JP2003321090A - Method of preventing corrosion of crude oil tank - Google Patents

Method of preventing corrosion of crude oil tank

Info

Publication number
JP2003321090A
JP2003321090A JP2002125885A JP2002125885A JP2003321090A JP 2003321090 A JP2003321090 A JP 2003321090A JP 2002125885 A JP2002125885 A JP 2002125885A JP 2002125885 A JP2002125885 A JP 2002125885A JP 2003321090 A JP2003321090 A JP 2003321090A
Authority
JP
Japan
Prior art keywords
crude oil
corrosion
tank
water
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002125885A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Yamane
康義 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002125885A priority Critical patent/JP2003321090A/en
Publication of JP2003321090A publication Critical patent/JP2003321090A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reducing corrosion occurring on the internal surface of a tank for transporting or storing crude oil. <P>SOLUTION: The method comprises a step of pouring a water-soluble oxygen scavenger into the tank. The step is preferably taken before the crude oil is loaded and/or after the oil is unloaded. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原油を輸送または
貯蔵するタンク(原油タンクとよぶ。)の内面に生じる
腐食の低減方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing corrosion occurring on the inner surface of a tank for transporting or storing crude oil (referred to as a crude oil tank).

【0002】[0002]

【従来の技術】原油タンクにおいては、従来、原油その
ものに腐食抑制作用があるため、タンクに使用する鋼材
には腐食は生じないと考えられていた。ところが、最
近、原油タンク内で鋼材に激しい腐食が生じていること
が明らかになってきた。この原油タンク内において生じ
る腐食(原油タンク腐食とよぶ。) は、タンク底等の、
原油すなわち液相に接する部位(これを液相部という)
ではお椀型の局部腐食となり、一方、タンク天井等の、
原油の気相に接する部位(これを気相部という) では、
層状剥離性の錆を伴う凹凸の全面腐食であることに特徴
がある。
2. Description of the Related Art In crude oil tanks, it has been conventionally believed that the steel material used in the tank does not corrode because the crude oil itself has a corrosion inhibiting effect. However, it has recently become clear that the steel material is severely corroded in the crude oil tank. Corrosion that occurs in this crude oil tank (called crude oil tank corrosion) is
Crude oil, that is, the part in contact with the liquid phase (this is called the liquid phase part)
Then it becomes a bowl-shaped local corrosion, while on the other hand,
At the part in contact with the gas phase of crude oil (this is called the gas phase part),
It is characterized by the general corrosion of unevenness accompanied by delamination rust.

【0003】かかる原油タンク腐食の原因としては、以
下の各項目があげられる。 過剰な洗浄による原油タンク保護フィルム(原油タ
ンク内の腐食を抑制するための保護的なフィルム) の離
脱 原油中の硫化物の高濃度化 防爆用に封入されるイナートガス(O2 約5 vol
%、CO2 約13 vol%、SO2 約0.01 vol%、残部N2
ガスを代表組成とするエンジンの排ガス) 中の、O 2
CO2 、SO2 の高濃度化 微生物の関与 しかしながら、いずれの項目も推定の域を出ず、明確な
原因は判明していなかった。
The causes of such crude oil tank corrosion are as follows.
The following items are listed.   Crude oil tank protection film (crude oil type)
The protective film to prevent corrosion in the
Prolapse   Higher concentration of sulfide in crude oil   Inert gas (O2About 5 vol
%, CO2About 13 vol%, SO2About 0.01 vol%, balance N2
O in the exhaust gas of the engine whose representative composition is gas) 2,
CO2, SO2Concentration of   Microbial involvement However, none of the items are beyond the scope of estimation, and a clear
The cause was unknown.

【0004】かかる原油タンク腐食の対策として、現状
では防錆塗料を塗布して鋼材を腐食環境から遮断する方
法や、原油タンクに高耐食鋼材を使用する等の対策が提
案されている。
As measures against such crude oil tank corrosion, at present, measures such as applying a rust preventive coating to shield steel from a corrosive environment, and using high corrosion resistant steel for the crude oil tank have been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、防錆塗
料の塗布は、その塗布面積が膨大であり、また約10年に
1度は塗り替えが必要となるため、多大な費用がかかる
という問題があった。一方、原油タンク使用鋼材に高耐
食鋼材を使用する対策としては、例えば、特開2001-107
179 号公報、特開2001-107180 号公報、特開2001-21423
6 号公報等に既に提案されているが、高耐食鋼材の使用
だけで原油タンク腐食に対する抵抗性が安定して耐腐食
性が十分に発揮できるとは考えがたく、原油タンク腐食
のさらなる防止方法の向上が望まれる。
However, the application of the anticorrosion paint has a problem in that the application area is enormous and it is necessary to repaint it approximately once every 10 years, which is very expensive. It was On the other hand, as a measure for using a high corrosion resistant steel material for the steel material used in the crude oil tank, for example, JP 2001-107
179, JP 2001-107180, JP 2001-21423
Although it has already been proposed in Japanese Patent No. 6 etc., it is hard to believe that the use of high corrosion resistant steel will stabilize the resistance to corrosion in crude oil tanks and that corrosion resistance can be fully exhibited. Improvement is desired.

【0006】本発明は、上記した従来技術の問題を有利
に解決し、環境に優れた原油タンクの腐食防止方法を提
供するものである。
[0006] The present invention advantageously solves the above-mentioned problems of the prior art and provides a method for preventing corrosion of a crude oil tank, which is excellent in the environment.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を達成するため、まず、原油タンク内の腐食に関与する
各因子の抽出を行い、それらの組み合わせに基づく実験
室での腐食試験を鋭意実施した。その結果、実機の原油
タンク内で生じるものと同じ形態の腐食を実験室で再現
することに成功し、原油タンク内で生じる原油タンク腐
食の支配因子とその腐食機構を解明することに成功し
た。
In order to achieve the above-mentioned object, the present inventor first extracts each factor involved in corrosion in a crude oil tank, and carries out a corrosion test in a laboratory based on the combination thereof. Was earnestly implemented. As a result, we succeeded in reproducing in the laboratory the same type of corrosion that occurs in an actual crude oil tank, and succeeded in elucidating the controlling factors of crude oil tank corrosion occurring in a crude oil tank and its corrosion mechanism.

【0008】すなわち、実機の原油タンクにおいて、そ
の液相部で発生するお椀型の局部腐食は、原油から分離
した塩水の存在下で生じるものであり、オイルコートと
呼ばれる保護フィルムがCl- イオンによって部分的に破
壊され、破壊された部分の地鉄が固定されたアノード反
応位置となり、オイルコート部がカソード反応位置とな
って腐食電池を形成して生じるものであることをつきと
めた。
That is, in a crude oil tank of an actual machine, the bowl-shaped local corrosion occurring in the liquid phase portion thereof occurs in the presence of salt water separated from the crude oil, and a protective film called an oil coat is formed by Cl ions. It was found that the corrosion occurred because the partially broken metal became the anode reaction position where the ground iron in the broken part was fixed, and the oil coating part became the cathode reaction position to form a corrosion battery.

【0009】この腐食電池作用は、本来小さいものであ
るが、本発明者は、ある程度の量のO2 とH2 Sの共存
下では、H2 SはO2 による酸化反応で固体Sに変化
し、さらに、その固体Sはオイルコート上でFeSに還元
されることでカソード反応を促進するため、局部腐食が
激しくなることをつきとめた。また、実機の原油タンク
の気相部で発生する、凹凸を伴う層状剥離錆による全面
腐食は、気相部に封入されるイナートガス中のO2 と原
油中のH2 Sおよび結露した水とが関係して発生するこ
とをつきとめた。
Although this corrosion cell action is originally small, the present inventor has found that, in the presence of a certain amount of O 2 and H 2 S, H 2 S is converted into solid S by an oxidation reaction by O 2. Furthermore, it was found that the solid S is reduced to FeS on the oil coat to promote the cathode reaction, and local corrosion becomes severe. Further, the general corrosion caused by the layered peeling rust with unevenness, which occurs in the vapor phase portion of the crude oil tank of the actual machine, is caused by O 2 in the inert gas, H 2 S in the crude oil, and condensed water which are enclosed in the vapor phase portion. I found out that it was related.

【0010】そして、この気相部で生じる腐食も、液相
部で生じる腐食と同様であり、H2SがO2 により酸化
されて固体Sに変化し、形成された固体Sはオイルコー
ト上でFeSに還元されることでカソード反応を促進する
ため、凹凸を伴う層状剥離錆による激しい全面腐食が生
じることになる。なお、気相部では、オイルコートがほ
とんど存在しないため、アノードの位置が固定されずに
多くの位置でアノード反応が生じるため、局部腐食の形
態とはならず、全面腐食の形態となるのである。
Corrosion occurring in the gas phase portion is similar to that occurring in the liquid phase portion. H 2 S is oxidized by O 2 and changed to solid S, and the formed solid S is formed on the oil coat. Then, the cathodic reaction is promoted by being reduced to FeS, which causes severe general corrosion due to the delaminated rust with unevenness. In the gas phase, since there is almost no oil coat, the position of the anode is not fixed and the anode reaction occurs at many positions, so that local corrosion does not occur but general corrosion occurs. .

【0011】以上のことから、原油タンク内の腐食の防
止は、水分、Cl- イオン、オイルコート、O2 およびH
2 S、の各腐食因子のうちのいずれかを除けば達成でき
ることが判明した。ただし、これらの腐食因子のうち、
水分、Cl- イオン、オイルコートおよびH2 Sは原油か
ら大量に供給されるため除去が困難であるが、O2 はイ
ナートガスからのみの供給で、しかも、低分圧(約5 v
ol%) であることから、除去が比較的容易である。
From the above, corrosion in the crude oil tank can be prevented by water, Cl - ion, oil coat, O 2 and H.
It has been found that it can be achieved by excluding any of the corrosion factors of 2 S and S. However, of these corrosion factors,
Moisture, Cl - ions, oil coat and H 2 S are difficult to remove because they are supplied in large amounts from crude oil, but O 2 is supplied only from inert gas and has a low partial pressure (about 5 v
ol%), it is relatively easy to remove.

【0012】そこで、酸素除去のため、市販の水溶性酸
素除去剤を添加した実験を重ねて、その効果を確認し、
本発明を完成するに至った。本発明は上記の知見に基づ
き、完成されたものである。すなわち、本発明は、原油
タンクにおけるタンク内面の腐食防止方法であって、該
タンク内に水溶性酸素除去剤を注入する工程を有するこ
とを特徴とする原油タンク内の腐食防止方法によって上
記課題を解決した。
[0012] Therefore, in order to remove oxygen, an experiment was repeated in which a commercially available water-soluble oxygen scavenger was added to confirm the effect,
The present invention has been completed. The present invention has been completed based on the above findings. That is, the present invention is a method for preventing corrosion of the inner surface of a crude oil tank, wherein the above problem is solved by the method for preventing corrosion in a crude oil tank, which comprises a step of injecting a water-soluble oxygen scavenger into the tank. Settled.

【0013】また、本発明は、前記工程を、原油搭載前
および/または原油荷下ろし後に行うことを好適とする
ものである。
Further, according to the present invention, it is preferable that the above step is carried out before the crude oil is loaded and / or after the crude oil is unloaded.

【0014】[0014]

【発明の実施の形態】本発明に適用する水溶性酸素除去
剤は、水に溶ける酸素除去剤であれば、粉末、溶液を問
わず、市販のいずれの酸素除去剤も使用可能である。例
えば、油井のウォーターインジェクションにおける鋼管
の腐食防止に使用される水溶性酸素除去剤もその一つで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION As the water-soluble oxygen scavenger applied to the present invention, any commercially available oxygen scavenger can be used regardless of powder or solution as long as it is an oxygen scavenger that is soluble in water. For example, a water-soluble oxygen scavenger used for preventing corrosion of steel pipes in water injection in oil wells is one of them.

【0015】本発明の原油タンク内の腐食防止方法を、
原油タンカーに適用する場合について説明する。本発明
では、水溶性酸素除去剤を、産油地では原油搭載前に、
消費地では原油荷下ろし後に添加する。ここで、産油地
においては、原油搭載後に気相部にイナートガス(O2
約5 vol%) を封入するが、原油搭載前に酸素除去剤を
添加しておくと、原油搭載時の攪拌作用により、水溶性
酸素除去剤が原油中に分散し、原油に含まれる塩水中に
溶け込んで酸素を固定する。その後の輸送時に、油分と
水分は分離し、水はタンク底に瑠まるが、その状態でも
酸素は固定されたままであるので、溶存酸素濃度がH2
Sの酸化を引き起こすことのない十分に低い濃度となる
のである。
A method for preventing corrosion in a crude oil tank according to the present invention is
A case of applying to a crude oil tanker will be described. In the present invention, a water-soluble oxygen scavenger, in the oil producing area, before loading crude oil,
At the point of consumption, add after unloading crude oil. Here, in the oil producing area, after the crude oil is loaded, the inert gas (O 2
However, if an oxygen scavenger is added before the crude oil is loaded, the water-soluble oxygen scavenger will be dispersed in the crude oil due to the stirring action when the crude oil is loaded, and salt water contained in the crude oil will be dispersed. It dissolves in and fixes oxygen. At the time of subsequent transportation, oil and water are separated, and water is rusted on the bottom of the tank, but even in that state, oxygen remains fixed, so that the dissolved oxygen concentration is H 2
This is a sufficiently low concentration that does not cause the oxidation of S.

【0016】一方、原油タンク腐食は、消費地で原油荷
下ろし後、産油地に向かう空荷の状態でも、そこに封入
するイナートガスとわずかに残った原油によって、水
分、Cl - イオン、オイルコート、O2 およびH2 Sが存
在することになり、腐食が発生する。そのため、原油荷
下ろし後の空荷の状態でも水溶性酸素除去剤を添加する
が、その添加量は、原油搭載時にくらべて水分量が少な
いため、少量で十分である。
On the other hand, crude oil tank corrosion is caused by the
After dropping, even if there is an empty load going to the oil producing area, it will be enclosed there
Inert gas and a small amount of crude oil left
Min, Cl -Aeon, oil coat, O2And H2S exists
Will be present and corrosion will occur. Therefore, the crude oil load
Add water-soluble oxygen scavenger even when empty after unloading
However, the amount of water added is smaller than when crude oil is installed.
Therefore, a small amount is sufficient.

【0017】[0017]

【実施例】以下、実施例として、腐食試験装置での検証
例(実施例1とする)と、約26万トン級の原油タンカー
の原油タンクに長期適用した検証例(実施例2とする)
について説明する。 (実施例1)表1に示す組成を有する市販のTMCP製
の造船用鋼板(16mm厚) から2枚の試験片(10mm厚×50
mm幅×50mm長さ) を切り出し、図1に示す腐食試験装置
にセットし、腐食試験を実施した。
[Examples] Hereinafter, as an example, a verification example using a corrosion test apparatus (referred to as Example 1) and a verification example applied for a long time to a crude oil tank of a crude oil tanker of about 260,000 tons (referred to as Example 2)
Will be described. (Example 1) Two test pieces (10 mm thick x 50 mm) were prepared from a commercially available TMCP steel plate for shipbuilding (16 mm thick) having the composition shown in Table 1.
(mm width × 50 mm length) was cut out and set in the corrosion test apparatus shown in FIG. 1 to carry out the corrosion test.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、図1の腐食試験装置10としては、腐
食試験槽2と恒温槽3の2層構造の装置を用いた。試験
片1aは、実機の原油タンクにおける液相部で生じる腐食
を模擬するものとし、腐食試験槽2の液相部である試験
液6a内にセットした(すなわち液相試験)。
As the corrosion test apparatus 10 in FIG. 1, a two-layer structure apparatus consisting of a corrosion test tank 2 and a constant temperature tank 3 was used. The test piece 1a simulated the corrosion occurring in the liquid phase portion of the crude oil tank of the actual machine, and was set in the test liquid 6a which is the liquid phase portion of the corrosion test tank 2 (that is, the liquid phase test).

【0020】一方、試験片1bは、実機の原油タンクにお
ける気相部で生じる腐食を模擬するものとし、腐食試験
槽2の気相6b中へセットした(すなわち気相試験) 。な
お、使用した試験液6は、ASTM D1141に規定され
る人工海水を試験母液とし、その試験母液に市販されて
いる水溶性酸素除去剤A、Bをいずれも1グラム/リッ
トルの割合で添加している。
On the other hand, the test piece 1b simulates the corrosion occurring in the gas phase portion of the crude oil tank of the actual machine, and was set in the gas phase 6b of the corrosion test tank 2 (that is, the gas phase test). The test liquid 6 used was artificial seawater specified in ASTM D1141 as the test mother liquor, and water-soluble oxygen scavengers A and B commercially available in the test mother liquor were added at a rate of 1 g / liter. ing.

【0021】ところで、水溶性酸素除去剤Aとしては、
Na2SO4を主成分とする商品名CRW9151(BAKER HU
GHES社製)を採用し、また、水溶性酸素除去剤Bとして
は、NH4HSO3 を主成分とする商品名VpCl−120
(CORTEC社製)を採用した。そして、5 vol%O2 + 1
0vol%H2 Sの分圧比に調整した混合ガス4を導入し
た。なお、混合ガスのバランス調整用とする不活性ガス
としてはN2 ガスを用いた。また、試験液6aの温度は、
恒温槽3中の水7の温度を調整することで50℃の一定値
に保持した。試験期間は1ヶ月とした。
By the way, as the water-soluble oxygen scavenger A,
Product name CRW9151 (BAKER HU containing Na 2 SO 4 as the main component)
GHES), and as the water-soluble oxygen scavenger B, a trade name VpCl-120 containing NH 4 HSO 3 as a main component.
(Made by CORTEC) was adopted. And 5 vol% O 2 + 1
The mixed gas 4 adjusted to the partial pressure ratio of 0 vol% H 2 S was introduced. N 2 gas was used as the inert gas for adjusting the balance of the mixed gas. The temperature of the test solution 6a is
The temperature of the water 7 in the constant temperature bath 3 was adjusted to maintain a constant value of 50 ° C. The test period was one month.

【0022】1ヶ月経過後、試験片1a、1bの表面に生成
した錆を除去し、液相試験では腐食形態を目視で観察
し、一方、気相試験では試験片を秤量して腐食速度を換
算して求めた。それらの結果を表2に示す。なお、気相
試験の腐食速度は、酸素除去剤無添加の比較例における
試験片の腐食速度を1としたときの比で示した。
After one month, the rust formed on the surfaces of the test pieces 1a and 1b was removed, and the corrosion morphology was visually observed in the liquid phase test, while the test pieces were weighed in the gas phase test to determine the corrosion rate. Calculated and calculated. The results are shown in Table 2. The corrosion rate in the vapor phase test is shown as a ratio when the corrosion rate of the test piece in the comparative example without addition of the oxygen scavenger is 1.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から、本発明例はいずれも、液相試験
での局部腐食が認められず、また、気相試験でも比較例
(酸素除去剤無添加)に比べて腐食速度が小さく、耐食
性に優れていることがわかる。 (実施例2)TMPC製の造船用鋼板で建造された約26
万トン級の原油タンカーの最初から3番目のセンタータ
ンク(25m幅×60m長さ×30m高さ)に、実施例1で用
いた水溶性酸素除去剤Aを産油地で原油搭載前に添加
し、また、消費地で原油荷下ろし後に添加することを繰
り返し、約2.5 年間継続して検証を行い、実際の腐食状
況を調査した。
From Table 2, none of the examples of the present invention showed local corrosion in the liquid phase test, and the corrosion rate in the gas phase test was smaller than that of the comparative example (without addition of the oxygen scavenger). It turns out that it is excellent. (Example 2) Approximately 26 built from TMPC shipbuilding steel plate
The water-soluble oxygen scavenger A used in Example 1 was added to the third center tank (25 m width x 60 m length x 30 m height) of the 10,000-ton class crude oil tanker before the crude oil was loaded in the oil producing area. In addition, the addition of crude oil after unloading was repeated at the point of consumption, and verification was continued for approximately 2.5 years to investigate the actual corrosion status.

【0025】なお、水溶性酸素除去剤Aの添加量は、原
油搭載前では約50kg/回、原油荷下ろし後では約3kg/
回とした。この添加量は、原油搭載時には、タンク底
に、約0.2m高さ相当の塩水が原油から分離して生じる
こと、また、原油荷下ろし後には、タンク底に溜まった
と換算して約0.01m高さ相当の結露水が生じることを勘
案して決定した。
The amount of the water-soluble oxygen scavenger A added is about 50 kg / cycle before loading crude oil, and about 3 kg / cycle after unloading crude oil.
It was time. This amount of addition is about 0.01 m higher when the crude oil is loaded, which means that salt water equivalent to a height of about 0.2 m separates from the crude oil at the bottom of the tank, and that it accumulates at the bottom of the tank after unloading the crude oil. It was decided in consideration of the fact that a considerable amount of condensed water will be generated.

【0026】そして、 2.5年経過後の調査において、水
溶性酸素除去剤Aを添加しないタンクでは、タンク底に
局部腐食が認めら、タンク天井では約 0.2mm/年の腐食
速度に相当する全面腐食が認められた。 一方、水溶性酸
素除去剤Aを添加したタンクのタンク底では、局部腐食
は全く認められず、また、タンク天井の腐食は約0.05mm
/年程度であり、腐食の程度が極めて軽微であった。
In a survey after 2.5 years, in the tank to which the water-soluble oxygen scavenger A was not added, local corrosion was observed at the tank bottom, and the tank ceiling had a general corrosion rate equivalent to about 0.2 mm / year. Was recognized. On the other hand, no local corrosion was observed at the tank bottom of the tank containing the water-soluble oxygen scavenger A, and corrosion of the tank ceiling was about 0.05 mm.
/ Year, and the degree of corrosion was extremely slight.

【0027】[0027]

【発明の効果】本発明によれば、原油タンク内の腐食防
止方法を、簡便、かつ、安価に提供することが可能であ
り、産業上格段の効果を奏する。
According to the present invention, it is possible to provide a method for preventing corrosion in a crude oil tank simply and inexpensively, and it is possible to achieve a marked industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の検証に用いた腐食試験装置の模式図で
ある。
FIG. 1 is a schematic diagram of a corrosion test apparatus used for verification of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 試験片 2 腐食試験槽 3 恒温槽 4 混合ガス 5 ガス排出口 5a 排出ガス 6a 試験液 6b 気相 7 水 10 腐食試験装置 1a, 1b test piece 2 Corrosion test tank 3 constant temperature bath 4 mixed gas 5 gas outlet 5a exhaust gas 6a Test solution 6b gas phase 7 water 10 Corrosion test equipment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原油タンクにおけるタンク内面の腐食防
止方法であって、該タンク内に水溶性酸素除去剤を注入
する工程を有することを特徴とする原油タンク内の腐食
防止方法。
1. A method for preventing corrosion of the inner surface of a crude oil tank, comprising a step of injecting a water-soluble oxygen scavenger into the tank.
【請求項2】 前記工程を、原油搭載前および/または
原油荷下ろし後に行うことを特徴とする請求項1に記載
の原油タンク内の腐食防止方法。
2. The method for preventing corrosion in a crude oil tank according to claim 1, wherein the step is performed before loading crude oil and / or after unloading crude oil.
JP2002125885A 2002-04-26 2002-04-26 Method of preventing corrosion of crude oil tank Pending JP2003321090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125885A JP2003321090A (en) 2002-04-26 2002-04-26 Method of preventing corrosion of crude oil tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125885A JP2003321090A (en) 2002-04-26 2002-04-26 Method of preventing corrosion of crude oil tank

Publications (1)

Publication Number Publication Date
JP2003321090A true JP2003321090A (en) 2003-11-11

Family

ID=29540474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125885A Pending JP2003321090A (en) 2002-04-26 2002-04-26 Method of preventing corrosion of crude oil tank

Country Status (1)

Country Link
JP (1) JP2003321090A (en)

Similar Documents

Publication Publication Date Title
CN102264937B (en) Corrosion-resistant steel material for crude oil tanker
Tasic et al. The influence of synergistic effects of 5-methyl-1H-benzotriazole and potassium sorbate as well as 5-methyl-1H-benzotriazole and gelatin on the copper corrosion in sulphuric acid solution
JP4941620B2 (en) Corrosion resistant steel for cargo oil tanks
JP4393291B2 (en) Marine steel with excellent corrosion resistance
KR101792406B1 (en) Steel material for painting excellent in corrosion resistance
JP5662894B2 (en) Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
KR101382009B1 (en) Steel for ship having excellent corrosion resistance
JP2010196113A (en) Steel for ship having excellent corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP2009127076A (en) Corrosion resistant steel product for cargo oil tank
Avdeev et al. Effect of the anionic composition of acidic solutions containing Fe (III) on the protection of low-carbon steel by a triazole inhibitor
KR20070099482A (en) Steel for ship having excellent corrosion resistance
JP2012058126A (en) Corrosion test method for crude oil tank bottom panel, and steel material and crude oil tank selected on the basis of the same
US5411677A (en) Method and composition for preventing copper corrosion
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
CN102605277A (en) Steel material for structural member having excellent corrosion resistance
JP4923614B2 (en) Corrosion resistant steel for ships
Avdeev et al. Effect of nitrogen-containing inhibitors on the corrosion inhibition of low-carbon steel in solutions of mineral acids with various anionic compositions
JP2003321090A (en) Method of preventing corrosion of crude oil tank
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP2006118002A (en) Steel material for oil tank
CN111592784B (en) PH regulator, water-based steel structure anticorrosive paint containing same and capable of preventing flash rust of welding seams and preparation method of paint
EP0064295B1 (en) Method of improving the corrosion resistance of chemical conversion coated aluminum
US3050360A (en) Method of inhibiting corrosion of iron and steel