JP2003319560A - Distributed power supply equipment and control method therefor - Google Patents

Distributed power supply equipment and control method therefor

Info

Publication number
JP2003319560A
JP2003319560A JP2002121768A JP2002121768A JP2003319560A JP 2003319560 A JP2003319560 A JP 2003319560A JP 2002121768 A JP2002121768 A JP 2002121768A JP 2002121768 A JP2002121768 A JP 2002121768A JP 2003319560 A JP2003319560 A JP 2003319560A
Authority
JP
Japan
Prior art keywords
distributed power
load
external system
power supply
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002121768A
Other languages
Japanese (ja)
Inventor
Jun Toyoura
潤 豊浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002121768A priority Critical patent/JP2003319560A/en
Publication of JP2003319560A publication Critical patent/JP2003319560A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide distributed power supply equipment which meets consumers' needs, automatically selects a load balanced with distributed power supply for protection of the selected load in case that an accident occurs in an external system, and which is linked to the external system, and a control method for the distributed power supply equipment linked to the external system suited for an economical operation. <P>SOLUTION: In this distributed power supply equipment linked to the external system, a controller which makes interactive communications with the information of the external system and the information of consumers as users of the distributed power supply equipment controls all breakers, all electric-variable measuring means, all switches, and distributed power supply through the interactive communications. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、商用系統等の外部
系統と連系する分散電源設備及びこの分散電源設備の制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed power supply facility connected to an external system such as a commercial system and a control method for the distributed power supply facility.

【0002】[0002]

【従来の技術】電力自由化などの規制緩和により分散電
源の導入が促進されている。しかし、一般に分散電源は
商用系統に比べて容量がずっと小さいので系統非連系で
運用した場合、負荷変動などに対する動作の安定性が低
く、分散電源が運転停止する危険性が高く、また経済効
率の観点からも負荷変動に追随して出力を変動させるの
はエネルギーのロスを生じる。
2. Description of the Related Art Introduction of distributed power sources has been promoted by deregulation such as electric power liberalization. However, since distributed power sources generally have a much smaller capacity than commercial power systems, when they are operated in a system that is not connected to the grid, the stability of operation against load fluctuations is low, there is a high risk that the distributed power sources will stop operating, and economic efficiency is high. From the point of view of the above, changing the output following the load change causes energy loss.

【0003】そこで、一般に分散電源は商用系統に連系
して運転される場合が非常に多い。図5は、例えば特開
平11−055858号公報に示された従来の商用系統
に連系した分散電源設備の構成図である。図5において
は、1は商用系統と需要家系統間の遮断機、2は需要家
の分散電源、3は需要家の分散電源と需要家系統間の遮
断機、4は需要家系統の第1の母線、5は需要家系統の
第2の母線、6は第1の母線4と第2の母線5間の遮断
機、7は蓄電池、8は交直変換機である。
Therefore, in general, the distributed power source is often operated by being connected to a commercial system. FIG. 5 is a configuration diagram of a distributed power supply facility connected to a conventional commercial system disclosed in, for example, Japanese Patent Laid-Open No. 11-055858. In FIG. 5, 1 is a circuit breaker between the commercial system and the customer system, 2 is a distributed power source of the customer, 3 is a circuit breaker between the distributed power source of the customer and the customer system, and 4 is a first of the customer system. Is a second bus bar of the customer system, 6 is a breaker between the first bus bar 4 and the second bus bar 5, 7 is a storage battery, and 8 is an AC / DC converter.

【0004】次に、通常時の動作を説明する。遮断機
1、遮断機3、遮断機6のすべては閉じた状態で運用さ
れる。このとき需要家系統内の負荷量が分散電源2の出
力より大きい場合は、不足分が商用系統から融通され、
需要家系統内の負荷量が分散電源2の出力より小さい場
合は、余剰分が商用系統へ逆潮流として送出される。ま
た、蓄電池7は第2の母線5より交直変換機8を通して
適宜充電される。
Next, a normal operation will be described. All of the circuit breaker 1, the circuit breaker 3, and the circuit breaker 6 are operated in a closed state. At this time, when the load amount in the customer system is larger than the output of the distributed power source 2, the shortage is accommodated from the commercial system,
When the load amount in the customer system is smaller than the output of the distributed power source 2, the surplus is sent to the commercial system as a reverse flow. Further, the storage battery 7 is appropriately charged from the second bus bar 5 through the AC / DC converter 8.

【0005】続けて、系統事故時の動作を説明する。遮
断機1と遮断機6は開き、遮断機3は続けて閉じた状態
で運用される。このとき需要家系統内の第1の母線4に
繋がれた負荷には電力の供給は停止する。一方第2の母
線5に繋がれた負荷には分散電源2の発電した電力が引
き続き供給される。もし分散電源2の発電量が不足する
場合は、蓄電池7から交直変換機8を通して第2の母線
5に電力が供給される。つまり系統事故時に、第2の母
線5に繋がれた負荷は保護され、第1の母線4に繋がれ
た負荷は保護されないことになる。
Next, the operation at the time of a system fault will be described. The circuit breaker 1 and the circuit breaker 6 are opened, and the circuit breaker 3 is continuously closed. At this time, the power supply to the load connected to the first bus bar 4 in the customer system is stopped. On the other hand, the load connected to the second bus bar 5 is continuously supplied with the electric power generated by the distributed power source 2. If the amount of power generated by the distributed power source 2 is insufficient, power is supplied from the storage battery 7 to the second bus bar 5 through the AC / DC converter 8. That is, the load connected to the second bus bar 5 is protected and the load connected to the first bus bar 4 is not protected at the time of a system fault.

【0006】[0006]

【発明が解決しようとする課題】しかし、図5では以下
の問題点があった。第1に、保護される負荷と保護され
ない負荷が系統設計時に固定化されるため、第1の母線
4に繋がれた負荷を保護するためには第2の母線5に繋
ぎ変える必要があり、逆に第2の母線5に繋がれた負荷
から保護を外すためには第1の母線4に繋ぎ変える必要
がある。そのため、昼間は保護が必要であるが夜間は保
護が不要であるような負荷に対しては、所望の保護をか
けるためには毎日第1と第2の母線間を繋ぎ変えねばな
らず処理が煩雑である。また、第2の母線5に繋がれた
負荷が少なく、分散電源2に余裕がある場合でも、事故
時には第1の母線4に繋がれた負荷は救われない。
However, FIG. 5 has the following problems. First, since the protected load and the unprotected load are fixed at the time of system design, it is necessary to reconnect to the second bus bar 5 in order to protect the load connected to the first bus bar 4, On the contrary, in order to remove the protection from the load connected to the second bus bar 5, it is necessary to switch the connection to the first bus bar 4. Therefore, for loads that require protection during the day but not at night, the first and second busbars must be reconnected every day in order to provide the desired protection. It is complicated. Further, even if the load connected to the second busbar 5 is small and the distributed power source 2 has a margin, the load connected to the first busbar 4 is not saved in the event of an accident.

【0007】第2に、上記のように系統事故時に分散電
源2の発電量が不足する場合は、蓄電池7から交直変換
機8を通して第2の母線5に電力が供給されるが、蓄電
池7は容量が有限であるため無停電電源装置のように極
短い時間だけ電力を供給する場合には有効であるが、系
統事故がすぐ回復しない場合は結局、第2の母線5に繋
がれた負荷を救えない危険性が高い。
Secondly, as described above, when the amount of power generation of the distributed power source 2 is insufficient at the time of a system failure, power is supplied from the storage battery 7 to the second bus bar 5 through the AC / DC converter 8, but the storage battery 7 is Since the capacity is finite, it is effective when supplying power for an extremely short time, such as an uninterruptible power supply, but when the system fault does not recover immediately, the load connected to the second bus bar 5 is eventually eliminated. There is a high risk of not being saved.

【0008】第3に、電力自由化にともない電力会社の
料金体系も多様化していくが、図5では経済効果が考慮
されていない。
Thirdly, the tariff system of electric power companies is diversifying with the liberalization of electric power, but the economic effect is not taken into consideration in FIG.

【0009】従来の系統連系分散電源設備は、図5で指
摘したように保護される負荷から保護されない負荷への
変更や、その逆の変更が煩雑であり、また、必ずしも分
散電源の能力がすべて負荷の保護に活用できていなかっ
た。また、分散電源の容量と保護する負荷の容量のバラ
ンスが短期的にしか保てず、さらには経済運転も行われ
ていないなどの問題点があった。
In the conventional grid-connected distributed power supply facility, it is complicated to change from a protected load to an unprotected load and vice versa as pointed out in FIG. 5, and the capacity of the distributed power supply is not always required. All could not be utilized to protect the load. In addition, there is a problem that the capacity of the dispersed power source and the capacity of the load to be protected can be maintained only for a short period of time, and the economical operation is not performed.

【0010】この発明は、上記のような問題点を解決す
るためになされたものであり、需要家の要求に見合うと
同時に、分散電源とバランスした負荷を自動的に選択
し、系統事故時には選択した負荷が保護される系統連系
分散電源設備を得ることを目的としており、さらに経済
運用に適した系統連系分散電源設備の制御方法を提供す
ることを目的とするものである。
The present invention has been made to solve the above problems, and at the same time as meeting the demands of customers, it automatically selects a load balanced with a distributed power source and selects it in the event of a system fault. It is an object of the present invention to obtain a grid-connected distributed power supply facility in which the above-mentioned load is protected, and further to provide a method of controlling the grid-connected distributed power supply facility suitable for economic operation.

【0011】[0011]

【課題を解決するための手段】本発明のうち請求項1に
記載の分散電源設備は、外部系統と連系する分散電源設
備において、外部系統は連系点と第1の遮断機と第1の
電気量測定手段とを経由して第1の構内母線に接続さ
れ、分散電源は第2の遮断機と第2の電気量測定手段と
を経由して第2の構内母線に接続され、第1の構内母線
と第2の構内母線とは第3の遮断機で接続され、第1の
構内母線は複数の切替器の各々1番の切替端子に接続さ
れ、第2の構内母線は複数の切替器の各々2番の切替端
子に接続され、複数の切替器の各々の選択端子は1番の
切替端子に接続するか、2番の切替端子に接続するか、
どちらの切替端子にも接続しないかの3つのいずれかを
選択でき、各々電気量測定手段を経由して、各々負荷に
接続され、外部系統の情報と分散電源設備の利用者であ
る需要家の情報と双方向通信するコントローラが、すべ
ての遮断機とすべての電気量測定手段とすべての切替器
と分散電源と双方向通信し制御するものである。
According to a first aspect of the present invention, there is provided a distributed power supply facility according to claim 1, which is a distributed power supply facility interconnected with an external system, wherein the external system is an interconnection point, a first circuit breaker and a first circuit breaker. Connected to the first premises bus via the electric quantity measuring means, and the distributed power source is connected to the second premises bus via the second circuit breaker and the second electric quantity measuring means. The first premises busbar and the second premises busbar are connected by a third circuit breaker, the first premises busbar is connected to the first switching terminal of each of the plurality of switching devices, and the second premises busbar is Whether each switching terminal of the plurality of switching devices is connected to the first switching terminal or the second switching terminal of the plurality of switching devices,
It is possible to select any one of the three which is not connected to either switching terminal, is connected to each load via each electric quantity measuring means, and is connected to the information of the external system and the consumer who is the user of the distributed power equipment. A controller, which is in bidirectional communication with information, bidirectionally communicates with and controls all the circuit breakers, all the electric quantity measuring means, all the switches, and the distributed power source.

【0012】また、本発明のうち請求項2に記載の分散
電源設備の制御方法は、請求項1に記載の分散電源設備
において、コントローラが需要家からの負荷の重要度を
用いて、切替器を制御するものである。
According to a second aspect of the present invention, there is provided a method for controlling distributed power equipment, wherein in the distributed power equipment according to the first aspect, the controller uses the degree of importance of the load from the customer to switch the switch. Is to control.

【0013】また、本発明のうち請求項3に記載の分散
電源設備の制御方法は、請求項2に記載の分散電源設備
の制御方法であって、コントローラが外部系統からの電
力融通の要請量を用いて、切替器を制御するものであ
る。
The control method for distributed power equipment according to claim 3 of the present invention is the method for controlling distributed power equipment according to claim 2, wherein the controller requests the amount of power interchange from an external system. Is used to control the switching device.

【0014】[0014]

【発明の実施の形態】実施の形態1.図1は、本発明の
実施の形態1による外部系統と連系する分散電源設備の
構成図であり、より具体的には外部系統と分散電源の両
者により負荷を運転している部分の構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a configuration diagram of a distributed power facility connected to an external system according to Embodiment 1 of the present invention, and more specifically, a configuration diagram of a portion in which a load is driven by both the external system and the distributed power source. Is.

【0015】図1において、外部系統(例えば商用系
統)100は連系点103と第1の遮断機111と第1
の電気量測定手段114を順に経由して第1の構内母線
105に接続され、分散電源101は第2の遮断機11
2と第2の電気量測定手段115とを経由して第2の構
内母線106に接続され、第1の構内母線105と第2
の構内母線106とは第3の遮断機113で接続されて
いる。
In FIG. 1, an external system (for example, a commercial system) 100 includes an interconnection point 103, a first circuit breaker 111, and a first circuit breaker 111.
Connected to the first local bus 105 through the electric quantity measuring means 114 in order, and the distributed power source 101 is connected to the second circuit breaker 11
2 and the second electric quantity measuring means 115, and is connected to the second campus bus 106, and the first campus bus 105 and the second campus bus 106 are connected.
A third circuit breaker 113 is connected to the local bus 106 of the above.

【0016】第1の構内母線105は、N個の切替器1
210、1220、…、12N0の各々1番の切替端子
1211、1221、…、12N1に接続され、第2の
構内母線106は、N個の切替器1210、1220、
…、12N0の各々2番の切替端子1212、122
2、…、12N2に接続されている。N個の切替器121
0、1220、…、12N0の各々の選択端子121
3、1223、…、12N3は、1番の切替端子121
1、1221、…、12N1に接続するか、2番の切替
端子1212、1222、…、12N2に接続するか、
どちらの切替端子にも接続しないかの3つのいずれかを
選択でき、各々電気量測定手段131、132、…、1
3Nを経由して、各々N個の負荷141、142、…、1
4Nに接続されている。
The first campus bus 105 is composed of N switching devices 1
, 12N0 are connected to the first switching terminals 1211, 1221, ..., 12N1, respectively, and the second premises bus 106 has N switching devices 1210, 1220,
..., 2N switching terminals 1212 and 122 of 12N0
2, ..., 12N2 are connected. N switching devices 121
0, 1220, ..., 12N0 select terminals 121
, 1223, ..., 12N3 are the first switching terminals 121
, 12N1 or the second switching terminals 1212, 1222, ..., 12N2,
It is possible to select any one of three switching terminals which are not connected to either of the switching terminals, and the respective electric quantity measuring means 131, 132, ..., 1
1 via N loads 141, 142, ...
It is connected to 4N.

【0017】外部系統の情報104と分散電源設備10
2の利用者である需要家の情報160と双方向通信する
コントローラ150が、遮断機111、112、113
と電気量測定手段114、115、131、132、
…、13Nと切替器1210、1220、…、12N0と
分散電源101と双方向通信し制御する。
External system information 104 and distributed power supply equipment 10
The controller 150, which performs two-way communication with the information 160 of the customer who is the second user, uses the circuit breakers 111, 112, 113.
And electric quantity measuring means 114, 115, 131, 132,
, 13N and switching devices 1210, 1220, ..., 12N0 and the distributed power source 101 are bidirectionally communicated and controlled.

【0018】従って、需要家からの情報に基づき、事故
時に保護される負荷と保護されない負荷を自動的に切り
替えることができる。
Therefore, it is possible to automatically switch between the protected load and the unprotected load in the event of an accident, based on the information from the customer.

【0019】図2は、本発明の実施の形態1による系統
連系分散電源設備で、外部系統と分散電源の両者に負荷
配分を自動的に行う方法を示す図で、コントローラ15
0の内部構成の1例を示すものである。図2において、
図1と同一の符号を付したものは、同一またはこれに相
当するものである。
FIG. 2 is a diagram showing a method of automatically performing load distribution to both the external system and the distributed power source in the grid-connected distributed power source facility according to the first embodiment of the present invention.
1 shows an example of the internal configuration of 0. In FIG.
Those given the same reference numerals as in FIG. 1 are the same or equivalent.

【0020】図2において、電気量測定手段131、1
32、…、13Nの観測値は、I/O201を経由して
測定量解析・記憶部202に入力され、負荷141、1
42、…、14Nの現在の消費電力が求められる。例え
ば、切替器1210の選択端子1213が1番の切替端
子1211にも2番の切替端子1212にも接続してい
ない場合、負荷141の消費電力は測定量解析・記憶部
202では0ワットとなる。一方、測定量解析・記憶部
202は各負荷に対する、消費電力が0ワットでなかっ
た現在を含む最も最近の測定値を実消費電力w
、…、wNとして記憶するが、実消費電力は正値の
デフォルト負荷値を初期値としているため、必ず正値を
とる。実消費電力w、w、…、wNは測定量解析・
記憶部202から最適解求解部203に出力される。例
えば、負荷141の実消費電力wは8ワット、負荷1
42の実消費電力wは12ワット、…、負荷14Nの
実消費電力wNは6ワットというようになっている。
In FIG. 2, electric quantity measuring means 131, 1
The observed values of 32, ..., 13N are input to the measured amount analysis / storage unit 202 via the I / O 201, and the loads 141, 1
The current power consumption of 42, ..., 14N is required. For example, when the selection terminal 1213 of the switch 1210 is not connected to the first switching terminal 1211 or the second switching terminal 1212, the power consumption of the load 141 is 0 watts in the measurement amount analysis / storage unit 202. . On the other hand, the measured amount analysis / storage unit 202 stores the latest measured value for each load including the present time at which the power consumption was not 0 watts, the actual power consumption w 1 ,
Although stored as w 2 , ..., W N , the actual power consumption always takes a positive value because the initial value is a default load value having a positive value. The actual power consumption w 1, w 2, ..., w N • The measured quantity analysis
It is output from the storage unit 202 to the optimum solution solving unit 203. For example, the actual power consumption w 1 of the load 141 is 8 watts, the load 1
The actual power consumption w 2 of 42 is 12 watts, ..., The actual power consumption w N of the load 14N is 6 watts.

【0021】需要家情報160は、各負荷141、14
2、…、14Nの重要度a(t)、a(t)、…、
(t)が0以上の数値として、I/O201を経由
して最適解求解部203に入力される。負荷の重要度a
(t)、a(t)、…、a(t)は、重要なほど
大きな値とし、不要なものは0とする。例えば、a
(t)=100、a(t)=0、…、a(t)=
10とすると、「負荷141の重要度」>「負荷14N
の重要度」>「負荷142の重要度」=0の順で各負荷
は重要で、特に負荷142は不要と見なされていること
になる。また、分散電源101の出力電力値W(t)は
I/O201を経由して最適解求解部203に入力され
る。
The customer information 160 includes the loads 141, 14
, ..., 14N importance a 1 (t), a 2 (t), ...
The value of a N (t) is 0 or more, and is input to the optimal solution solving unit 203 via the I / O 201. Load importance a
1 (t), a 2 (t), ..., A N (t) are set to have an important value, and unnecessary values are set to 0. For example, a
1 (t) = 100, a 2 (t) = 0, ..., a N (t) =
If it is 10, "importance of load 141">"load14N"
Each load is important in the order of “importance level of load”> “importance level of load 142” = 0, and in particular, the load 142 is regarded as unnecessary. Further, the output power value W (t) of the distributed power source 101 is input to the optimum solution solving unit 203 via the I / O 201.

【0022】最適解求解部203では、負荷141、1
42、…、14Nから負荷の重要度の大きいものを優先
し、負荷容量の合計が分散電源101の出力電力値W
(t)を超えないように負荷の選択を行う。具体的に前
記の条件は、負荷を選択する場合は1、しない場合は0
の値を持つδ(t)を要素とする負荷選択変数δ
(t)、δ(t)、…、δ(t)を用いて、次の
条件式で表される。
In the optimum solution solver 203, loads 141, 1
42, ..., 14N, the load having the highest importance is given priority, and the total load capacity is the output power value W of the distributed power source 101.
The load is selected so as not to exceed (t). Specifically, the above condition is 1 when the load is selected, and 0 when the load is not selected.
Load selection variable δ whose element is δ (t) having the value of
Using 1 (t), δ 2 (t), ..., δ N (t), the following conditional expression is used.

【0023】[0023]

【数1】 [Equation 1]

【0024】上から2番目の式は選択した負荷の容量の
合計が分散電源101の出力電力値W(t)を超えない
制約条件である。上から3番目以下の式は負荷選択変数
δ(t)、δ(t)、…、δ(t)の制約条件で
ある。上から1番目の式は負荷の重要度a(t)、a
(t)、…、a(t)により負荷選択を評価する式
で、右辺A(t)は重要度が大きい負荷を選択するほど
大きくなるので、前記制約条件を満たしつつA(t)を
最大にするように負荷選択変数δ(t)、δ
(t)、…、δ(t)を決定すれば、所望の負荷選
択が行われたことになる。
The second equation from the top is for the selected load capacity.
The total does not exceed the output power value W (t) of the distributed power source 101.
It is a constraint condition. The third and lower expressions are the load selection variables
δ1(T), δTwo(T), ..., δNWith the constraint of (t)
is there. The first formula from the top is the importance of load a1(T), a
Two(T), ..., aNExpression to evaluate load selection by (t)
So, the right side A (t) is so large that the load with high importance is selected.
Since it becomes larger, A (t) is
Load selection variable δ to maximize1(T), δ
Two(T), ..., δNOnce (t) is determined, the desired load selection
The selection has been made.

【0025】この条件式は、上から1番目の式を目的関
数、上から2番目以下の式を制約条件とする線形計画問
題と見なせる。線形計画問題は例えばシンプレックス法
などの解法が広く知られておりプログラムも存在する
(例えば、「基礎からのORシミュレーション」松村幸
輝 著、オーム出版:ISBN4-274-13024-Xの49頁〜51
頁)ので、最適解求解部203に容易に実装できる。
This conditional expression can be regarded as a linear programming problem in which the first expression from the top is an objective function, and the expressions below the second from the top are constraints. Solving methods such as the simplex method are widely known for linear programming problems, and there are also programs (for example, “OR simulation from basics” by Yukiteru Matsumura, Ohm Publishing: ISBN4-274-13024-X, pages 49-51.
Page), and can be easily mounted in the optimum solution unit 203.

【0026】最適解求解部203で求めた負荷選択変数
δ(t)、δ(t)、…、δ(t)は、I/O2
01を経由して、切替器1210、1220、…、12
N0に各々出力され、δ(t)=1の場合、選択端子は
2番の切替端子に接続され、δ(t)=0の場合、選択
端子は1番の切替端子に接続される。
The load selection variables δ 1 (t), δ 2 (t), ..., δ N (t) obtained by the optimum solution obtaining unit 203 are I / O 2
12 via the switch 1210, 1220, ..., 12
Each is output to N0, and when δ (t) = 1, the selection terminal is connected to the second switching terminal, and when δ (t) = 0, the selection terminal is connected to the first switching terminal.

【0027】通常運転時、本実施の形態の系統連系分散
電源設備は、図1の第3の遮断機113を閉じて運用さ
れる。つまり、トポロジー的には図5とまったく同様に
外部系統の母線と分散電源の母線が連系していることに
なる。外部系統100は非常に頑健であると考えられる
ので、分散電源設備102内の負荷141、142、
…、14Nの稼動状況が変化し、負荷変動があっても安
定した品質の電力が供給できる。
During normal operation, the system interconnection distributed power supply facility of this embodiment is operated with the third circuit breaker 113 of FIG. 1 closed. In other words, topologically, the bus of the external system and the bus of the distributed power supply are interconnected just as in FIG. Since the external system 100 is considered to be very robust, the loads 141 and 142 in the distributed power facility 102,
..., the operating condition of 14N changes, and power of stable quality can be supplied even if there is a load change.

【0028】外部系統100に事故が生じた場合、例え
ば第1の電気量測定手段114の測定電圧の低下により
短絡事故がコントローラ150で検出された場合、直ち
にコントローラ150から第1の遮断機111と第3の
遮断機113に開放の信号が送られ、外部系統100か
らの電力供給は停止し、第1の構内母線105と第2の
構内母線106は解列される。このときコントローラ1
50であらかじめ選択された重要度の高い負荷のみが第
2の構内母線106に接続しており、上記の負荷選択変
数δ(t)、δ(t)、…、δ(t)の選び方か
ら、選択された負荷の容量の合計は分散電源101の出
力電力値W(t)に非常に近いため、第2の構内母線1
06は安定した電力を供給できる。また、事故の情報は
外部系統情報104に通信される。
When a fault occurs in the external system 100, for example, when a short circuit fault is detected by the controller 150 due to a decrease in the measurement voltage of the first electricity quantity measuring means 114, the controller 150 immediately switches to the first circuit breaker 111. An open signal is sent to the third circuit breaker 113, power supply from the external system 100 is stopped, and the first premises bus 105 and the second premises bus 106 are disconnected. At this time the controller 1
Only the loads of high importance preselected at 50 are connected to the second in-house bus 106, and the load selection variables δ 1 (t), δ 2 (t), ..., δ N (t) above. From the selection method, the total of the capacities of the selected loads is very close to the output power value W (t) of the distributed power source 101, so the second local bus 1
06 can supply stable power. Also, the information on the accident is communicated to the external system information 104.

【0029】また、負荷にフィーダ事故が生じた場合、
例えば電気量測定手段131の電流測定値の上昇により
地絡事故がコントローラ150で検出された場合、直ち
にコントローラ150から切替機1210に信号が送ら
れ、選択端子1213が1番の切替端子1211にも2
番の切替端子1212にも接続していない状態になる
が、上記の通常運転時での負荷変動と同様に、外部系統
100の容量が大きいので、その他の負荷には安定して
電力が送られ続ける。
When a feeder accident occurs in the load,
For example, when the controller 150 detects a ground fault due to an increase in the measured current value of the electricity quantity measuring means 131, a signal is immediately sent from the controller 150 to the switching device 1210, and the selection terminal 1213 is also connected to the first switching terminal 1211. Two
However, since the capacity of the external system 100 is large like the load fluctuation during normal operation described above, power is stably sent to other loads. to continue.

【0030】従って、重要度の高い負荷に対して安定し
た電力を供給できる。また、外部系統の事故時にも重要
度の高い負荷には安定した電力を供給でき、フィーダ事
故時にも重要度の高い負荷への影響を最小限にとどめる
ことができる。
Therefore, stable power can be supplied to a load of high importance. Further, stable power can be supplied to a load of high importance even in the event of an external system accident, and the influence on the load of high importance can be minimized even in the event of a feeder accident.

【0031】一般に、分散電源101には様々な種類が
あり、系統連系する場合は「電源系統連系技術用件ガイ
ドライン’98 資源エネルギー庁編」(電力新報社:
ISBN4-88555-237-0)に従うことが定められている。回
転機系の発電機を連系する場合、発電機出力を直接連系
することは禁じられている。以下図を用いて化石資源を
燃料とする回転機系の発電機の場合について説明する。
In general, there are various types of distributed power sources 101, and in the case of system interconnection, "Power system interconnection technology requirements guideline '98 edited by Agency for Natural Resources and Energy" (Electric Power Shinposha:
ISBN4-88555-237-0). When connecting a rotating machine type generator, it is prohibited to directly connect the generator output. The case of a rotary machine generator that uses fossil resources as fuel will be described below with reference to the drawings.

【0032】図3は、分散電源101の内部構成の1例
を示す図である。回転機系発電機301のAC出力は電
気量測定手段302を経由してAC/DC変換機303
に入力され、AC/DC変換機303のDC出力は電気
量測定手段304を経由してDC/AC変換機305に
入力され、DC/AC変換機305のAC出力は電気量
測定手段306を経由して第2の遮断機112に繋がれ
る。分散電源コントローラ307は回転機系発電機30
1と電気量測定手段302、304,306の信号を入
力し、回転機系発電機301とAC/DC変換機303
とDC/AC変換機305に制御信号を出力する。ま
た、分散電源コントローラ307はコントローラ150
と信号を交換する。図3において、図1、及び図2と同
一の符号を付したものは、同一またはこれに相当するも
のである。
FIG. 3 is a diagram showing an example of the internal configuration of the distributed power source 101. The AC output of the rotary machine type generator 301 is passed through an electric quantity measuring means 302 to an AC / DC converter 303.
The DC output of the AC / DC converter 303 is input to the DC / AC converter 305 via the electric quantity measuring means 304, and the AC output of the DC / AC converter 305 is input to the electric quantity measuring means 306. Then, the second breaker 112 is connected. The distributed power supply controller 307 is the rotating machine generator 30.
1 and the signals of the electric quantity measuring means 302, 304, 306 are input, and the rotary machine generator 301 and the AC / DC converter 303 are input.
And a control signal to the DC / AC converter 305. In addition, the distributed power controller 307 is the controller 150.
And exchange signals. In FIG. 3, the same reference numerals as those in FIGS. 1 and 2 are the same or equivalent.

【0033】DC/AC変換機305は同一の回路を用
いる場合でも制御方法により電流型インバータとして作
動する場合と電圧型インバータとして作動する場合があ
るが、本実施の形態で系統連系する場合は電流型インバ
ータ、連系しない場合は電圧型インバータとして運転す
る。
Even when the same circuit is used, the DC / AC converter 305 may operate as a current type inverter or a voltage type inverter depending on the control method, but in the case of system interconnection in the present embodiment, Operates as a current type inverter, or as a voltage type inverter if not connected.

【0034】本実施の形態の系統連系分散電源設備が、
系統連系して通常運転する場合、DC/AC変換機30
5は分散電源コントローラ307により電流型インバー
タとして作動するように制御される。また、外部系統に
事故が生じた場合、DC/AC変換機305は分散電源
コントローラ307により電圧型インバータとして作動
するように、コントローラ150からの信号で瞬時に制
御を切り替えられる。このとき、第2の構内母線106
に接続した負荷の容量の合計は回転機系発電機301の
直前までの出力電力値に非常に近いため回転機系発電機
301は、回転数の加速や減速なしに運転を続行でき
る。
The system interconnection distributed power supply facility of the present embodiment is
When the system is interconnected for normal operation, the DC / AC converter 30
5 is controlled by the distributed power supply controller 307 to operate as a current type inverter. Further, when an accident occurs in the external system, the DC / AC converter 305 can instantaneously switch control by a signal from the controller 150 so that the distributed power controller 307 operates as a voltage type inverter. At this time, the second campus bus 106
Since the total capacity of the loads connected to is very close to the output power value up to immediately before the rotary machine generator 301, the rotary machine generator 301 can continue operation without accelerating or decelerating the rotation speed.

【0035】また、本実施の形態では、回転機系発電機
について説明したが、発電源は太陽光発電であってもよ
く、同様の効果が得られる。
Further, in the present embodiment, the rotating machine type generator has been described, but the power source may be solar power generation, and the same effect can be obtained.

【0036】実施の形態2.図4は、本発明の実施の形
態2による負荷選択を制御する方法の説明図である。図
4において、図1、図2、及び図3と同一の符号を付し
たものは、同一またはこれに相当するものである。本実
施の形態では図2との相違点を説明する。なお、説明を
省略した部分は実施の形態1と同じである。
Embodiment 2. FIG. 4 is an explanatory diagram of a method for controlling load selection according to the second embodiment of the present invention. In FIG. 4, the same reference numerals as those in FIGS. 1, 2 and 3 are the same or equivalent. In the present embodiment, differences from FIG. 2 will be described. The parts of which description is omitted are the same as those in the first embodiment.

【0037】以下、図4で電力会社など外部系統の管理
者からの分散電源設備102に対する電力融通の要請量
R(t)を外部系統100に融通する方法の説明をす
る。外部系統情報104は電力融通の要請量R(t)を
コントローラ150に出力し、電力融通の要請量R
(t)はI/O201を経由して最適解求解部203に
入力される。
A method for accommodating the external system 100 with the request amount R (t) for accommodating power to the distributed power facility 102 from the administrator of the external system such as an electric power company will be described below with reference to FIG. The external system information 104 outputs the requested amount R (t) of power accommodation to the controller 150, and the requested amount R of power accommodation R
(T) is input to the optimum solution solving unit 203 via the I / O 201.

【0038】最適解求解部203では、負荷141、1
42、…、14Nから負荷の重要度の大きいものを優先
し、選択する負荷の容量の合計と電力融通の要請量R
(t)の和が分散電源101の出力電力値W(t)を超
えないように負荷の選択を行う。具体的に前記の条件
は、負荷を選択する場合は1、しない場合は0の値を持
つδ’(t)を要素とする負荷選択変数δ’(t)、
δ’(t)、…、δ’(t)を用いて、次の条件式
で表される。
In the optimum solution solver 203, the loads 141, 1
42, ..., 14N, the load having the highest importance is given priority, and the total capacity of the loads to be selected and the demand amount R for power interchange are selected.
The load is selected so that the sum of (t) does not exceed the output power value W (t) of the distributed power supply 101. Specifically, the above condition is a load selection variable δ ′ 1 (t) whose elements are δ ′ (t) having a value of 1 when selecting a load and 0 when not selecting,
It is expressed by the following conditional expression using δ ′ 2 (t), ..., δ ′ N (t).

【0039】[0039]

【数2】 [Equation 2]

【0040】上から2番目の式は選択した負荷の容量の
合計と電力融通の要請量R(t)の和が分散電源101
の出力電力値W(t)を超えない制約条件である。上か
ら3番目以下の式は負荷選択変数δ’(t)、δ’
(t)、…、δ’(t)の制約条件である。上から1
番目の式は負荷の重要度a(t)、a(t)、…、
(t)により負荷選択を評価する式であるが、ここ
で左辺のaは電力融通に対する褒賞金であり、右辺
A’(t)は重要度が大きい負荷を選択するほど大きく
なるので、前記制約条件を満たしつつA’(t)を最大
にするように負荷選択変数δ’(t)、δ’
(t)、…、δ’(t)を決定すれば、所望の負荷
選択が行われたことになる。この条件式は、上から1番
目の式を目的関数、上から2番目以下の式を制約条件と
する線形計画問題と見なせるので、実施の形態1と同様
に解くことができる。
In the second equation from the top, the total of the capacities of the selected loads and the sum of the required amount R (t) of power interchange is the distributed power source 101.
Is a constraint that does not exceed the output power value W (t). The third and lower expressions from the top are load selection variables δ ′ 1 (t), δ ′ 2
(T), ..., δ ′ N (t). 1 from the top
The second expression is the importance of load a 1 (t), a 2 (t), ...,
This is an expression for evaluating load selection by a N (t), where a b on the left side is a reward for power interchange, and A '(t) on the right side becomes larger as a load with a higher importance is selected. , Load selection variables δ ′ 1 (t), δ ′ so as to maximize A ′ (t) while satisfying the above-mentioned constraint conditions.
By determining 2 (t), ..., δ ′ N (t), it means that the desired load selection is performed. Since this conditional expression can be regarded as a linear programming problem in which the first expression from the top is the objective function and the expressions from the top to the second are constraints, it can be solved in the same manner as in the first embodiment.

【0041】負荷選択変数δ’(t)、δ’
(t)、…、δ’(t)は、I/O201を経由し
て、切替器1210、1220、…、12N0に各々出
力され、δ’(t)=1の場合、選択端子は2番の切替
端子に接続され、δ’(t)=0の場合、選択端子は1
番の切替端子にも2番の切替端子にも接続されない。
Load selection variables δ ′ 1 (t), δ ′
2 (t), ..., δ ′ N (t) are output to the switches 1210, 1220, ..., 12N0 via the I / O 201, respectively, and when δ ′ (t) = 1, the selection terminals are Connected to the second switching terminal, and when δ '(t) = 0, the selection terminal is 1
Neither the number 2 switching terminal nor the number 2 switching terminal is connected.

【0042】一方、図2で説明した電力融通の要請がな
い場合の負荷選択変数δ(t)、δ(t)、…、δ
(t)も、最適解求解部203で求めている。
On the other hand, the load selection variables δ 1 (t), δ 2 (t), ..., δ when there is no demand for power interchange as described in FIG.
The optimum solution solving unit 203 also finds N (t).

【0043】最適解求解部203で求めた2組の負荷選
択変数δ(t)、δ(t)、…、δ(t)とδ’
(t)、δ’(t)、…、δ’(t)を用いて、
電力融通の要請がある場合の分散電源設備102の制御
方法を以下説明する。
The two sets of load selection variables δ 1 (t), δ 2 (t), ..., δ N (t) and δ ′ obtained by the optimum solution finding unit 203
Using 1 (t), δ ′ 2 (t), ..., δ ′ N (t),
A method of controlling the distributed power facility 102 when there is a request for power interchange will be described below.

【0044】通常運転時、本実施の形態の系統連系分散
電源設備は、図1の第3の遮断機113を閉じて運用さ
れる。負荷選択変数δ’(t)、δ’(t)、…、
δ’ (t)の決め方から、第2の構内母線106に接
続されている負荷の容量の合計は分散電源101の出力
電力値W(t)より小さく、その差分は電力融通の要請
量R(t)以上の値になっている。そのため、分散電源
設備102から連系点103を経由して外部系統100
に、電力融通の要請量R(t)以上で要請量に近い値の
電力が供給されることになる。
During normal operation, the system interconnection dispersion of the present embodiment
The power supply facility is operated by closing the third circuit breaker 113 in FIG.
Be done. Load selection variable δ '1(T), δ 'Two(T), ...
δ ’ NFrom the method of determining (t), connect to the second campus bus 106.
The total capacity of the loads being connected is the output of the distributed power supply 101.
It is smaller than the power value W (t), and the difference is the demand for power interchange.
The value is equal to or greater than the amount R (t). Therefore, distributed power
External system 100 from facility 102 via interconnection point 103
In addition, if the required amount of power interchange R (t) or more is close to the required amount,
Power will be supplied.

【0045】外部系統100に事故が生じた場合、例え
ば第1の電気量測定手段114の測定電圧の低下により
短絡事故がコントローラ150で検出された場合、直ち
にコントローラ150から第1の遮断機111と第3の
遮断機113に開放の信号が送られ、負荷選択変数δ
(t)、δ(t)、…、δ(t)が、切替器121
0、1220、…、12N0に各々出力される。δ
(t)=1の場合、選択端子は2番の切替端子に接続さ
れ、δ(t)=0の場合、選択端子は1番の切替端子に
も2番の切替端子にも接続されない。負荷選択変数δ
(t)、δ(t)、…、δ(t)の選び方から、選
択された負荷の容量の合計は分散電源101の出力電力
値W(t)に非常に近いため、第2の構内母線106は
重要度の高い負荷に安定した電力を供給できる。
When a fault occurs in the external system 100, for example, when a short circuit fault is detected by the controller 150 due to a decrease in the measurement voltage of the first electricity quantity measuring means 114, the controller 150 immediately switches to the first circuit breaker 111. An open signal is sent to the third circuit breaker 113, and the load selection variable δ 1
(T), δ 2 (t), ..., δ N (t) are the switching devices 121.
0, 1220, ..., 12N0. δ
When (t) = 1, the selection terminal is connected to the second switching terminal, and when δ (t) = 0, the selection terminal is not connected to the first switching terminal or the second switching terminal. Load selection variable δ 1
From the method of selecting (t), δ 2 (t), ..., δ N (t), the total of the capacities of the selected loads is very close to the output power value W (t) of the distributed power supply 101. The premises bus 106 can supply stable power to highly important loads.

【0046】また、負荷にフィーダ事故が生じた場合、
例えば電気量測定手段131の電流測定値の上昇により
地絡事故がコントローラ150で検出された場合、直ち
にコントローラ150から切替機1210に信号が送ら
れ、選択端子1213が1番の切替端子1211にも2
番の切替端子1212にも接続していない状態になる。
また、外部系統100への電力供給も一時的に停止させ
る。この状態では、負荷141以外の選択された負荷に
は、安定して電力が送られ続け、外部系統100に直前
まで供給していた電力量と負荷141の実消費電力w
の和が加わって供給されることになる。
When a load causes a feeder accident,
For example, when the controller 150 detects a ground fault due to an increase in the measured current value of the electricity quantity measuring means 131, a signal is immediately sent from the controller 150 to the switching device 1210, and the selection terminal 1213 is also connected to the first switching terminal 1211. Two
No. switching terminal 1212 is not connected.
Further, the power supply to the external system 100 is also temporarily stopped. In this state, the power is continuously sent to the selected loads other than the load 141 in a stable manner, and the amount of power supplied to the external system 100 until immediately before and the actual power consumption w 1 of the load 141.
Will be added and added.

【0047】その後、負荷選択変数δ’(t)、δ’
(t)、…、δ’(t)から1番目の要素δ’
(t)を除いたδ’(t)、…、δ’(t)が、
負荷の重要度a(t)、a(t)、…、a
(t)、実消費電力w、w、…、w Nからそれぞ
れ1番目の要素a(t)、wを除いたものを用い
て、最適解求解部203で再計算され、新たに求められ
た負荷選択変数δ’(t)、…、δ’(t)によ
り、切替機1220、…、12N0を、δ’(t)=1
の場合、選択端子は2番の切替端子に接続され、δ’
(t)=0の場合、選択端子は1番の切替端子にも2番
の切替端子にも接続されないように制御することによ
り、分散電源設備102から連系点103を経由して外
部系統100に電力融通の要請量R(t)以上で要請量
に近い値の電力が供給される状態に復帰する。
After that, the load selection variable δ '1(T), δ '
Two(T), ..., δ 'NThe first element δ ′ from (t)
1Δ'excluding (t)Two(T), ..., δ 'N(T) is
Load importance a1(T), aTwo(T), ..., a
N(T), actual power consumption w1, WTwo, ... w NFrom now on
The first element a1(T), w1Use the one without
Then, the optimum solution is recalculated by the optimum solution solver 203 and newly obtained.
Load selection variable δ 'Two(T), ..., δ 'NBy (t)
, 12N0, δ ′ (t) = 1
, The selection terminal is connected to the second switching terminal, and δ ′
When (t) = 0, the selection terminal is also the switching terminal of No. 1 and No. 2
By controlling so that it is not connected to the switching terminal of
From the distributed power facility 102 via the interconnection point 103
Requested amount of power interchange to the sub system 100 is R (t) or more
The power returns to a value close to.

【0048】従って本実施の形態により、電力会社との
契約に応じた売電時にも重要度の高い負荷に対して安定
した電力を供給でき、経済的な運用が実施できる。ま
た、事故時にも重要度の高い負荷への影響を最小限にと
どめることができる。
Therefore, according to the present embodiment, stable power can be supplied to a load of high importance even when power is sold according to a contract with a power company, and economical operation can be performed. Further, even in the event of an accident, it is possible to minimize the effect on the highly important load.

【0049】図4では、電力会社など外部系統の管理者
から分散電源設備に対し電力融通の要請があった場合、
受諾することを前提にした割引契約を、電力会社と需要
家の間で締結していることを前提にした制御方法を示し
たが、前記契約がより複雑になった場合、例えば電力融
通の要請に対して需要家が拒絶した場合のペナルテイー
の規定がある場合も、その項を条件式の上から1番目の
式の左辺に組み込むことにより最適の負荷選択が得られ
る。
In FIG. 4, when a manager of an external system such as an electric power company requests a distributed power facility for power interchange,
We have shown the control method on the assumption that a power saving contract has been concluded between the electric power company and the customer, but when the contract becomes more complicated, for example, a request for power interchange. On the other hand, even when there is a penalty regulation when the consumer rejects, the optimum load selection can be obtained by incorporating the term into the left side of the first expression from the top of the conditional expression.

【0050】本実施の形態では、売電時の制御方法につ
いて説明したが、切替機の制御方法を実施の形態1の方
法に変えることで、安定して売電時の制御方法から買電
時の制御方法に移行できる。また、その逆に安定して買
電時の制御方法から売電時の制御方法にも移行できる。
In this embodiment, the control method at the time of selling power has been described. However, by changing the control method of the switching device to the method of the first embodiment, the control method at the time of selling power can be stably changed from the control method at the time of selling power. The control method can be changed. On the contrary, it is possible to stably shift from the control method at the time of power purchase to the control method at the time of power sale.

【0051】[0051]

【発明の効果】本発明のうち請求項1に係る分散電源設
備によれば、外部系統と連系する分散電源設備におい
て、外部系統は連系点と第1の遮断機と第1の電気量測
定手段とを経由して第1の構内母線に接続され、分散電
源は第2の遮断機と第2の電気量測定手段とを経由して
第2の構内母線に接続され、第1の構内母線と第2の構
内母線とは第3の遮断機で接続され、第1の構内母線は
複数の切替器の各々1番の切替端子に接続され、第2の
構内母線は複数の切替器の各々2番の切替端子に接続さ
れ、複数の切替器の各々の選択端子は1番の切替端子に
接続するか、2番の切替端子に接続するか、どちらの切
替端子にも接続しないかの3つのいずれかを選択でき、
各々電気量測定手段を経由して、各々負荷に接続され、
外部系統の情報と分散電源設備の利用者である需要家の
情報と双方向通信するコントローラが、すべての遮断機
とすべての電気量測定手段とすべての切替器と分散電源
と双方向通信し制御するので、事故時に保護される負荷
と保護されない負荷を自動的に切り替えることができ
る。
According to the distributed power facility according to claim 1 of the present invention, in the distributed power facility interconnected with the external system, the external system is the interconnection point, the first circuit breaker, and the first electricity quantity. Connected to the first campus bus via the measuring means, the distributed power source is connected to the second campus bus via the second circuit breaker and the second electric quantity measuring means, and the first campus The bus bar and the second premises bus are connected by a third circuit breaker, the first premises bus is connected to the first switching terminal of each of the plurality of switching devices, and the second premises bus of the plurality of switching devices is connected. Whether each select terminal of the plurality of switching devices is connected to the switching terminal of No. 2, is connected to the switching terminal of No. 1, is connected to the switching terminal of No. 2, or is not connected to either switching terminal. You can choose one of the three
Each is connected to a load via each electric quantity measuring means,
A controller that bidirectionally communicates with the information of the external system and the information of the customer who is the user of the distributed power supply facility, and bidirectionally communicates with and controls all the circuit breakers, all the electric quantity measuring means, all the switches, and the distributed power supply. Therefore, it is possible to automatically switch between the protected load and the unprotected load in the event of an accident.

【0052】また、本発明のうち請求項2に係る分散電
源設備の制御方法によれば、請求項1に記載の分散電源
設備において、コントローラが需要家からの負荷の重要
度を用いて、切替器を制御するので、重要度の高い負荷
に対して安定した電力を供給できる。
According to the method for controlling distributed power equipment according to claim 2 of the present invention, in the distributed power equipment according to claim 1, the controller switches using the importance of the load from the customer. Since it controls the device, it can supply stable power to highly important loads.

【0053】また、本発明のうち請求項3に係る分散電
源設備の制御方法によれば、請求項2に記載の分散電源
設備の制御方法において、コントローラが外部系統から
の電力融通の要請量を用いて、切替器を制御するので、
売電時にも重要度の高い負荷に対して安定した電力を供
給でき、経済的な運用が実施できる。
According to the method for controlling distributed power equipment according to claim 3 of the present invention, in the method for controlling distributed power equipment according to claim 2, the controller determines the requested amount of power interchange from the external system. Use it to control the switch,
Even when selling power, stable power can be supplied to highly important loads, and economical operation can be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による外部系統と連系
する分散電源設備の構成図である。
FIG. 1 is a configuration diagram of a distributed power facility connected to an external system according to a first embodiment of the present invention.

【図2】 外部系統と分散電源の両者に負荷配分を自動
的に行う方法を示す図である。
FIG. 2 is a diagram showing a method for automatically performing load distribution to both an external system and a distributed power source.

【図3】 分散電源の内部構成の1例を示す図である。FIG. 3 is a diagram showing an example of an internal configuration of a distributed power supply.

【図4】 本発明の実施の形態2による負荷選択を制御
する方法の説明図である。
FIG. 4 is an explanatory diagram of a method for controlling load selection according to the second embodiment of the present invention.

【図5】 従来の商用系統に連系した分散電源設備の構
成図である。
FIG. 5 is a configuration diagram of a distributed power supply facility connected to a conventional commercial system.

【符号の説明】[Explanation of symbols]

100 外部系統、101 分散電源、102 分散電
源設備、103 連系点、104 外部系統情報、10
5 第1の構内母線、106 第2の構内母線、111
第1の遮断機、112 第2の遮断機、113 第3
の遮断機、114 第1の電気量測定手段、115 第
2の電気量測定手段、1210 切替器、1211 切
替器1210の1番の切替端子、1212 切替器12
10の2番の切替端子、1213 切替器1210の選
択端子、1220 切替器、1221 切替器1220
の1番の切替端子、1222 切替器1220の2番の
切替端子、1223 切替器1220の選択端子、12
N0 切替器、12N1 切替器12N0の1番の切替端
子、12N2 切替器12N0の2番の切替端子、12N
3 切替器12N0の選択端子、131 電気量測定手
段、132 電気量測定手段、13N 電気量測定手
段、141 負荷、142 負荷、14N 負荷、15
0 コントローラ、160需要家情報。
100 external system, 101 distributed power supply, 102 distributed power supply facility, 103 interconnection point, 104 external system information, 10
5 First campus bus, 106 Second campus bus, 111
1st circuit breaker, 112 2nd circuit breaker, 113 3rd
Circuit breaker, 114 first electric quantity measuring means, 115 second electric quantity measuring means, 1210 switcher, 1211 1st switching terminal of switcher 1210, 1212 switcher 12
10 No. 2 switching terminal, 1213 switching device 1210 selection terminal, 1220 switching device, 1221 switching device 1220
No. 1 switching terminal, 1222 No. 2 switching terminal of the switching unit 1220, 1223 No. 1 switching terminal of the switching unit 1220, 12
N0 switching device, 12N1 switching device 12N0 No. 1 switching terminal, 12N2 switching device 12N0 No. 2 switching terminal, 12N
3 selector 12N0 selection terminal, 131 electric quantity measuring means, 132 electric quantity measuring means, 13N electric quantity measuring means, 141 load, 142 load, 14N load, 15
0 controller, 160 consumer information.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部系統と連系する分散電源設備におい
て、前記外部系統は連系点と第1の遮断機と第1の電気
量測定手段とを経由して第1の構内母線に接続され、分
散電源は第2の遮断機と第2の電気量測定手段とを経由
して第2の構内母線に接続され、前記第1の構内母線と
前記第2の構内母線とは第3の遮断機で接続され、前記
第1の構内母線は複数の切替器の各々1番の切替端子に
接続され、前記第2の構内母線は前記複数の切替器の各
々2番の切替端子に接続され、前記複数の切替器の各々
の選択端子は前記1番の切替端子に接続するか、前記2
番の切替端子に接続するか、どちらの切替端子にも接続
しないかの3つのいずれかを選択でき、各々電気量測定
手段を経由して、各々負荷に接続され、前記外部系統の
情報と前記分散電源設備の利用者である需要家の情報と
双方向通信するコントローラが、すべての遮断機とすべ
ての電気量測定手段とすべての切替器と前記分散電源と
双方向通信し制御することを特徴とする分散電源設備。
1. In a distributed power facility connected to an external system, the external system is connected to a first campus bus via an interconnection point, a first circuit breaker and a first electric quantity measuring means. , The distributed power source is connected to the second campus bus via the second circuit breaker and the second electric quantity measuring means, and the first campus bus and the second campus bus are disconnected by the third. The first premises busbar is connected to the first switching terminal of each of the plurality of switching devices, and the second premises busbar is connected to the second switching terminal of each of the plurality of switching devices, The selection terminal of each of the plurality of switching devices is connected to the first switching terminal, or
No. 3 switching terminal or not connecting to either switching terminal can be selected, and each of them is connected to a load via each of the electric quantity measuring means, and is connected to the external system information and the information of the external system. A controller that bidirectionally communicates with information of consumers who are users of the distributed power supply facility, bidirectionally communicates with and controls all the circuit breakers, all the electric quantity measuring means, all the switches, and the distributed power supply. And distributed power equipment.
【請求項2】 請求項1に記載の分散電源設備におい
て、コントローラが需要家からの負荷の重要度を用い
て、切替器を制御することを特徴とする分散電源設備の
制御方法。
2. The method of controlling distributed power equipment according to claim 1, wherein the controller controls the switch using the importance of the load from the customer.
【請求項3】 コントローラが外部系統からの電力融通
の要請量を用いて、切替器を制御することを特徴とする
請求項2に記載の分散電源設備の制御方法。
3. The method of controlling distributed power equipment according to claim 2, wherein the controller controls the switching device by using a requested amount of power interchange from an external system.
JP2002121768A 2002-04-24 2002-04-24 Distributed power supply equipment and control method therefor Pending JP2003319560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121768A JP2003319560A (en) 2002-04-24 2002-04-24 Distributed power supply equipment and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121768A JP2003319560A (en) 2002-04-24 2002-04-24 Distributed power supply equipment and control method therefor

Publications (1)

Publication Number Publication Date
JP2003319560A true JP2003319560A (en) 2003-11-07

Family

ID=29537577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121768A Pending JP2003319560A (en) 2002-04-24 2002-04-24 Distributed power supply equipment and control method therefor

Country Status (1)

Country Link
JP (1) JP2003319560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215844A (en) * 2013-04-26 2014-11-17 株式会社日立製作所 Energy management system
US9306415B2 (en) 2011-12-12 2016-04-05 Samsung Electronics Co., Ltd. Power consumption control apparatus and power consumption control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306415B2 (en) 2011-12-12 2016-04-05 Samsung Electronics Co., Ltd. Power consumption control apparatus and power consumption control method
JP2014215844A (en) * 2013-04-26 2014-11-17 株式会社日立製作所 Energy management system

Similar Documents

Publication Publication Date Title
Li et al. Economic dispatch for operating cost minimization under real-time pricing in droop-controlled DC microgrid
US10901383B2 (en) Systems and methods for integrated microgrid management system in electric power systems
Lotfi et al. Hybrid AC/DC microgrid planning
Vandoorn et al. Active load control in islanded microgrids based on the grid voltage
US9876356B2 (en) Dynamic and adaptive configurable power distribution system
Banerji et al. Microgrid: A review
Vandoorn et al. Voltage-based control of a smart transformer in a microgrid
Khalid et al. Overview of technical specifications for grid-connected microgrid battery energy storage systems
WO2015200931A1 (en) Versatile site energy router
US20200235580A1 (en) Techniques for Electric Power Distribution and a System Implementing the Same
Katiraei et al. Analysis of voltage regulation problem for a 25 kv distribution network with distributed generation
Yesuratnam et al. Congestion management for security oriented power system operation using generation rescheduling
Gerdroodbari et al. Dynamic PQ operating envelopes for prosumers in distribution networks
Chatzivasileiadis et al. Security-constrained optimal power flow including post-contingency control of VSC-HVDC lines
JP3855168B2 (en) Power supply system
Sheikh et al. Multiobjective congestion management and transmission switching ensuring system reliability
Cossentino et al. A multi-agent architecture for simulating and managing microgrids
Chou et al. Power electronics intelligence at the network edge (PINE)
Pandiaraj et al. Novel voltage control for embedded generators in rural distribution networks
JP5951747B2 (en) Power system controller
Janjic et al. Power quality requirements for the smart grid design
US6636784B1 (en) Electricity transfer station
Kumar et al. Optimal management of islanded microgrid using binary particle swarm optimization
JP2003319560A (en) Distributed power supply equipment and control method therefor
Hesaroor et al. Optimal siting and sizing of batteries in radial autonomous microgrids considering congestion

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709