JP2003322503A - High-speed shearing heterodyne interferometer - Google Patents

High-speed shearing heterodyne interferometer

Info

Publication number
JP2003322503A
JP2003322503A JP2002167903A JP2002167903A JP2003322503A JP 2003322503 A JP2003322503 A JP 2003322503A JP 2002167903 A JP2002167903 A JP 2002167903A JP 2002167903 A JP2002167903 A JP 2002167903A JP 2003322503 A JP2003322503 A JP 2003322503A
Authority
JP
Japan
Prior art keywords
light
flux
fluxes
polarization
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167903A
Other languages
Japanese (ja)
Inventor
Norito Suzuki
範人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002167903A priority Critical patent/JP2003322503A/en
Publication of JP2003322503A publication Critical patent/JP2003322503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform multipoint parallel data processing in order to measure the area degree of a wide area at a high speed with sensitivity of nanometer or sub-nanometer. <P>SOLUTION: The measurement is performed by a three-point shearing heterodyne method using an orthogonal two-frequency laser, and two beams are required therefor. This three-point shearing heterodyne interferometer having multi-scanning lines for performing parallel data processing is constituted by arranging the two beams in parallel and by forming many three-point pairs by using a linear multiple-beam divider (special diffraction grating). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は真の平面からのずれ
即ち平面度をナノメータからサブナノメータの感度でし
かもデータの多点列の並列処理により速い速度で測定す
る装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring deviation from a true plane, that is, flatness, with sensitivity of nanometer to sub-nanometer, and at high speed by parallel processing of multipoint sequences of data.

【0002】[0002]

【従来の技術】面上の3点の高低差をヘテロダイン干渉
測定法により測定し、基準面を用いることなく、平面度
を測定する方法の1つとして2個の偏光分岐素子を用い
る3点シヤリング干渉計が開発されていた。
2. Description of the Related Art Three-point shearing using two polarization splitting elements is one of the methods for measuring the level difference of three points on a surface by heterodyne interferometry and measuring the flatness without using a reference plane. An interferometer was being developed.

【0003】しかし測定面内の一点の寸法が数十マイク
ロメータ四角位になることが多く、そうなると点の総数
は膨大の量になり、そのため多数組の並列データ処理が
望まれるが、並列処理の実現は困難で、その原因の一つ
は光の合波や分割のため多くの無偏光ビーム合割器を使
うことを余儀なくされ、それによって不要ポート(以下
ダミーポートと呼ぶ)の数が増加して光の利用率が下が
るという処にあった。
However, the size of one point in the measurement plane is often several tens of micrometers square, and the total number of points becomes enormous. Therefore, a large number of sets of parallel data processing are desired. This is difficult to achieve, and one of the causes is the necessity of using many non-polarized beam splitters for multiplexing and splitting light, which increases the number of unnecessary ports (hereinafter referred to as dummy ports). The light utilization rate was declining.

【0004】[0004]

【発明が解決しようとする課題】本発明の第1の課題は
3点を如何にして多数組の点列にするかということ、第
2は無偏光ビーム分割器の不要な光を射出するダミーポ
ートの数を減少させ、現実的な並列データ処理が出来る
3点ヘテロダイン干渉計を構成することを課題とする。
The first problem of the present invention is how to make three points into a series of point sequences, and the second is a dummy for emitting unnecessary light of the non-polarization beam splitter. It is an object to construct a three-point heterodyne interferometer capable of realistic parallel data processing by reducing the number of ports.

【0005】[0005]

【問題を解決するための手段】2周波レーザ光を光音響
子で周波数の異なる2つの光束に分離してヘテロダイン
光をつくるという手法を、本発明では基本的な手法に組
込んでいるが、光音響子の周波数の異なる光は必ず並行
からずれた光となっている。今、ここで光学素子を並べ
る面をx、y面すなわちインプレインとしx、y面の法
線方向をzとすると、光音響子の次数のちがいによる光
束の方向はインプレイン内で異なった方向となるが、こ
れをz軸方向に分散方向を持つ線型多光束分割素子に入
射すると、現象は斜入射光のため複雑になる。従って本
発明の2つの光路はインプレイン内では出来るだけ平行
を保つものとする。偏光分岐素子の分岐はインプレイン
内で起こるが、この分岐点に線型多光束分割素子の実像
をつくる。この結像はz軸を含む面内で行なわれる。従
ってレンズはシリンドリカルレンズとなる。偏光分岐素
子にはロシヨンプリズムを用いることにする。線型多光
束分割素子としては例えば「TELEDYNE BRO
WN」社の「MUTIBEAM SPLITTERS−
Linear patterns 3−13spot
s」が発売されているのでこれを用いることにする。以
上のような線型多光束分割素子および光学系を用いるこ
とにより、試料面上にインプレインでは3点、それに直
交したz軸方向では多点の列が出来、列の数だけの並列
データ処理が出来ることになる。
In the present invention, a method of separating a two-frequency laser light into two light fluxes having different frequencies by a photoacoustic element to form a heterodyne light is incorporated in the basic method. Light with different frequencies of photoacoustic elements is always shifted from parallel. Now, assuming that the surfaces on which the optical elements are arranged are x and y surfaces, that is, in-planes, and the normal direction of the x and y surfaces is z, the directions of the light beams due to different order of the photoacoustic elements are different directions in the in-planes. However, when this is incident on a linear multi-beam splitting element having a dispersion direction in the z-axis direction, the phenomenon becomes complicated due to obliquely incident light. Therefore, the two optical paths of the present invention should be kept as parallel as possible in the in-plane. The splitting of the polarization splitting element occurs in the in-plane, and a real image of the linear multi-beam splitting element is formed at this splitting point. This image formation is performed in a plane including the z axis. Therefore, the lens becomes a cylindrical lens. A polarization prism will be used as the polarization splitting element. As the linear multi-beam splitting element, for example, "TELEDYNE BRO
WN's "MUTIBEAM SPLITTERS-
Linear patterns 3-13 spot
"s" is on sale, so I will use it. By using the linear multi-beam splitting element and the optical system as described above, a line of three points can be formed on the sample surface in the in-plane, and a multi-point line can be formed in the z-axis direction orthogonal to the in-plane, and parallel data processing can be performed by the number of lines. It will be possible.

【0006】一方、ビーム分割器のダミーボートの数を
減少させる方法として試料による反射光を入射光とは別
の光路で取り出して使用できる型の光アイソレータを用
いる方式を用いることにより解決した。しかし、該アイ
ソレータには大型偏光変位素子(方解石、ルチル等)や
フアラデー素子など入手のむつかしい素子を用いる必要
があるので、それを用いない形式を請求項2で構成し
た。
On the other hand, as a method of reducing the number of dummy boats of the beam splitter, a method using an optical isolator of a type in which the reflected light from the sample can be taken out in an optical path different from the incident light and used is solved. However, since it is necessary to use a difficult-to-obtain element such as a large-sized polarization displacement element (calcite, rutile, etc.) or a Faraday element for the isolator, a form not using it is defined in claim 2.

【0007】[0007]

【発明の実施の形態】以下本発明の実施の形態を図面を
用いて説明する図1はz軸を含む面内における光学系の
説明図である。 線型多光束分割器7の回折光である
平行光束が1対2の焦点距離を持つ2倍のテレスコピツ
ク系で結像されるとした例で、シリドリカルレンズで、
共役点である偏光分岐素子の分岐点では光束の巾が2
倍、交鎖角が1/2の平行光束となること、さらに、こ
の光束は図2のレンズ4により試料面にz軸に沿った点
列をつくることを示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of an optical system in a plane including the z-axis. In the example in which the parallel light flux, which is the diffracted light of the linear multi-beam splitter 7, is imaged by a telescopic system having a focal length of 1: 2, a cylindrical lens is used.
At the branch point of the polarization splitting element, which is the conjugate point, the width of the light beam is 2
2 shows that the light flux becomes a parallel light flux with a cross chain angle of 1/2, and that this light flux forms a series of points along the z-axis on the sample surface by the lens 4 in FIG.

【0008】図2はインプレインでかかれた本発明の実
施の形態である。直交2周波レーザ光源9の光(f
)は光音響子8により周波数シフトをうける。回折
次数が1次だけ異なる光のシフト量は光音響子の駆動周
波数Δfに等しい。ここではシフトの無い光束をB、周
波数シフトされた光束をAとしている。鏡等により光束
A、光束Bが互いに平行になるようにし、線型多光束分
割器7でz方向に分散(隣り合った分散角は10−3
ad以下)され、小さい巾の鏡26で曲げられ光アイソ
レータに入る。このアイソレータはすでに知られている
ものであるが説明を加える。直交2周波光の偏光の水平
偏光すなわちH偏光は第1の偏光変位素子方解石22で
異常光線となり斜行する(ウオークオフ)。垂直偏光す
なわちV偏光は常光線となり直進する。その後フアラデ
ー素子で45°旋光、その後の2分の1波長板(λ
板)20(方位22.5°)で45°の旋光を行なうこ
とを加味して常光線、異常光線の入れ換りが起って第2
の偏光変位素子19に入りその出力は直交2周波の2つ
の光束となる。反射光についてはλ板で−45°の
旋光を行ないさらにフラデー素子が加算的に45°の旋
光を行なうので復路の偏光は往路の偏光と方位が90°
異なる。そのため第1の偏光変位素子においては図示の
ようなウオークオフとなり、V偏光の2光束は直進、H
偏光の2光束は大きくウオークオフを行ない、鏡26を
挟む形で戻る。この戻った光束A、光束BのH成分はP
BS23の透過光として、光束A、光束BのV偏光はP
BS23の反射光として合成すれば光束A、光束Bは共
に直交2周波光にもどりPBS23から出る。この2つ
の光束はインプレインの図で見たものでz軸を含む面つ
まりオフプレインの図で見るとすると光束A、光束B共
に進行方向の異なる多くの平行光束群から成っている。
ここでそれらを光束A群、光束B群と呼ぶと、両光束群
の各々の偏光の電界が偏光子24で重ねられて光束A群
の光ビート群はスリット13光フアイバー群17を通
じ、光束B群の光ビート群はスリット12光フアイバー
群18を通じ検知器14、および15で検知され、光音
響子の周波数Δfを除去するためのローパスフィルター
群29を通した後、参照光ビートの周波数の位相差が、
位相計群30によって求められる。参照光ビートはレー
ザ光をガラス板28で取り出し、偏光子25を通して検
知器16で求める。ビーム分割器3は1つダミーポート
を持っている。インプレインで分岐合波された3つの平
行光束等は、分岐点と試料面32を前、後の焦点とする
集光レンズ4で中心軸が平行でありかつ試料面に収束す
る光束に変換される。
FIG. 2 shows an embodiment of the present invention written in an in-plane form. Light of the orthogonal dual-frequency laser light source 9 (f 1 ,
f 2 ) is frequency-shifted by the photoacoustic element 8. The shift amount of light whose diffraction orders differ by only the first order is equal to the driving frequency Δf of the photoacoustic element. Here, the light beam without shift is B, and the light beam whose frequency is shifted is A. The light flux A and the light flux B are made parallel to each other by a mirror or the like, and are dispersed in the z direction by the linear multi-beam splitter 7 (adjacent dispersion angles are 10 −3 r
ad) and bent by a small width mirror 26 to enter the optical isolator. This isolator is already known, but will be described. The horizontal polarization of the orthogonal dual-frequency light, that is, the H polarization, becomes an extraordinary ray in the first polarization displacement element calcite 22 and obliquely travels (walk-off). Vertically polarized light, that is, V polarized light becomes an ordinary ray and goes straight. After that, the Faraday element rotated 45 °, and then the half-wave plate ( λ / 2
In consideration of the rotation of 45 ° at 20) (azimuth 22.5 °), the exchange of ordinary rays and extraordinary rays occurs.
Enters the polarization displacing element 19 and its output becomes two light beams of two orthogonal frequencies. Regarding the reflected light, the λ / 2 plate rotates −45 °, and the Faraday element additionally rotates 45 °, so that the return polarization is 90 ° in the forward polarization and the azimuth is 90 °.
different. Therefore, the first polarization displacement element has a walk-off as shown in the figure, and the two V-polarized light beams travel straight and H
The two polarized light beams largely walk off and return with the mirror 26 sandwiched therebetween. The H components of the returned luminous flux A and luminous flux B are P
As the transmitted light of the BS 23, the V polarized light of the light flux A and the light flux B is P
If combined as reflected light from the BS 23, both the light flux A and the light flux B return to the orthogonal dual frequency light and exit from the PBS 23. These two luminous fluxes are seen in the in-plane diagram, and when viewed in the plane including the z axis, that is, in the off-plane diagram, both the luminous flux A and the luminous flux B are composed of many parallel luminous flux groups having different traveling directions.
When they are referred to as a luminous flux group A and a luminous flux group B, the electric fields of the respective polarized light beams of both luminous flux groups are superposed by the polarizer 24, and the optical beat group of the luminous flux group A passes through the slit 13 optical fiber group 17 and the luminous flux B group. The optical beat group of the group is detected by the detectors 14 and 15 through the slit 12 optical fiber group 18, passes through the low pass filter group 29 for removing the frequency Δf of the photoacoustic element, and then the position of the frequency of the reference optical beat. The phase difference is
It is obtained by the phase meter group 30. The reference light beat is obtained by the detector 16 through the polarizer 25 by extracting the laser light from the glass plate 28. The beam splitter 3 has one dummy port. The three parallel light beams and the like that are branched and combined by the in-plane are converted into light beams whose central axes are parallel and converge on the sample surface by the condensing lens 4 whose front and rear focal points are the branch point and the sample surface 32. It

【0009】図2は測定点行列の表わす図であるが、検
知器群のn番目は点行のn番の情報すなわちS方向に走
引した際a、b、cの光路長差を求めることにな
る。
FIG. 2 is a diagram showing a measurement point matrix. The n-th detector group is the n-th information in the point row, that is, the optical path length differences a n , b n , and c n when scanning in the S direction. Will be asked.

【0010】図4は請求項2に係る実施の形態である。
図3における光アイソレータに用いられる素子19、2
0、21、22および光束A、Bの偏光の合波を行なう
PBS23が無くなりその代りビーム分割器30が加え
られている他は図3の実施の形態と全く同じである。ビ
ーム分割器30のダミーポートからは光が逃げて損失を
招くことは止むを得ない。ビーム分割器3も1つダミー
ポートを持っているのでこのシステムのダミーポートの
数は2個となる。
FIG. 4 shows an embodiment according to claim 2.
Elements 19 and 2 used in the optical isolator in FIG.
The embodiment is exactly the same as the embodiment of FIG. 3 except that the PBS 23 for combining the polarizations of the light fluxes 0, 21, 22 and the light fluxes A, B is eliminated and a beam splitter 30 is added instead. It is unavoidable that light escapes from the dummy port of the beam splitter 30 and causes a loss. Since the beam splitter 3 also has one dummy port, the number of dummy ports in this system is two.

【0011】[0011]

【発明の効果】走引線を多くして同時並列データ処理を
行なうことにより広い平面の平面度のナノメータ、サブ
ナノメータの測定を高い速度で行なうことができる。
By increasing the number of traverse lines and performing parallel data processing at the same time, it is possible to measure nanometers and sub-nanometers having a flatness of a wide plane at a high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の線型多光束分割に係る光学係の図で
ある。
FIG. 1 is a diagram of an optical system for linear multi-beam splitting according to the present invention.

【図2】 本発明の測定点列の図である。FIG. 2 is a diagram of a measurement point sequence of the present invention.

【図3】 本発明の実施の形態を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】 本発明の他の実施の形態を示す図である。FIG. 4 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2 ロシヨンプリズム 3、 ビーム分割器 4、 集光レンズ 5、6 シリンドリカルレンズ 7、 線型多光束分割器 8、 光音響子 9、 直交2周波数レーザ光源 10、11 結像レンズ 12、13 スリット 14、15 検知器群 16、 検知器 17、18 光フアイバー群 19、 第2の偏光変位素子 20、 2分の1波長数 21、 フアラデー素子 22、 第1の偏光変位素子(方解石あるいは
ルチル) 23、 PBS 24.25 偏光子 26、 小さい巾の鏡 27、 ロム 28、 全反射プリズム 29、 ローバスフィルター群 30、 位相差計群 31、 ガラス板 32、 試料面 a、b、c 測定点 n、 列番号 f、f 光の周波数 Δf 周波数差
1, 2 Rosyon prism 3, Beam splitter 4, Condensing lenses 5, 6 Cylindrical lens 7, Linear multi-beam splitter 8, Photoacoustic element 9, Orthogonal two-frequency laser light source 10, 11 Imaging lens 12, 13 Slit 14, 15 Detector group 16, Detector 17, 18 Optical fiber group 19, Second polarization displacing element 20, Half wave number 21, Faraday element 22, First polarization displacing element (calcite or rutile) 23 , PBS 24.25 Polarizer 26, small-width mirror 27, ROM 28, total reflection prism 29, low-pass filter group 30, retarder group 31, glass plate 32, sample surface a, b, c measurement point n, Column numbers f 1 and f 2 Light frequency Δf Frequency difference

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直交2周波レーザ光を光音響子の回折次数
の違い等の手法を用いて周波数の異なる光束Aと光束B
の2つの光束をつくり、該2つの光束をほぼ平行に並べ
た後、該平行に並べられた光束を線型多光束分割素子
(特殊回折格子)で分割せしめて2組の光束群をつく
り、該光束群を例えば第1の偏光変位素子、フアラデー
回転素子、2分の1波長板、および第2の偏光変位素子
で構成される等の光アイソレータを通過せしめ、それぞ
れの光束群の光を、直交する偏光に対し偏光方位により
2つの進行方向に分岐する機能を有する素子を通過せし
めたのち光束群のそれぞれの光束について、光束Aの光
の直交する2つの偏光のうち1つの偏光と光束Bの光の
直交する2つの偏光のうち1つの偏光の光束とが一致す
る如く合波して得られる合計3つの進行方向の異なる平
行光束を作る手段と、該3つの平行光束を中心軸が平行
である如き3つの収束する光束に変換する手段と、該光
束の収束点(焦点)に試料平面をおき、試料面の反射光
に対し例えば前記フアラデー素子等の出射面までは反射
光を入射光の光束の光路、すなわち、光束Aおよび光束
Bの光路を逆行せしめ、例えば第1の偏光変位素子等に
逆方向より入射せしめて、光束A、光束Bの常光線と異
常光線の分離を行なって入射光との隔離を行なった後、
分離した光束A、光束Bの偏光成分、すなわち、光束
A、Bの常光線同士と異常光線同士の合成を行なって直
交2周波の光束Aおよび光束Bをつくり、その後、それ
ぞれの光束の偏光の電界の重ね合わせを行なって2組の
光ビート群をつくり該2組の光ビート群と光源の光ビー
トとの間の位相差群を求める手段と、シリンドリカルレ
ンズ系により前記線型多光束分割素子の分割点と、前記
偏光方位により2つの進行方向分岐する素子の分岐点を
線型多光束分割素子の分割方向を含む面内において共役
な点対とすることを特徴とする平面度測定用高速シヤリ
ングヘテロダイン干渉計
1. A light beam A and a light beam B having different frequencies by using orthogonal two-frequency laser light by a method such as a difference in diffraction order of a photoacoustic element.
Of the two light fluxes, the two light fluxes are arranged substantially in parallel, and the light fluxes arranged in parallel are split by a linear multi-beam splitting element (special diffraction grating) to form two sets of light flux groups. The light flux groups are made to pass through an optical isolator such as a first polarization displacement element, a Faraday rotation element, a half-wave plate, and a second polarization displacement element, and the light of each flux group is orthogonalized. After passing through an element having a function of branching into two traveling directions depending on the polarization direction for the polarized light to be polarized, for each luminous flux of the luminous flux group, A means for forming a total of three parallel light fluxes having different traveling directions obtained by combining so that the light flux of one polarization of two orthogonal polarizations of light coincides with each other, and the three parallel light fluxes with their central axes parallel to each other. Three convergences as there are And a sample plane at the convergent point (focus point) of the light beam, and the reflected light of the sample surface, for example, the light path of the light beam of the incident light up to the emission surface of the Faraday element or the like, that is, , The optical paths of the light flux A and the light flux B are reversed, and, for example, the light is incident on the first polarization displacement element or the like from the opposite direction, and the ordinary ray and the extraordinary ray of the light flux A and the light flux B are separated to separate the incident light. After doing
The polarized components of the separated luminous fluxes A and B, that is, the ordinary rays of the luminous fluxes A and B and the extraordinary rays are combined to form a luminous flux A and a luminous flux B of orthogonal two frequencies, and thereafter, Means for obtaining two sets of optical beat groups by superimposing electric fields to obtain a phase difference group between the two sets of optical beat groups and the optical beat of the light source, and a cylindrical lens system for the linear multi-beam splitting element. A high-speed shearing heterodyne for flatness measurement, characterized in that a splitting point and a splitting point of an element that splits in two traveling directions according to the polarization direction are conjugate point pairs in a plane including a splitting direction of a linear multi-beam splitting element. Interferometer
【請求項2】請求項1における光アイソレータを用い
ず、1個のビーム分割器を用い、そのため不必要になっ
た光束Aの中の偏光(異常光線)と光束Bの中の偏光
(異常光線)同士、および他の偏光(常光線)同士を重
ねる手段をとり去った形で構成される平面度測定用高速
シヤリングヘテロダイン干渉計。
2. The optical isolator according to claim 1 is not used, and one beam splitter is used. Therefore, the polarized light in the light beam A (extraordinary ray) and the polarized light in the light beam B (extraordinary ray) are unnecessary. ) A high-speed shearing heterodyne interferometer for measuring flatness, which is formed by removing the means for overlapping each other and other polarized lights (ordinary rays).
JP2002167903A 2002-05-02 2002-05-02 High-speed shearing heterodyne interferometer Pending JP2003322503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167903A JP2003322503A (en) 2002-05-02 2002-05-02 High-speed shearing heterodyne interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167903A JP2003322503A (en) 2002-05-02 2002-05-02 High-speed shearing heterodyne interferometer

Publications (1)

Publication Number Publication Date
JP2003322503A true JP2003322503A (en) 2003-11-14

Family

ID=29545939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167903A Pending JP2003322503A (en) 2002-05-02 2002-05-02 High-speed shearing heterodyne interferometer

Country Status (1)

Country Link
JP (1) JP2003322503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730359C1 (en) * 2019-09-25 2020-08-21 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Method of multi-position laser cutting using diffraction optical elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730359C1 (en) * 2019-09-25 2020-08-21 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Method of multi-position laser cutting using diffraction optical elements

Similar Documents

Publication Publication Date Title
US9448488B2 (en) Off-axis alignment system and alignment method
US7821647B2 (en) Apparatus and method for measuring surface topography of an object
US7099014B2 (en) Apparatus and method for joint measurement of fields of scattered/reflected or transmitted orthogonally polarized beams by an object in interferometry
US7084983B2 (en) Interferometric confocal microscopy incorporating a pinhole array beam-splitter
US7483145B2 (en) Simultaneous phase shifting module for use in interferometry
US7023560B2 (en) Method and apparatus for dark field interferometric confocal microscopy
US20060039007A1 (en) Vibration-insensitive interferometer
JP2001512232A (en) Optical device used in image generating Fourier spectrometer and method of using the same
WO2004068186A2 (en) Interferometric confocal microscopy incorporating a pihnole array beam-splitter
US7561279B2 (en) Scanning simultaneous phase-shifting interferometer
JP2008039882A (en) Optical microscope and observation method
JP2007263748A (en) Optical interferometer
US20070188767A1 (en) Optics system for an interferometer
CN110235044B (en) Apparatus for improving resolution of laser scanning microscope
US9127924B2 (en) Interferometer
RU2638580C1 (en) Laser doppler velocity sensor
JP2003322503A (en) High-speed shearing heterodyne interferometer
US20120026507A1 (en) Interferometric system with reduced vibration sensitivity and related method
JP3416941B2 (en) Two-dimensional array type confocal optical device
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP2007292650A (en) Optical interferometer
RU2649045C2 (en) Multichannel confocal microscope
JPH0915503A (en) Differential interference microscope
WO2022050221A1 (en) Microscope
JP2003315006A (en) Sharing heterodyne interferometer