JP2003321623A - Method for producing inorganic pigment - Google Patents

Method for producing inorganic pigment

Info

Publication number
JP2003321623A
JP2003321623A JP2002129656A JP2002129656A JP2003321623A JP 2003321623 A JP2003321623 A JP 2003321623A JP 2002129656 A JP2002129656 A JP 2002129656A JP 2002129656 A JP2002129656 A JP 2002129656A JP 2003321623 A JP2003321623 A JP 2003321623A
Authority
JP
Japan
Prior art keywords
pigment
inorganic
colored
powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002129656A
Other languages
Japanese (ja)
Other versions
JP4057835B2 (en
Inventor
Nobutsugu Kawasaki
修嗣 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2002129656A priority Critical patent/JP4057835B2/en
Publication of JP2003321623A publication Critical patent/JP2003321623A/en
Application granted granted Critical
Publication of JP4057835B2 publication Critical patent/JP4057835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an inorganic pigment not containing noxious chromium or the like, and having similar sizes and a high chroma. <P>SOLUTION: (A) An inorganic powder obtained by covering the surface of a substrate particle with a coloring inorganic compound, and (B) an inorganic salt are mixed and heat-treated at a temperature not lower than the melting point and not higher than the boiling point of the inorganic salt. The ratio of the components (B)/(A) is ≥0.5. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、有害なクロム等を
含まず、大きさの揃った、彩度の高い無機顔料の製造方
法に関する。 【0002】 【従来技術】無機顔料は、有機顔料に比べて化学的に安
定であり、耐熱性や耐候性に優れていることから、化粧
品、紙、塗料、印刷、プラスチック、磁器等に広範に用
いられている。 【0003】しかしながら、無機顔料は、有機顔料に比
べて、鮮やかさに劣っているという問題があり、また、
有害なクロムや鉛が使用される場合が多い。従って、環
境に有害なクロムや鉛を使用せず、彩度の高い美麗な色
を有する無機顔料が望まれている。 【0004】従来、無機顔料の製造において、適当な原
料粉体を混合して製造する場合には、原料粉体を種々の
方法で成形後焼結、粉砕する方法が一般的である。この
ような製造方法では、粒子内部を含む全体を着色するた
めに、着色に必要な比較的高価な原料を多量に使用しな
ければ、十分に着色した彩度の高い無機顔料を得ること
ができない。さらに、焼結体を粉砕して無機顔料を得る
ために、無機顔料の形状が一定でなく、粒子径の分布が
広くなる等の問題もある。 【0005】 【発明が解決しようとする課題】上記問題を解決する一
つの方法として、比較的安価な原料を基体粒子とし、着
色に必要な比較的高価な原料を該基体粒子に被覆する方
法がある。例えば、特開平7−331110号では、水
熱合成により得られた板状アルミナに、アルミナと反応
して有色のスピネル酸化物を生じるCo、Ni、Mn、
Fe等の元素を含む化合物を被覆し、か焼することによ
り板状アルミナ顔料を製造する方法が開示されている。 【0006】しかしながら、被覆された化合物は反応性
を有するため、か焼する際に粒子同士が強固に結合し、
凝集する恐れがある。また、強固に結合した粒子を粉砕
する場合には、粒子表面に生成した有色のスピネル酸化
物が欠損する恐れがあり、大きさの揃った彩度の高い無
機顔料を得ることが困難であった。 【0007】 【課題を解決するための手段】本発明は上記の問題点を
解決するために、鋭意研究を重ねた結果、基体粒子表面
に着色無機化合物が被覆された無機粉体に、特定量の無
機塩を加えて混合し、該混合物に特定の熱処理を施すこ
とにより、有害なクロム等を含まず、大きさの揃った、
彩度の高い無機顔料を得ることに成功し、本発明を完成
させた。 【0008】即ち、本発明は以下の特徴を有するもので
ある。 1.(A)基体粒子表面に着色無機化合物が被覆された
無機粉体と、(B)無機塩を混合し、該混合物を熱処理
して得られる無機顔料の製造方法であって、熱処理温度
が無機塩の融点以上沸点以下であり、重量比率で(B)
/(A)が0.5以上であることを特徴とする無機顔料
の製造方法。 【0009】 【発明の実施の形態】以下、本発明をその実施の形態に
基づき詳細に説明する。 【0010】本発明における無機顔料の製造方法は、
(A)基体粒子表面に着色無機化合物が被覆された無機
粉体(以下「(A)成分」ともいう。)と、(B)無機
塩(以下「(B)成分」ともいう。)を混合し、該混合
物を熱処理することを特徴とする。基体粒子の被覆に使
用する着色無機化合物は、熱処理によって、美麗な色彩
を発現する安定な有色化合物を生成するもので、最終的
に無機顔料の色彩を発現するものである。 【0011】本発明では、熱処理温度が無機塩の融点以
上沸点以下であり、重量比率で(B)/(A)が0.5
以上(好ましくは1以上、さらに好ましくは3以上15
以下)であることを必須とする。このような条件に設定
することにより、熱処理において、無機塩が液体状態と
なり、粒子間の空隙に充填されやすく、熱が系全体に均
一に安定して伝わるため発色の均一性が保たれ、彩度に
高い安定な無機顔料を短時間で得ることができる。ま
た、粒子同士が接触しにくく粒子同士の結合を抑えるこ
とができる。さらに熱処理後、無機塩を洗浄するだけ
で、容易に無機顔料を分離することができ、有色化合物
が欠損することもなく、大きさの揃った、彩度に高い無
機顔料を得ることができる。 【0012】(基体粒子)本発明における基体粒子は、
例えば、Fe、V、Ni、Al、Zn、Ti、Si、Z
r、Ga等を主成分とする無機化合物が挙げられる。基
体粒子としては、例えば、チタン、亜鉛、アルミニウ
ム、ジルコニウム等の金属、酸化カルシウム、酸化鉄、
酸化バナジウム、酸化ニッケル、酸化アルミニウム、酸
化亜鉛、酸化チタン、酸化ケイ素、酸化マグネシウム、
酸化ジルコニウム、酸化インジウム等の酸化物、硫化亜
鉛、硫化銅、硫化鉄等の硫化物、硫酸バリウム、硫酸チ
タン、硫酸亜鉛、硫酸アルミニウム、硫酸マグネシウム
等硫酸塩、リン酸カルシウム、リン酸チタン、リン酸亜
鉛、リン酸ケイ素、リン酸アルミニウム、リン酸マグネ
シウム、リン酸ジルコニウム等のリン酸塩、珪酸カルシ
ウム、珪酸チタン、珪酸亜鉛、珪酸ケイ素、珪酸アルミ
ニウム、珪酸マグネシウム、珪酸ジルコニウム等の珪酸
塩等、水酸化鉄等の水酸化物等が挙げられ、これらの二
種以上を複合したものでもよい。また、市販品を用いる
こともできる。本発明では、特に、安価な基体粒子とし
て、酸化亜鉛、酸化チタン等が好ましく用いられる。基
体粒子の粒子径は、特に限定されないが、0.01から
100μm(好ましくは0.1から10μm)であるこ
とが好ましい。また基体粒子の形状は、特に限定されず
球状、針状、板状、棒状、繊維状、樹枝状、海星状等を
使用することが可能である。 【0013】(着色無機化合物)本発明における着色無
機化合物は、熱処理によって、美麗な色彩を発現する安
定な有色化合物を得るもので、最終的に無機顔料の色彩
を発現するものである。着色無機化合物は、基体粒子の
表面に被覆させて使用する。着色無機化合物を被覆する
方法としては、例えば沈殿法等が挙げられる。沈澱法
は、基体粒子を混合した溶液中で、金属イオンを含む化
合物を、徐々に基体粒子の表面に生成させる方法であ
る。この場合の被覆物に含まれる元素の添加量は広い範
囲で変えることができる。 【0014】このような着色無機化合物としては、例え
ば、Mn、Fe、Co、Ni、Cu、Zn、V、Y、T
i、Sn、Sb、Mg、Ca、Bi等の金属元素を含む
化合物等が挙げられる。これらの金属元素を適宜選定す
ることにより、種々の色彩を発現することが可能であ
る。着色無機化合物としては、例えば、上記金属元素を
含む塩化物、臭化物、アセチルアセトネート、酢酸塩、
ホウ酸塩、炭酸塩、硫酸塩、しゅう酸塩、硝酸塩等、ま
たはそれらの混合物等を挙げることができる。 【0015】本発明では、基体粒子の表面に被覆させた
着色無機化合物は、熱処理することによって、安定な有
色化合物を生成し、かつ、美麗な色彩を発現することが
できる。このような着色無機化合物は、熱処理によりそ
れ単独で反応し有色化合物を生成することもできるし、
基体粒子と着色無機化合物の反応によって有色化合物を
生成することもできる。特に、基体粒子と着色無機化合
物が熱処理によって反応する物質を適宜設定すれば、よ
り耐熱性、耐侯性に優れた無機顔料を得ることができ
る。 【0016】基体粒子と有色化合物は、上述したような
化合物であれば特に限定されず使用できる。その結晶構
造としては、例えば、ルチル型結晶構造、アナターゼ型
結晶構造、ブルツカイト型結晶構造、ウルツ型結晶構
造、閃亜鉛鉱型結晶構造、スピネル型結晶構造、逆スピ
ネル型結晶構造、コランダム型結晶構造、プリデライト
型結晶構造、NaCl型結晶構造等が挙げられる。基体
粒子と有色化合物の結晶構造は、同じでも異なってもよ
いが、同じ結晶構造を有するものが好ましい。同じ結晶
構造であれば、より耐熱性、耐侯性に優れた無機顔料を
得ることができる。 【0017】(無機塩)本発明の無機塩としては、熱処
理時に燃焼せず、化学的に安定なものであれば特に限定
されないが、その融点が500℃から1600℃(好ま
しくは800℃から1300℃)であるものが望まし
い。無機塩としては、例えば、水溶性の金属のハロゲン
化物、リン酸塩、ケイ酸塩、硫酸塩等を用いることがで
きる。例えば、フッ化ナトリウム、フッ化カリウム、フ
ッ化マグネシウム、フッ化カルシウム、塩化ナトリウ
ム、塩化カリウム、塩化マグネシウム、塩化カルシウ
ム、臭化ナトリウム、臭化カリウム、臭化マグネシウ
ム、臭化カルシウム、リン酸ナトリウム、リン酸カリウ
ム、リン酸マグネシウム、リン酸カルシウム、ケイ酸ナ
トリウム、ケイ酸カリウム、ケイ酸マグネシウム、ケイ
酸カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸マ
グネシウム、硫酸カルシウム等を用いることができる。
特に、塩化ナトリウム、塩化カリウム、塩化マグネシウ
ム、塩化カルシウムが好ましい。 【0018】(無機顔料の製造方法)本発明の無機顔料
の製造方法は、(A)成分と(B)成分を重量比率で
(B)/(A)が0.5以上(好ましくは1以上、さら
に好ましくは3以上15以下)となるように混合し、該
混合物を、(B)成分の融点以上沸点以下で熱処理する
ことを特徴とする。 【0019】(A)成分と(B)成分の混合において、
(B)成分は、(A)成分の乾燥粉末あるいは合成工程
からのプレスケーキまたは懸濁物に添加することができ
る。(B)成分は、添加前に水及び/または有機溶媒に
溶解してもよいし、あるいはまた固体の形状で(A)成
分に添加してもよい。必要な場合には、(A)成分と
(B)成分を含む混合物はボールミル等の機械的分散媒
体を使用する常用の方法で分散させることもできる。攪
拌時間は、通常20分乃至12時間の範囲で設定すれば
よい。 【0020】(A)成分と(B)成分の混合比は、重量
比率で(B)/(A)が0.5以上、好ましくは1以
上、さらに好ましくは3以上15以下である。0.5よ
り小さい場合は、粒子同士が接触し結合する場合があ
り、粒径のバラツキが大きくなり、発色の均一性が失わ
れる。さらに熱処理に時間がかかる場合もある。 【0021】熱処理温度は、無機塩の融点以上沸点以下
で設定する。このような温度範囲であれば、無機塩が液
体状態となり、熱が系全体に均一に安定して伝わるため
発色の均一性が保たれ、彩度に高い安定な無機顔料を短
時間で得ることができる。熱処理温度は、通常500℃
から1600℃(好ましくは800℃から1300℃)
であることが好ましく、このような温度範囲であれば、
着色無機化合物が、美麗な色彩を発現する安定な有色化
合物を生成することができ、より彩度に高い無機顔料を
得ることができる。熱処理温度が融点より低ければ、無
機塩が溶融せず、熱が均一に伝わらないため、色彩にム
ラのある顔料となる場合がある。また、被覆した着色無
機化合物の反応が十分進行せず、鮮やかな色彩が得られ
ない恐れもある。 【0022】本発明では、短時間で熱処理できることも
特徴である。熱処理時間としては、10分から3時間
(好ましくは15分から2時間)であることが好まし
い。また、熱処理は大気中、還元雰囲気下または酸化雰
囲気下で行なうことができる。さらに、熱処理後、無機
顔料は(B)成分を洗浄することにより容易に分離する
ことができ、有色化合物が欠損することもなく、大きさ
の揃った、彩度に高い無機顔料を得ることができる。
(B)成分は、水及び/または有機溶剤(好ましくは
水)等を用いて、容易に洗浄除去することができ、洗液
を乾燥することにより繰り返し使用することが可能であ
る。 【0023】(無機顔料)このようにして得られた無機
顔料の平均粒子径は、用いる基体粒子、着色無機化合物
等により適宜制御することができるが、0.01から1
00μm(好ましくは0.1から10μm)であること
が好ましい。このような範囲である場合、顔料の着色力
と隠蔽力が大きく、分散しやすい傾向となる。本発明の
製造方法によれば、大きさの揃った、粒子径のバラツキ
が小さい顔料を得ることができる。粒子径のバラツキは
70%以下(好ましくは60%以下、より好ましくは5
0%以下)であることが好ましい。粒子径のバラツキが
70%以下である場合、大きさの揃った、彩度の高い無
機顔料となる。また、無機顔料の形状は、基体粒子の形
状、被覆する着色無機化合物の量等により種々の形状に
製造可能であるが、例えば、球状、針状、板状、棒状、
繊維状、樹枝状、海星状等を製造することが可能であ
る。 【0024】なお、粒子径のバラツキとは、 粒子径のバラツキ(%)=(標準偏差/平均粒子径)×
100(%) で示され、小さい値ほど分散性に優れている。平均粒子
径とは走査型電子顕微鏡写真で観察できる顔料の平均粒
子径である。 【0025】本発明無機顔料は、化粧品、塗料、紙、イ
ンク、印刷、プラスチック、陶磁器等に利用可能であ
る。例えば、塗料用、樹脂組成物用、陶磁器用として用
いた場合、安価且つ美麗な色彩を有する塗料、樹脂組成
物、陶磁器が製造できる。 【0026】 【実施例】以下に実施例を示し、本発明の特徴をより明
確にするが、本発明はこの実施例に限定されない。 【0027】(測定方法) 1.結晶構造は、X線回折装置(RINT−1100,
株式会社リガク社製)により解析した。 2.粒子径は、電子顕微鏡(JSM−5310,日本電
子株式会社製)により観察した。 【0028】(実施例1)基体粒子として、三井金属株
式会社製「酸化亜鉛2種微粒品」(商品名)(平均粒径
0.25μm)を使用し、以下の方法にて顔料を作製し
た。 1.酸化亜鉛2種微粒品100gを水1lに混合し、2
8.5gのCoCl・6HOを加えた。 2.1mol/lのNaCO水溶液を滴下すること
により、析出処理を行った。 3.濾過、洗浄した後110 ℃で乾燥し、塩基性炭酸
コバルトで被覆された酸化亜鉛粉体を得た。 4.塩基性炭酸コバルトで被覆された酸化亜鉛粉体10
0gと、NaCl800g((B)/(A)=8)を1
時間混合し、得られた混合粉体を1000℃で30分熱
処理した。なお、NaClの融点は約800℃、沸点は
約1413℃である。 5.冷却後、混合粉体を水洗してNaClを除去し、乾
燥した。 以上の操作により、平均粒子径0.5μm、粒子径のバ
ラツキ34%とする大きさの揃った顔料粉体が得られ
た。得られた顔料粉体を目視にて確認したところ、彩度
の高い緑色を呈していた。図1には、基体粒子として用
いた酸化亜鉛と、上記操作によって得られた顔料のX線
回折パターンを示す。顔料紛体のX線回折においては、
ウルツ相以外の回折パターンは観察されなかった。この
X線回折パターンにより、基体粒子表面にも、酸化亜鉛
と同様のウルツ型結晶構造を有する酸化物が生じている
ことが示された。また、図2には、得られた粉体の電子
顕微鏡写真を示した。 【0029】(実施例2)CoCl・6HOの量を
10gとした以外は、実施例1と同様に顔料粉体を作製
したところ、平均粒子径を0.3μm、粒子径のバラツ
キ28%とする大きさの揃った彩度の良好な緑色の顔料
粉体が得られた。また、得られた顔料のX線回折パター
ンは、実施例1と同様であり、ウルツ型結晶構造である
ことがわかった。 【0030】(実施例3)基体粒子を三井金属株式会社
製「酸化亜鉛2種一般品」(商品名)(平均粒径2〜3
μm)とした以外は、実施例1と同様に顔料粉体を作製
したところ、平均粒子径を5μm、粒子径のバラツキ3
5%とする大きさの揃った彩度の高い緑色の顔料粉体が
得られた。また、得られた顔料のX線回折パターンは、
実施例1と同様であり、ウルツ型結晶構造であることが
わかった。 【0031】(実施例4)CoCl・6HOの替わ
りに、MnSO・5HOを用いた以外は、実施例1
と同様に顔料粉体を作製したところ、平均粒子径を0.
5μm、粒子径のバラツキ31%とする大きさの揃った
鮮やかなピンク色の顔料粉体が得られた。また、得られ
た顔料のX線回折パターンは、実施例1と同様であり、
ウルツ型結晶構造であることがわかった。 【0032】(実施例5)CoCl・6HOの替わ
りに、CuSO・5HOを用いた以外は、実施例1
と同様に顔料粉体を作製したところ、平均粒子径を0.
5μm、粒子径のバラツキ36%とする大きさの揃った
彩度の良好な緑色の顔料粉体が得られた。また、得られ
た顔料のX線回折パターンは、実施例1と同様であり、
ウルツ型結晶構造であることがわかった。 【0033】(実施例6)NaClの替わりに、CaC
を用いた以外は、実施例1と同様に顔料粉体を作製
したところ、平均粒子径を0.6μm、粒子径のバラツ
キ42%とする大きさの揃った彩度の良好な緑色の顔料
粉体が得られた。なお、CaClの融点は約774
℃、沸点は約1600℃以上である。また、得られた顔
料のX線回折パターンは、実施例1と同様であり、ウル
ツ型結晶構造であることがわかった。 【0034】(実施例7)NaClの量を100gとし
た以外は、実施例1と同様に顔料粉体を作製したとこ
ろ、平均粒子径を0.8μm、粒子径のバラツキ52%
とする彩度の良好な緑色の顔料粉体が得られた。また、
得られた顔料のX線回折パターンは、実施例1と同様で
あり、ウルツ型結晶構造であることがわかった。 【0035】(実施例8)NaClの量を200gとし
た以外は、実施例1と同様に顔料粉体を作製したとこ
ろ、平均粒子径を0.8μm、粒子径のバラツキ46%
とする彩度の良好な緑色の顔料粉体が得られた。また、
得られた顔料のX線回折パターンは、実施例1と同様で
あり、ウルツ型結晶構造であることがわかった。 【0036】(実施例9)NaClの量を400gとし
た以外は、実施例1と同様に顔料粉体を作製したとこ
ろ、平均粒子径を0.7μm、粒子径のバラツキ42%
とする彩度の良好な緑色の顔料粉体が得られた。また、
得られた顔料のX線回折パターンは、実施例1と同様で
あり、ウルツ型結晶構造であることがわかった。 【0037】(実施例10)NaClの量を600gと
した以外は、実施例1と同様に顔料粉体を作製したとこ
ろ、平均粒子径を0.7μm、粒子径のバラツキ38%
とする大きさの揃った彩度の良好な緑色の顔料粉体が得
られた。また、得られた顔料のX線回折パターンは、実
施例1と同様であり、ウルツ型結晶構造であることがわ
かった。 【0038】(実施例11)NaClの量を1500g
とした以外は、実施例1と同様に顔料粉体を作製したと
ころ、平均粒子径を0.5μm、粒子径のバラツキ32
%とする大きさの揃った彩度の良好な緑色の顔料粉体が
得られた。また、得られた顔料のX線回折パターンは、
実施例1と同様であり、ウルツ型結晶構造であることが
わかった。 【0039】(実施例12)NaClの量を60gとし
た以外は、実施例1と同様に顔料粉体を作製したとこ
ろ、平均粒子径を0.8μm、粒子径のバラツキ62%
とする彩度の良好な緑色の顔料粉体が得られた。また、
得られた顔料のX線回折パターンは、実施例1と同様で
あり、ウルツ型結晶構造であることがわかった。 【0040】(比較例1)NaClの量を40gとした
以外は、実施例1と同様に顔料粉体を作製したところ、
平均粒子径0.8μmの粒子が多数凝集してしまった。 【0041】(比較例2)熱処理温度を300℃とした
以外は、実施例1と同様に顔料粉体を作製したが、Na
Clが溶融せず、熱が均一に伝わらないため、色彩にム
ラのある顔料粉体となった。さらに、被覆した塩基性炭
酸コバルトと酸化亜鉛が十分反応が進行せず、鮮やかな
色彩が得られなかった。 【0042】 【発明の効果】基体粒子表面に着色無機化合物が被覆さ
れた無機粉体に、特定量の無機塩を加えて混合し、該混
合物に特定の熱処理を施すことによって、有害なクロム
等を含まず、大きさの揃った、彩度の高い無機顔料を得
ることができる。 【0043】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly colored inorganic pigment having a uniform size and containing no harmful chromium or the like. [0002] Inorganic pigments are chemically stable compared to organic pigments, and have excellent heat resistance and weather resistance. Therefore, inorganic pigments are widely used in cosmetics, paper, paints, printing, plastics, porcelain and the like. Used. [0003] However, inorganic pigments have a problem that they are inferior to organic pigments in vividness.
Harmful chromium and lead are often used. Therefore, there is a demand for an inorganic pigment having a beautiful color with high saturation without using harmful chromium or lead in the environment. Heretofore, in the production of inorganic pigments, in the case of mixing and producing appropriate raw material powders, generally, the raw material powders are formed by various methods, then sintered and pulverized. In such a production method, in order to color the whole including the inside of the particles, it is not possible to obtain a sufficiently colored and highly saturated inorganic pigment unless a large amount of relatively expensive raw materials necessary for coloring are used. . Furthermore, since the inorganic pigment is obtained by pulverizing the sintered body, there is a problem that the shape of the inorganic pigment is not constant and the distribution of the particle diameter is wide. [0005] One method for solving the above problem is to use a relatively inexpensive raw material as base particles and coat the base particles with a relatively expensive raw material required for coloring. is there. For example, in JP-A-7-331110, Co, Ni, Mn, which reacts with alumina to produce a colored spinel oxide on plate-like alumina obtained by hydrothermal synthesis,
A method for producing a plate-like alumina pigment by coating a compound containing an element such as Fe and calcining the same is disclosed. However, since the coated compound is reactive, the particles are strongly bonded during calcination,
There is a risk of aggregation. Further, when the strongly bonded particles are pulverized, the colored spinel oxide generated on the surface of the particles may be lost, and it is difficult to obtain a highly-saturated inorganic pigment having a uniform size. . Means for Solving the Problems The present invention has been intensively studied in order to solve the above-mentioned problems, and as a result, a specific amount of the inorganic powder in which the surface of the base particles is coated with the colored inorganic compound is determined. By adding and mixing the inorganic salt of the above, by subjecting the mixture to a specific heat treatment, it does not contain harmful chromium or the like, and has a uniform size.
The inventors succeeded in obtaining an inorganic pigment having high chroma and completed the present invention. That is, the present invention has the following features. 1. A method for producing an inorganic pigment obtained by mixing (A) an inorganic powder in which the surface of a base particle is coated with a colored inorganic compound and (B) an inorganic salt, and subjecting the mixture to a heat treatment, wherein the heat treatment temperature is the inorganic salt. (B)
/ (A) is 0.5 or more, a method for producing an inorganic pigment. Hereinafter, the present invention will be described in detail based on its embodiments. The method for producing an inorganic pigment according to the present invention comprises:
(A) An inorganic powder (hereinafter also referred to as “component (A)”) in which the surface of a base particle is coated with a colored inorganic compound, and (B) an inorganic salt (hereinafter also referred to as “component (B)”) are mixed. And heat treating the mixture. The colored inorganic compound used for coating the base particles generates a stable colored compound that develops a beautiful color by heat treatment, and finally develops the color of the inorganic pigment. In the present invention, the heat treatment temperature is from the melting point of the inorganic salt to the boiling point, and (B) / (A) is 0.5 by weight.
Or more (preferably 1 or more, more preferably 3 or more 15
Below) is mandatory. By setting to such conditions, in the heat treatment, the inorganic salt is in a liquid state, is easily filled in the voids between the particles, and heat is transmitted uniformly and stably to the entire system, so that the uniformity of color development is maintained. An extremely high and stable inorganic pigment can be obtained in a short time. Further, the particles are hardly in contact with each other, and the bonding between the particles can be suppressed. Further, after the heat treatment, the inorganic pigment can be easily separated only by washing the inorganic salt, and a colored compound having a uniform size and high saturation can be obtained without loss of the colored compound. (Substrate particles) The substrate particles in the present invention are:
For example, Fe, V, Ni, Al, Zn, Ti, Si, Z
Inorganic compounds containing r, Ga or the like as a main component are exemplified. As the base particles, for example, metals such as titanium, zinc, aluminum and zirconium, calcium oxide, iron oxide,
Vanadium oxide, nickel oxide, aluminum oxide, zinc oxide, titanium oxide, silicon oxide, magnesium oxide,
Oxides such as zirconium oxide and indium oxide, sulfides such as zinc sulfide, copper sulfide, and iron sulfide, barium sulfate, titanium sulfate, zinc sulfate, aluminum sulfate, magnesium sulfate, and other sulfates, calcium phosphate, titanium phosphate, and zinc phosphate , Such as phosphates such as silicon phosphate, aluminum phosphate, magnesium phosphate, zirconium phosphate, calcium silicate, titanium silicate, zinc silicate, silicon silicate, aluminum silicate, magnesium silicate, zirconium silicate, etc. Hydroxides such as iron and the like may be mentioned, and a composite of two or more of these may be used. In addition, commercially available products can also be used. In the present invention, in particular, zinc oxide, titanium oxide, and the like are preferably used as inexpensive base particles. The particle size of the base particles is not particularly limited, but is preferably 0.01 to 100 μm (preferably 0.1 to 10 μm). The shape of the base particles is not particularly limited, and may be spherical, needle-like, plate-like, rod-like, fibrous, tree-like, sea-star-like, or the like. (Colored Inorganic Compound) The colored inorganic compound in the present invention is a compound that obtains a stable colored compound that develops a beautiful color by heat treatment, and finally develops the color of the inorganic pigment. The colored inorganic compound is used after being coated on the surface of the base particles. Examples of a method for coating the colored inorganic compound include a precipitation method and the like. The precipitation method is a method in which a compound containing a metal ion is gradually formed on the surface of the base particles in a solution in which the base particles are mixed. In this case, the amount of the element contained in the coating can be changed in a wide range. Examples of such a colored inorganic compound include Mn, Fe, Co, Ni, Cu, Zn, V, Y, and T.
Compounds containing a metal element such as i, Sn, Sb, Mg, Ca, Bi and the like can be mentioned. By appropriately selecting these metal elements, various colors can be developed. As the coloring inorganic compound, for example, chlorides, bromides, acetylacetonates, acetates containing the above metal elements,
Examples thereof include borates, carbonates, sulfates, oxalates, nitrates, and the like, and mixtures thereof. In the present invention, the colored inorganic compound coated on the surface of the base particles can be heat-treated to form a stable colored compound and exhibit a beautiful color. Such a colored inorganic compound can react alone by heat treatment to produce a colored compound,
A colored compound can also be produced by the reaction between the base particles and the colored inorganic compound. In particular, an inorganic pigment having more excellent heat resistance and weather resistance can be obtained by appropriately setting a substance in which the base particles and the colored inorganic compound react by heat treatment. The base particles and the colored compound are not particularly limited as long as they are the compounds described above. Examples of the crystal structure include a rutile crystal structure, an anatase crystal structure, a wurtzite crystal structure, a wurtz crystal structure, a zinc blende crystal structure, a spinel crystal structure, an inverse spinel crystal structure, and a corundum crystal structure. , A priderite type crystal structure, a NaCl type crystal structure, and the like. The crystal structures of the base particles and the colored compound may be the same or different, but those having the same crystal structure are preferred. With the same crystal structure, an inorganic pigment having more excellent heat resistance and weather resistance can be obtained. (Inorganic Salt) The inorganic salt of the present invention is not particularly limited as long as it does not burn during heat treatment and is chemically stable, but its melting point is from 500 ° C. to 1600 ° C. (preferably from 800 ° C. to 1300 ° C.). C). As the inorganic salt, for example, a water-soluble metal halide, phosphate, silicate, sulfate, or the like can be used. For example, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium bromide, potassium bromide, magnesium bromide, calcium bromide, sodium phosphate, Potassium phosphate, magnesium phosphate, calcium phosphate, sodium silicate, potassium silicate, magnesium silicate, calcium silicate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, and the like can be used.
Particularly, sodium chloride, potassium chloride, magnesium chloride and calcium chloride are preferred. (Method for Producing Inorganic Pigment) In the method for producing an inorganic pigment of the present invention, the ratio (B) / (A) of component (A) and component (B) is 0.5 or more (preferably 1 or more) by weight ratio. And more preferably 3 to 15), and heat-treating the mixture at a temperature from the melting point to the boiling point of the component (B). In mixing the components (A) and (B),
Component (B) can be added to the dry powder of component (A) or to a presscake or suspension from the synthesis process. The component (B) may be dissolved in water and / or an organic solvent before addition, or may be added to the component (A) in a solid form. If necessary, the mixture containing the components (A) and (B) can be dispersed by a conventional method using a mechanical dispersion medium such as a ball mill. The stirring time may be usually set in the range of 20 minutes to 12 hours. The mixing ratio of the components (A) and (B) is such that the weight ratio (B) / (A) is 0.5 or more, preferably 1 or more, and more preferably 3 or more and 15 or less. If it is less than 0.5, the particles may come into contact with each other and bond, and the variation in the particle size increases, and the uniformity of color development is lost. Further, the heat treatment may take time. The heat treatment temperature is set at a temperature not lower than the melting point of the inorganic salt and not higher than the boiling point. In such a temperature range, the inorganic salt is in a liquid state, and heat is uniformly and stably transmitted to the entire system, so that uniformity of color development is maintained, and a stable inorganic pigment with high chroma can be obtained in a short time. Can be. Heat treatment temperature is usually 500 ° C
To 1600 ° C (preferably 800 to 1300 ° C)
Is preferable, and in such a temperature range,
The colored inorganic compound can produce a stable colored compound that expresses a beautiful color, and an inorganic pigment with higher saturation can be obtained. If the heat treatment temperature is lower than the melting point, the inorganic salt does not melt and the heat is not transmitted uniformly, so that the pigment may be uneven in color. In addition, the reaction of the coated colored inorganic compound may not proceed sufficiently, and a vivid color may not be obtained. The present invention is also characterized in that heat treatment can be performed in a short time. The heat treatment time is preferably from 10 minutes to 3 hours (preferably from 15 minutes to 2 hours). The heat treatment can be performed in the air, in a reducing atmosphere, or in an oxidizing atmosphere. Further, after the heat treatment, the inorganic pigment can be easily separated by washing the component (B), and a colored compound having a uniform size and high saturation can be obtained without losing the colored compound. it can.
The component (B) can be easily washed and removed using water and / or an organic solvent (preferably water) or the like, and can be used repeatedly by drying the washing liquid. (Inorganic Pigment) The average particle size of the inorganic pigment thus obtained can be appropriately controlled depending on the base particles used, the colored inorganic compound and the like.
It is preferably 00 μm (preferably 0.1 to 10 μm). In such a range, the coloring power and hiding power of the pigment are large, and the pigment tends to be easily dispersed. According to the production method of the present invention, pigments having a uniform size and a small variation in particle diameter can be obtained. The variation in particle size is 70% or less (preferably 60% or less, more preferably 5% or less).
0% or less). When the variation in the particle diameter is 70% or less, the inorganic pigment is uniform in size and has high saturation. In addition, the shape of the inorganic pigment can be manufactured into various shapes depending on the shape of the base particles, the amount of the colored inorganic compound to be coated, and the like. For example, a spherical shape, a needle shape, a plate shape, a rod shape,
It is possible to produce fibrous, dendritic, sea-star, etc. The variation in particle diameter is defined as: variation in particle diameter (%) = (standard deviation / average particle diameter) ×
It is indicated by 100 (%), and the smaller the value, the better the dispersibility. The average particle size is the average particle size of the pigment that can be observed with a scanning electron micrograph. The inorganic pigment of the present invention can be used for cosmetics, paints, paper, ink, printing, plastics, ceramics and the like. For example, when used for paints, resin compositions, and ceramics, paints, resin compositions, and ceramics having inexpensive and beautiful colors can be manufactured. EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to these examples. (Measurement method) The crystal structure was determined using an X-ray diffractometer (RINT-1100,
(Manufactured by Rigaku Corporation). 2. The particle size was observed with an electron microscope (JSM-5310, manufactured by JEOL Ltd.). (Example 1) Pigments were prepared by the following method using "fine zinc oxide type 2 fine particles" (trade name) (average particle size 0.25 µm) manufactured by Mitsui Kinzoku Co., Ltd. as base particles. . 1. 100 g of two kinds of zinc oxide fine particles are mixed with 1 liter of water,
8.5 g of CoCl 2 .6H 2 O were added. A precipitation treatment was performed by dropping a 2.1 mol / l aqueous solution of Na 2 CO 3 . 3. After being filtered and washed, it was dried at 110 ° C. to obtain a zinc oxide powder coated with basic cobalt carbonate. 4. Zinc oxide powder 10 coated with basic cobalt carbonate
0 g and 800 g of NaCl ((B) / (A) = 8)
The mixed powder was heat-treated at 1000 ° C. for 30 minutes. The melting point of NaCl is about 800 ° C. and the boiling point is about 1413 ° C. 5. After cooling, the mixed powder was washed with water to remove NaCl and dried. Through the above operations, pigment powders having a uniform size with an average particle size of 0.5 μm and a particle size variation of 34% were obtained. When the obtained pigment powder was visually confirmed, it exhibited a highly saturated green color. FIG. 1 shows the X-ray diffraction patterns of the zinc oxide used as the base particles and the pigment obtained by the above operation. In X-ray diffraction of pigment powder,
No diffraction pattern other than the wurtz phase was observed. This X-ray diffraction pattern showed that an oxide having a wurtzite crystal structure similar to zinc oxide was also formed on the surface of the base particles. FIG. 2 shows an electron micrograph of the obtained powder. Example 2 A pigment powder was prepared in the same manner as in Example 1 except that the amount of CoCl 2 .6H 2 O was changed to 10 g. The average particle size was 0.3 μm, and the particle size variation was 28%. %, And a green pigment powder having good saturation and uniform size was obtained. Further, the X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. (Example 3) The base particles were manufactured by Mitsui Kinzoku Co., Ltd., "Two kinds of zinc oxide general products" (trade name) (average particle diameter of 2-3).
A pigment powder was prepared in the same manner as in Example 1 except that the average particle diameter was 5 μm, and the variation in the particle diameter was 3 μm.
A highly saturated green pigment powder having a size of 5% was obtained. The X-ray diffraction pattern of the obtained pigment is
As in Example 1, it was found that the crystal had a wurtz-type crystal structure. [0031] (Example 4) CoCl 2 · 6H 2 O instead of, except for using MnSO 4 · 5H 2 O, Example 1
When a pigment powder was prepared in the same manner as described above, the average particle diameter was set to 0.
A bright pink pigment powder having a uniform size of 5 μm and a particle diameter variation of 31% was obtained. The X-ray diffraction pattern of the obtained pigment was the same as that in Example 1,
It was found that it had a wurtz-type crystal structure. [0032] (Example 5) CoCl 2 · 6H 2 O instead of, except for using CuSO 4 · 5H 2 O, Example 1
When a pigment powder was prepared in the same manner as described above, the average particle diameter was set to 0.
A green pigment powder of 5 μm in size and good in color saturation having a particle size variation of 36% was obtained. The X-ray diffraction pattern of the obtained pigment was the same as that in Example 1,
It was found that it had a wurtz-type crystal structure. (Embodiment 6) Instead of NaCl, CaC
except for using l 2 is was prepared in the same manner as pigment powder as in Example 1, the average particle diameter 0.6 .mu.m, a good green color saturation with a uniform size to 42% variation in the particle diameter A pigment powder was obtained. The melting point of CaCl 2 is about 774.
° C, boiling point is about 1600 ° C or more. Further, the X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. Example 7 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 100 g. The average particle diameter was 0.8 μm, and the dispersion of the particle diameter was 52%.
A green pigment powder having good chroma was obtained. Also,
The X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. Example 8 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 200 g. The average particle diameter was 0.8 μm, and the dispersion of the particle diameter was 46%.
A green pigment powder having good chroma was obtained. Also,
The X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. Example 9 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 400 g. The average particle size was 0.7 μm, and the variation in the particle size was 42%.
A green pigment powder having good chroma was obtained. Also,
The X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. Example 10 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 600 g. The average particle diameter was 0.7 μm, and the dispersion of the particle diameter was 38%.
Thus, a green pigment powder having good size and good chroma was obtained. Further, the X-ray diffraction pattern of the obtained pigment was the same as in Example 1, and it was found that the pigment had a wurtz-type crystal structure. Example 11 1500 g of NaCl
A pigment powder was prepared in the same manner as in Example 1 except that the average particle size was 0.5 μm, and the particle size variation was 32.
%, And a green pigment powder having good saturation and uniform size was obtained. The X-ray diffraction pattern of the obtained pigment is
As in Example 1, it was found that the crystal had a wurtz-type crystal structure. Example 12 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 60 g. The average particle diameter was 0.8 μm, and the dispersion of the particle diameter was 62%.
A green pigment powder having good chroma was obtained. Also,
The X-ray diffraction pattern of the obtained pigment was the same as that of Example 1, and it was found that the pigment had a wurtz crystal structure. Comparative Example 1 A pigment powder was prepared in the same manner as in Example 1 except that the amount of NaCl was changed to 40 g.
Many particles having an average particle size of 0.8 μm aggregated. Comparative Example 2 A pigment powder was prepared in the same manner as in Example 1 except that the heat treatment temperature was changed to 300 ° C.
Since Cl was not melted and heat was not transmitted uniformly, a pigment powder having uneven color was obtained. Furthermore, the reaction between the coated basic cobalt carbonate and zinc oxide did not sufficiently proceed, and a vivid color could not be obtained. According to the present invention, a specific amount of an inorganic salt is added to and mixed with an inorganic powder in which a colored inorganic compound is coated on the surface of a base particle, and the mixture is subjected to a specific heat treatment to remove harmful chromium and the like. And an inorganic pigment having a uniform size and high saturation can be obtained. [0043]

【図面の簡単な説明】 【図1】実施例1で作製した顔料の粉末X線回折パター
ンである。 【図2】実施例1で作製した顔料の電子顕微鏡写真であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a powder X-ray diffraction pattern of the pigment produced in Example 1. FIG. 2 is an electron micrograph of the pigment produced in Example 1.

Claims (1)

【特許請求の範囲】 【請求項1】(A)基体粒子表面に着色無機化合物が被
覆された無機粉体と、(B)無機塩を混合し、該混合物
を熱処理して得られる無機顔料の製造方法であって、熱
処理温度が無機塩の融点以上沸点以下であり、重量比率
で(B)/(A)が0.5以上であることを特徴とする
無機顔料の製造方法。
Claims: 1. An inorganic pigment obtained by mixing (A) an inorganic powder in which the surface of a base particle is coated with a colored inorganic compound and (B) an inorganic salt and subjecting the mixture to heat treatment. A method for producing an inorganic pigment, wherein the heat treatment temperature is from the melting point to the boiling point of the inorganic salt and the weight ratio (B) / (A) is 0.5 or more.
JP2002129656A 2002-05-01 2002-05-01 Method for producing inorganic pigment Expired - Fee Related JP4057835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129656A JP4057835B2 (en) 2002-05-01 2002-05-01 Method for producing inorganic pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129656A JP4057835B2 (en) 2002-05-01 2002-05-01 Method for producing inorganic pigment

Publications (2)

Publication Number Publication Date
JP2003321623A true JP2003321623A (en) 2003-11-14
JP4057835B2 JP4057835B2 (en) 2008-03-05

Family

ID=29543001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129656A Expired - Fee Related JP4057835B2 (en) 2002-05-01 2002-05-01 Method for producing inorganic pigment

Country Status (1)

Country Link
JP (1) JP4057835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047859A1 (en) 2007-10-12 2009-04-16 Ryukakusan Co. Ltd. Granular jelly beverage for medication and process for producing the same
KR20150119743A (en) * 2014-04-16 2015-10-26 주식회사 엘지화학 Method and apparatus for preparing thermoplastic resin form

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047859A1 (en) 2007-10-12 2009-04-16 Ryukakusan Co. Ltd. Granular jelly beverage for medication and process for producing the same
KR20150119743A (en) * 2014-04-16 2015-10-26 주식회사 엘지화학 Method and apparatus for preparing thermoplastic resin form
KR101696391B1 (en) * 2014-04-16 2017-01-13 주식회사 엘지화학 Method and apparatus for preparing thermoplastic resin form

Also Published As

Publication number Publication date
JP4057835B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
EP1871711B1 (en) Flaky alpha-alumina crystal and a method of its preparation
WO2010002059A1 (en) Method of preparing hematite platelet, hematite platelet prepared using the same, and hematite platelet pigment including the hematite platelet
JP6449903B2 (en) Plate-like aluminum oxide and method for producing the same
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JPH0428771A (en) Bluish green pigment and its production
JPWO2020145343A1 (en) Plate-shaped spinel particles and their manufacturing method
JP6753555B2 (en) Plate-shaped alumina particles and method for producing plate-shaped alumina particles
JP4057835B2 (en) Method for producing inorganic pigment
JP2024072854A (en) Method for producing composite particle
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
KR101782861B1 (en) Flaky aluminum oxide and method of producing thereof
JP4062488B2 (en) Wurtz type inorganic pigment
KR102347578B1 (en) Manufacturing method of light absorbing single crystal alumina powders having hexagonal plate type structure
JP2007063530A (en) Yellow coloring composite fine particle and method for producing the yellow coloring composite fine particle
JP5016162B2 (en) Black pigment and method for producing the same
TW201840514A (en) Method for preparing nickel/aluminum spinel-coated aluminum oxide
JP2004083616A (en) Compound oxide black pigment and method for producing the same
JP5622140B2 (en) Powder containing composite particles and method for producing the same
CN108864760B (en) Compound blue ceramic pigment Cu2Y2O5/TiO2Preparation method of (1)
WO2024135505A1 (en) HIGH-LUMINANCE SCALY α-ALUMINA POWDER AND METHOD FOR PRODUCING SAME
JP2022517572A (en) Plate-shaped alumina particles and method for manufacturing plate-shaped alumina particles
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JP2862521B2 (en) Metallic paint using metallic pigment with good weather resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees