蒸気の移動
を熱の移動としてRに見立てて計算を行う。そこで、図
7のRは、R=R1+R2+R3 となる。この結果、それ
ぞれの移動の境界面の圧力比率が、等圧変化の条件下に
求められる。これらの式の説明を数7に示す。つまり、
室Rへの接続条件と等圧変化による圧力分配比が得ら
れ、この結果から水蒸気の移動質量が求められる。
As a result, by using the pressures of P 1 , P 2 and P 3 obtained by the equation 6 with the chamber R pressure as 1, respectively, the first , second , third
The moving water vapor amount of the membranes F1, F2, F3 is calculated. Here, it is assumed that water vapor moves at the boundary of all movements at the same time, and if convection in the small chambers SR1 and SR2 and temperature change due to convection are not considered, movements of m v1 , m v2 , and m v3 occur simultaneously. Shall occur. In this calculation, the transfer of water vapor is regarded as the transfer of heat and is regarded as R. Therefore, R in FIG. 7 is R = R 1 + R 2 + R 3 . As a result, the pressure ratio of the boundary surface of each movement is obtained under the condition of constant pressure change. A description of these equations is given in Equation 7. That is,
The pressure distribution ratio by the connection condition to the chamber R and the isobaric change is obtained, and the moving mass of water vapor is obtained from this result.

【0024】[0024]

【数7】 [Equation 7]

【0025】数7により、1atm下で求めた21℃の
水蒸気の移動質量は、室R側から第1,2,3膜と配列
する場合、各圧力比に従って室の水蒸気の透過質量によ
って圧力が変化するものと仮定する。この関係を数7に
より、室Rの水蒸気質量の変化に対応する圧力変化とし
て表す。ついて、移動比率は室R圧を1とする条件に従
うときの、それぞれの圧力比を数7により求める。以上
から、移動水蒸気質量の圧力比がモデルの試験条件とし
て、30×30×40cmの室Rを21℃の条件のもと
で、外部空間OS圧と室R内圧が等しい等圧条件として
算出される。この移動圧の比率は室Rの圧力を1として
いるので、室Rに接続する膜部の水蒸気の移動質量によ
って、室Rの水蒸気質量を逆算する。この方法により、
室R内水蒸気圧が30%RH高い場合(室R内95%R
H、外部空間OS65%RH)と、外部空間OS側が室
Rよりも高い場合を仮定した場合(室R内50%RH、
外部空間OS65%RH)を求めた。また、膜の設定方
法はモデルでは全て撥水面を外部空間OS側に向けた場
合のみであるが、この模擬計算では、撥水面を室Rに向
けた場合も算出した。明細書・図中、外気とは外部空間
OSのことである。
According to equation 7, the moving mass of water vapor at 21 ° C. obtained under 1 atm has a pressure due to the permeating mass of water vapor in the chamber according to each pressure ratio when the first, second and third membranes are arranged from the chamber R side. Suppose it changes. This relationship is expressed by Equation 7 as a pressure change corresponding to a change in the water vapor mass of the chamber R. As for the moving ratio, the pressure ratios of the respective conditions when the condition that the chamber R pressure is 1 are followed are calculated by the equation 7. From the above, the pressure ratio of the moving water vapor mass was calculated as a test condition of the model under the condition that the chamber R of 30 × 30 × 40 cm is 21 ° C. and the outer space OS pressure and the chamber R inner pressure are equal. It Since the ratio of this moving pressure is set to 1 in the chamber R, the mass of water vapor in the chamber R is calculated back by the moving mass of water vapor in the film portion connected to the chamber R. By this method,
When the water vapor pressure in the room R is 30% RH higher (95% R in the room R
H, external space OS 65% RH) and the case where the external space OS side is higher than the room R (50% RH in the room R,
The external space OS was 65% RH). In addition, the setting method of the film is only in the case where the water repellent surface is directed to the external space OS side in the model, but in this simulation calculation, the case where the water repellent surface is directed to the room R was also calculated. In the specification and drawings, the outside air is the external space OS.

【0026】図11は、室R内95%RH、外部空間O
S65%RH、21℃の圧力比率を示す。図12は、室
R内65%RH、外部空間OS95%RH、21℃の圧
力比率を示す。図13は室R内95%RH、外部空間O
S65%RHでモデルとは逆の膜の配置を仮定し、3種
類の全ての膜の撥水面を室R側に向けた場合を示す。以
上から、室R内湿度を95%RHから湿度減少が発生す
る場合と、室R内湿度65%RHに外部空間OS95%
RHから湿度増加の場合を、それぞれの条件の室R内の
水蒸気質量を初期値として求めた。その結果を図14,
15に示す。図14は室R内95%RH外部空間OS6
5%RH、21℃から始め、3種類の膜の撥水面と不織
布面を外部空間OS側に向けた場合の2種類を示した。
図15は室R内65%RH外部空間OS95%RH、2
1℃から始め、外部空間OSから室R内へ水蒸気が侵入
する状態を示し、外部空間OS側に3種類の膜の撥水面
を向けた場合を示す。また、それぞれ移動した水蒸気質
量が運ぶ熱量を考慮し、移動により変化する温度変化量
ならびにその圧力の補正を行った結果を示した。
FIG. 11 shows a room R with 95% RH and an external space O.
The pressure ratio of S65% RH and 21 ° C is shown. FIG. 12 shows the pressure ratio of the chamber R 65% RH, the external space OS 95% RH, and 21 ° C. Fig. 13 shows 95% RH in the room R and O in the external space
The case where the film arrangement opposite to the model is assumed at S65% RH and the water-repellent surfaces of all three types of films are directed to the chamber R side is shown. From the above, when the humidity in the room R decreases from 95% RH and when the humidity in the room R decreases to 65% RH, the external space OS 95%
When the humidity increased from RH, the mass of water vapor in the chamber R under each condition was determined as an initial value. The results are shown in Figure 14,
Shown in 15. Fig. 14 shows the 95% RH outside space OS6 in the room R
Starting from 5% RH and 21 ° C., two types are shown in the case where the water repellent surface and the non-woven fabric surface of the three kinds of films face the external space OS side.
Fig. 15 shows 65% RH in room R and 95% RH outside space OS, 2
Starting from 1 ° C., the state where water vapor enters the chamber R from the external space OS is shown, and the case where the water repellent surfaces of the three types of films are directed to the external space OS side is shown. In addition, considering the amount of heat carried by each moving steam mass, the results of correcting the temperature change amount and the pressure that change due to the movement are shown.

【0027】これらの模擬計算は、図11,12,13
の方向性を考えた合成式の水蒸気の移動質量の圧力比率
の合成圧力比率にたいして、数6から第1膜の水蒸気質
量を基準としたことから、合成圧力比率×第1膜の水蒸
気質量により求められる水蒸気の湿度として算出したも
のである。図16にモデル試験の結果を模擬した3種類
の膜とも撥水面を外部空間OSに向けた場合の、室R側
から外部空間OS方向への移動と、外部空間OSから室
R内への移動をまとめた。この図には、21℃の95%
RHと65%RHの呼吸現象が発生し、360min経
過後の水蒸気の移動結果として、双方の中間値を示し
た。この中間値は360min経過後の呼吸後の移動経
過を示すことになり、経過時間に対応する水蒸気の移動
特性を示す。また、これらの中間値の初期値と360m
in後[6時間後]の降下量を点線で結ぶと、約4.5
%RHの降下量が得られる。モデル試験結果のアクリル
製の試験室Rによる湿度変化を図17に、温度変化を図
18に示した。アクリル製の室Rでは、温度変化が保存
される傾向が強いが、金属製の室R特有の温度下降が発
生しにくい。モデル試験結果と数値シミュレーションの
結果による図16と比較すると、60分値に大きな差が
みられるが、360分経過後の湿度は、模擬計算の結果
では、約72%RHに対して、モデルでは約76%RH
を示している。図16の模擬計算結果は、膜を通過する
水蒸気の移動に伴った熱の移動質量を補正しているの
で、モデルの結果と近似した条件と考えられる。図16
に使用した資料は、各膜の透湿度と透気度測定による測
定結果にもとづく水蒸気の65%RHの移動質量であ
り、十分な熱交換が行なわれた環境の測定結果である。
また、膜のみの測定結果であるから、小室による対流や
輻射などの移動の抵抗要素は含まれない。
These simulated calculations are shown in FIGS.
The synthetic pressure ratio of the moving mass pressure ratio of the steam of the synthetic formula considering the directionality of It is calculated as the humidity of the generated water vapor. In FIG. 16, when the water-repellent surface of all three types of films simulating the results of the model test is directed to the external space OS, movement from the room R side to the external space OS direction and movement from the external space OS into the room R are performed. Summarized. In this figure, 95% at 21 ° C
Respiration phenomena of RH and 65% RH occurred, and as a result of movement of water vapor after a lapse of 360 minutes, an intermediate value between them was shown. This intermediate value indicates the progress of movement after breathing after the lapse of 360 minutes, and shows the movement characteristic of water vapor corresponding to the elapsed time. Also, the initial value of these intermediate values and 360 m
When the amount of descent after [in 6 hours] is connected with a dotted line, it is about 4.5.
% RH drop is obtained. FIG. 17 shows the humidity change in the acrylic test chamber R of the model test results, and FIG. 18 shows the temperature change. In the acrylic chamber R, there is a strong tendency for the temperature change to be preserved, but the temperature drop peculiar to the metallic chamber R does not easily occur. Compared to the model test result and the numerical simulation result shown in FIG. 16, there is a large difference in the 60-minute value, but the humidity after 360 minutes has elapsed is about 72% RH in the simulated calculation result, but in the model, About 76% RH
Is shown. The simulated calculation result of FIG. 16 is considered to be a condition similar to the result of the model because the moving mass of heat accompanying the movement of water vapor passing through the membrane is corrected. FIG.
The data used for the above is the moving mass of water vapor of 65% RH based on the measurement result of the moisture permeability and the air permeability of each film, and is the measurement result of the environment in which sufficient heat exchange was performed.
In addition, since the measurement results are for only the film, resistance elements for movement such as convection and radiation due to small chambers are not included.

【0028】しかし、モデルでは小室内の移動の阻害要
素として、小室内の対流や輻射、通気路構造物の熱伝導
による通気抵抗の要素が加わる。また、図18に見られ
るような水蒸気の移動に伴う各部の温度変動は、図16
には含まれない。試算した湿度降下量は、モデルによる
試験結果よりも、初期の変化量は大きい。また降下曲線
の形状がより急峻であり、モデルでは緩やかな変化をと
げている。図16に示した模擬計算結果は、移動抵抗が
全く無い場合の計算結果による水蒸気の挙動を示してい
る。模擬計算の前提は、全ての膜で同時に移動が発生す
ることを仮定しているが、実際の水蒸気の移動は数3か
ら考えて、同時に生じないことが考えられる。しかし、
各移動の境界部となる、透湿膜の間を隔てる小室SR
1,SR2内の移動を、模擬的に再現する方法は複雑で
ある。そこで、この方法を用いて、水蒸気移動制御装置
CHDの呼吸経過にある基本的な水蒸気の移動特性を算
出した。また、外部空間OS方向への移動方向では、熱
量は外部空間OSに開放されるが、室R方向へは熱量は
蓄積される移動方向となる。室Rの温度特性は、呼吸の
通気路の片端が室Rに接続されているために、温度変化
は圧力変化に影響するものと考えられる。しかし、熱の
移動を考えるときには、まず室Rの温度特性を除外し
て、調湿特性を得る方が簡便である。図17のモデル試
験に使用した室Rは、アクリル樹脂製であり、比熱は水
よりも大きく、通気路の小室内の移動経過や、室R内の
移動経過中の熱交換に影響を及ぼすことが考えられる。
図19に温度補正と水蒸気圧補正の手順を示す。図20
は、実施例の第1,第2,第3の膜F1,F2,F3の
断面説明図である。図21に実施例の水蒸気移動制御装
置による調湿状態を示している。
However, in the model, the elements of the ventilation resistance due to the convection and radiation in the small chamber and the heat conduction of the ventilation passage structure are added as the factors for inhibiting the movement in the small chamber. In addition, as shown in FIG. 18, the temperature fluctuation of each part due to the movement of water vapor is shown in FIG.
Not included in. The calculated humidity drop has a larger initial change than the model test results. The shape of the descent curve is steeper, and the model shows a gradual change. The simulation calculation result shown in FIG. 16 shows the behavior of water vapor according to the calculation result when there is no transfer resistance. The premise of the simulation calculation is that it is assumed that the movements occur simultaneously in all the membranes, but it is considered that the actual movements of water vapor do not occur at the same time, considering from Equation 3. But,
Small room SR that separates the moisture permeable membrane, which is the boundary of each movement
1, the method of simulating the movement in SR2 is complicated. Therefore, this method was used to calculate the basic movement characteristics of water vapor in the breathing process of the water vapor movement control device CHD. Further, in the moving direction toward the external space OS, the amount of heat is released to the external space OS, but toward the room R, the amount of heat is the moving direction in which the amount of heat is accumulated. Regarding the temperature characteristics of the chamber R, it is considered that the temperature change influences the pressure change because one end of the breathing air passage is connected to the chamber R. However, when considering the transfer of heat, it is easier to first exclude the temperature characteristic of the chamber R and obtain the humidity control characteristic. The room R used in the model test of FIG. 17 is made of acrylic resin, and has a specific heat larger than that of water, which may affect the movement process of the ventilation passage in the small chamber and the heat exchange during the movement process of the room R. Can be considered.
FIG. 19 shows the procedure for temperature correction and water vapor pressure correction. Figure 20
[FIG. 3] is a cross-sectional explanatory diagram of first, second, and third films F1, F2, F3 of the example. FIG. 21 shows a humidity control state by the water vapor transfer control device of the embodiment.

【0029】物質移動を考察するために、良く用いられ
る有限要素法では、理想モデルを構築しその数学モデル
から離散モデルを説明する手法が用いられる。そのなか
で、理想モデルの構築は、これらの基礎的な課題であり
重要な位置を占める。外部空間OSを交流電源と考えた
場合には、外部空間OS条件にたいする室R内の変化を
粗方予測することができる。また、直流電源として考え
た場合のモデルによって、一定温度と湿度条件の応答特
性が得られるが、実際には発生する熱移動の物質の質量
や熱伝導率などの影響による伝達遅れは含まれてない。
尚、本実施例では膜の配列を変えたときは、その配列で
第1,2,3膜を決めて、前記手順で計算することでそ
の膜の配列の水蒸気移動の特性が分かる。
In order to consider mass transfer, a finite element method often used is a method of constructing an ideal model and explaining the discrete model from the mathematical model. Among them, the construction of the ideal model is one of these basic issues and occupies an important position. When the external space OS is considered as an AC power source, it is possible to roughly predict the change in the room R with respect to the external space OS condition. In addition, the response characteristics under constant temperature and humidity conditions can be obtained by considering the model as a DC power supply, but in actuality, the transmission delay due to the influence of the mass and thermal conductivity of the generated heat transfer substance is included. Absent.
In this example, when the arrangement of the membranes is changed, the first, second, and third membranes are determined by the arrangement, and the vapor migration characteristics of the arrangement of the membranes can be known by performing the calculation in the above procedure.

【0030】[0030]

【発明の効果】以上の様に、本発明によれば透湿膜の透
湿特性を正確に評価できる等圧等温における等水蒸気分
圧における水蒸気の移動質量及び3枚の透湿膜を用いた
水蒸気移動制御装置の水蒸気の移動質量の圧力比率を算
出でき、調湿の設計の基準とすることができる。
As described above, according to the present invention, the moving mass of water vapor and the three water vapor permeable membranes under the isobaric water vapor partial pressure under the isobaric isothermal conditions, which can accurately evaluate the vapor permeation property of the vapor permeable film, are used. The pressure ratio of the moving mass of water vapor of the water vapor movement control device can be calculated and can be used as a reference for designing humidity control.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の水蒸気移動制御装置による水蒸気移動
制御を示す説明図である。
FIG. 1 is an explanatory diagram showing water vapor movement control by a water vapor movement control device according to an embodiment.

【図2】透湿膜の移動方向による水蒸気の移動質量の時
間変化図である。
FIG. 2 is a time change diagram of a moving mass of water vapor depending on a moving direction of a moisture permeable membrane.

【図3】透湿膜の移動方向による水蒸気の移動質量の時
間変化図である。
FIG. 3 is a time change diagram of a moving mass of water vapor depending on a moving direction of a moisture permeable membrane.

【図4】本発明の原理説明の為の説明図である。FIG. 4 is an explanatory diagram for explaining the principle of the present invention.

【図5】本発明の原理説明の為の説明図である。FIG. 5 is an explanatory diagram for explaining the principle of the present invention.

【図6】本発明の原理説明の為の説明図である。FIG. 6 is an explanatory diagram for explaining the principle of the present invention.

【図7】本発明の原理説明の為の説明図である。FIG. 7 is an explanatory diagram for explaining the principle of the present invention.

【図8】65%RHの水蒸気の移動質量の時間変化図で
ある。
FIG. 8 is a time change diagram of moving mass of water vapor of 65% RH.

【図9】膜の水蒸気の65%RHの測定結果を使用し室
内外の湿度の増圧因子と考える説明図である。
FIG. 9 is an explanatory diagram in which the measurement result of 65% RH of water vapor in a film is used as a pressure increasing factor for indoor and outdoor humidity.

【図10】水蒸気の移動質量の差を形成する境界面の水
蒸気の移動質量を示す説明図である。
FIG. 10 is an explanatory diagram showing a moving mass of water vapor on a boundary surface forming a difference in moving mass of water vapor.

【図11】室内95%RH外気65%RH,21℃の水
蒸気の移動質量の圧力比率の時間変化図である。
FIG. 11 is a time change diagram of the pressure ratio of the moving mass of water vapor at room temperature 95% RH, outside air 65% RH, and 21 ° C.

【図12】室内65%RH外気95%RH,21℃の水
蒸気の移動質量の圧力比率の時間変化図である。
FIG. 12 is a time change diagram of the pressure ratio of the moving mass of water vapor at 65% RH in the room, 95% RH in the outside air, and 21 ° C.

【図13】室内95%RH外気65%RH,21℃の水
蒸気の移動質量の圧力比率の時間変化図である。
FIG. 13 is a time change diagram of the pressure ratio of the moving mass of water vapor at room temperature 95% RH, outside air 65% RH, and 21 ° C.

【図14】室内95%RH外気65%RH,21℃の外
気側に撥水面を向けた場合と不織布面を向けた場合の相
対湿度の時間変化図である。
FIG. 14 is a time change diagram of relative humidity when the water repellent surface is directed to the outside air side of the room 95% RH and the outside air is 65% RH and 21 ° C. and the nonwoven fabric surface is directed.

【図15】室内65%RH外気95%RH,21℃の外
気側に撥水面を向けた場合の室内の相対湿度の時間変化
図である。
FIG. 15 is a time change diagram of relative humidity in the room when the water repellent surface is directed to the outside air side of the room 65% RH outside air 95% RH, 21 ° C.

【図16】室内95%RH外気65%RH,21℃の場
合と室内65%RH外気95%RH,21℃の場合の室
内の相対湿度の時間変化図である。中間値は時間経過に
よる調湿の能力を示す。
FIG. 16 is a time change diagram of relative humidity in the room when the indoor 95% RH outdoor air is 65% RH and 21 ° C. and when the indoor 65% RH outdoor air is 95% RH and 21 ° C. The median value indicates the humidity control ability over time.

【図17】外気21℃65%RH室内加湿のアクリル箱
体の室内の相対湿度の時間変化図である。
FIG. 17 is a time change diagram of the relative humidity in the room of an acrylic box body humidified in the outside air of 21 ° C. and 65% RH.

【図18】外気21℃65%RH室内加湿のアクリル箱
体の室内の温度の時間変化図である。
FIG. 18 is a time change diagram of the room temperature of the acrylic box body humidified in the outside air of 21 ° C. and 65% RH.

【図19】本実施例における温度補正と水蒸気圧補正と
の手順を示す説明図である。
FIG. 19 is an explanatory diagram showing a procedure of temperature correction and water vapor pressure correction in the present embodiment.

【図20】実施例の第1,第2,第3の透湿膜の断面説
明図である。
FIG. 20 is a cross-sectional explanatory view of first, second, and third moisture permeable membranes of the example.

【図21】実施例の水蒸気移動制御装置の調湿状態を示
す説明図である。
FIG. 21 is an explanatory diagram showing a humidity control state of the water vapor transfer control device according to the embodiment.

【符号の説明】[Explanation of symbols]

R 室 RS 室空間 OS 外部空間 CHS 水蒸気移動制御装置 AP 通気路 F1 第1膜 F2 第2膜 F3 第3膜 SR1,SR2 小室 R room RS room space OS external space CHS steam transfer control device AP air passage F1 first film F2 second film F3 Third film SR1, SR2 small room

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度が−30℃〜150℃,圧力が0.
5〜800mmHgの範囲の等圧等温の二つの空間の通
気路に検査する透湿膜を取付け、一方の空間の相対湿度
を膜特性検査の設定相対湿度RHsとし、他方の空間の
相対湿度をそれより高い相対湿度RHhとして膜を介し
ての水蒸気の移動質量mvhを時間とともに計測し、次に
他方の空間の相対湿度を設定相対湿度RHsより低い相
対湿度RHlとして膜を介しての水蒸気の移動質量mvl
を時間とともに計測し、他方の空間が一方の空間と同じ
設定相対湿度RHsのときの水蒸気の移動質量mvを下式
数1によって算出する、膜の両側の空間が等圧等温で同
じ水蒸気分圧における透湿膜の水蒸気の移動質量の算出
法。 【数1】
1. A temperature of −30 ° C. to 150 ° C. and a pressure of 0.
A moisture permeable membrane to be inspected is attached to the air passages of two spaces of equal pressure and isotherm in the range of 5 to 800 mmHg, and the relative humidity of one space is set as the set relative humidity RH s of the film characteristic inspection, and the relative humidity of the other space is set. The moving mass m vh of water vapor through the membrane is measured over time as a higher relative humidity RH h , and then the relative humidity of the other space is measured through the membrane as a relative humidity RH l lower than the set relative humidity RH s. Moving mass of water vapor m vl
Is calculated with time, and the moving mass m v of water vapor when the other space has the same set relative humidity RH s as the one space is calculated by the following mathematical formula 1. A method for calculating the moving mass of water vapor in a moisture permeable membrane at partial pressure. [Equation 1]
【請求項2】 調湿する室空間と湿度・温度が変動する
外部空間とを連通する通気路を設け、同通気路に少なく
とも三つの透湿膜の第1膜,第2膜,第3膜を所定間隔
離して設けて膜間に小室を少なくとも二つ形成し、通気
路と透湿膜と小室とで水蒸気移動制御装置を構成し、同
水蒸気移動制御装置によって二つの空間間の水蒸気の移
動質量を制御して室内の湿度を調整する透湿膜を用いた
水蒸気移動制御装置において、外部空間の平均的圧力と
平均的温度の等圧等温における平均的な相対湿度を設定
相対湿度とする各透湿膜の移動質量mv1,mv2,mv3
透湿膜の外部空間に面する膜面が一方の空間に面するよ
うに取付けて請求項1の水蒸気の移動質量の算出法に基
づいて算出し、次に下式数2によって各透湿膜の水蒸気
の移動質量の圧力比率を算出する、水蒸気移動制御装置
の透湿膜の水蒸気の移動質量の圧力比率の算出法。 【数2】
2. A ventilation passage that connects a chamber space for humidity control and an external space in which humidity and temperature fluctuate are provided, and at least three first, second and third moisture-permeable membranes are provided in the ventilation passage. At least two small chambers are formed between the membranes by separating them by a predetermined distance, and a water vapor transfer control device is configured by the air passage, the moisture permeable membrane and the small chambers, and the water vapor transfer control device transfers the water vapor between the two spaces. In a water vapor movement control device using a moisture permeable membrane to control the mass to control the humidity in the room, the average relative humidity in the isobar of the average pressure of the external space and the average temperature is set as the set relative humidity. The moving masses m v1 , m v2 , m v3 of the moisture permeable membrane are attached so that the membrane surface of the moisture permeable membrane facing the outer space faces one space. And then the moving mass pressure of water vapor in each moisture permeable membrane Calculating the rate, calculation method of the pressure ratio of the moving mass of water vapor moisture permeable membrane steam movement controller. [Equation 2]
JP2002079600A 2002-02-26 2002-03-20 Calculation method of moisture permeability of moisture permeable membrane Expired - Lifetime JP4097441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079600A JP4097441B2 (en) 2002-02-26 2002-03-20 Calculation method of moisture permeability of moisture permeable membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002050435 2002-02-26
JP2002-50435 2002-02-26
JP2002079600A JP4097441B2 (en) 2002-02-26 2002-03-20 Calculation method of moisture permeability of moisture permeable membrane

Publications (2)

Publication Number Publication Date
JP2003322605A true JP2003322605A (en) 2003-11-14
JP4097441B2 JP4097441B2 (en) 2008-06-11

Family

ID=29552002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079600A Expired - Lifetime JP4097441B2 (en) 2002-02-26 2002-03-20 Calculation method of moisture permeability of moisture permeable membrane

Country Status (1)

Country Link
JP (1) JP4097441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059658A1 (en) * 2004-12-03 2006-06-08 Asahi Kasei Chemicals Corporation Method of estimating stabilized membrane filtering flux
FR2890741A1 (en) * 2005-09-09 2007-03-16 Centre Nat Rech Scient Dynamic grading procedure for metallic membrane vis-a-vis hydrogen permeation uses application of hydrogen under pressure and comparison of results with mathematical model
CN102621048A (en) * 2011-01-28 2012-08-01 三菱综合材料株式会社 Method for evaluating vapor blocking performance
CN105466835A (en) * 2015-12-23 2016-04-06 华东交通大学 Method for clay inter-particle pore equivalent pore size
JP7349478B2 (en) 2021-08-20 2023-09-22 株式会社東洋精機製作所 Water vapor permeability measuring method and water vapor permeability measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059658A1 (en) * 2004-12-03 2006-06-08 Asahi Kasei Chemicals Corporation Method of estimating stabilized membrane filtering flux
JPWO2006059658A1 (en) * 2004-12-03 2008-06-05 旭化成ケミカルズ株式会社 Method for estimating stable membrane filtration flux
KR100877499B1 (en) * 2004-12-03 2009-01-07 아사히 가세이 케미칼즈 가부시키가이샤 Method of estimating stabilized membrane filtering flux
JP5072366B2 (en) * 2004-12-03 2012-11-14 旭化成ケミカルズ株式会社 Method for estimating stable membrane filtration flux
US9492791B2 (en) 2004-12-03 2016-11-15 Asahi Kasei Chemicals Corporation Method of estimating stable state membrane filtration flux
FR2890741A1 (en) * 2005-09-09 2007-03-16 Centre Nat Rech Scient Dynamic grading procedure for metallic membrane vis-a-vis hydrogen permeation uses application of hydrogen under pressure and comparison of results with mathematical model
CN102621048A (en) * 2011-01-28 2012-08-01 三菱综合材料株式会社 Method for evaluating vapor blocking performance
JP2012154865A (en) * 2011-01-28 2012-08-16 Mitsubishi Materials Corp Evaluation method of steam barrier property
CN105466835A (en) * 2015-12-23 2016-04-06 华东交通大学 Method for clay inter-particle pore equivalent pore size
JP7349478B2 (en) 2021-08-20 2023-09-22 株式会社東洋精機製作所 Water vapor permeability measuring method and water vapor permeability measuring device

Also Published As

Publication number Publication date
JP4097441B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
Ge et al. Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger (LAMEE) when used for air dehumidification and salt solution regeneration
Moghaddam et al. Numerical model of a small-scale liquid-to-air membrane energy exchanger: Parametric study of membrane resistance and air side convective heat transfer coefficient
Li et al. Experimental study on heat and mass transfer characteristics for a desiccant-coated fin-tube heat exchanger
Liu et al. Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates
Moghaddam et al. Small-scale single-panel liquid-to-air membrane energy exchanger (LAMEE) test facility development, commissioning and evaluating the steady-state performance
CN104501360B (en) Air-conditioner and its dehumidification control method
Valarezo et al. Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons
Zhang Heat and mass transfer in plate-fin enthalpy exchangers with different plate and fin materials
Simonson et al. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: Part I–field measurements
Abdel-Salam Experimental study of effects of phase-change energy and operating parameters on performances of two-fluid and three-fluid liquid-to-air membrane energy exchangers
Lee et al. Modeling and verification of heat and moisture transfer in an enthalpy exchanger made of paper membrane
CN109781783B (en) Multifunctional heat and humidity characteristic synchronous test experiment table
Chen et al. An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system
JP2007010231A (en) Humidity conditioner
JP2003322605A (en) Method of calculation for moisture permeable characteristics of moisture permeable film
Beriault Run-around membrane energy exchanger prototype 4 design and laboratory testing
Jones Modelling water vapour conditions in buildings
Xu et al. A novel humidity measuring method based on dry-bulb temperatures using artificial neural network
Ghadiri Moghaddam et al. Steady-state performance of a prototype (200 CFM) liquid-to-air membrane energy exchanger (LAMEE) under summer and winter test conditions
Navid et al. An analytical model for predicting frosting limit in membranes
Dubois et al. Hygrothermal modelling of Lime-Hemp concrete used as building material and indoor climate buffering characterization.
Erb Run-around membrane energy exchanger performance and operational control strategies
Mesquita Analysis of a flat-plate, liquid-desiccant, dehumidifier and regenerator
Meissner et al. A full-scale experimental set-up for evaluating the moisture buffer effects of porous material
Jaszczur et al. Analysis of the temperature, humidity, and total efficiency of the air handling unit with a periodic counterflow heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040708

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050204

A521 Written amendment

Effective date: 20050401

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

A61 First payment of annual fees (during grant procedure)

Effective date: 20080311

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120321

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5