JP2003319549A - Distribution line accident section locator - Google Patents

Distribution line accident section locator

Info

Publication number
JP2003319549A
JP2003319549A JP2002116932A JP2002116932A JP2003319549A JP 2003319549 A JP2003319549 A JP 2003319549A JP 2002116932 A JP2002116932 A JP 2002116932A JP 2002116932 A JP2002116932 A JP 2002116932A JP 2003319549 A JP2003319549 A JP 2003319549A
Authority
JP
Japan
Prior art keywords
accident
zero
distribution line
information
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002116932A
Other languages
Japanese (ja)
Other versions
JP3826832B2 (en
Inventor
Hidehiko Shimamura
秀彦 島村
Kiyonori Namikata
清典 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002116932A priority Critical patent/JP3826832B2/en
Publication of JP2003319549A publication Critical patent/JP2003319549A/en
Application granted granted Critical
Publication of JP3826832B2 publication Critical patent/JP3826832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distribution line accident section locator capable of detecting an accurate accident position and the direction without affected by a grid condition or a transient response due to the accident pattern. <P>SOLUTION: Accident detectors distributed along the distribution line are inputted with a zero-phase voltage and a zero-phase current at an arrangement point from a zero-phase voltage sensor and a zero-phase current sensor. By judging the sign of an electric quantity (power product) of two vector products for a prescribed period, before and after occurrence of earth fault, the earth fault direction is accurately determined without affected by a grid condition, an accident pattern, etc. Thus, an accident direction is accurately detected without affected by the grid condition or a transient response due to an accident pattern. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配電線路で地絡事
故が発生した場合に地絡事故区間を標定する装置に関
し、特に配電系統条件,事故様相等の差異による誤判定
をなくし、効率良く事故区間標定を行うことを特徴とし
た地絡事故区間標定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for locating a ground fault accident section when a ground fault occurs on a power distribution line, and in particular, eliminates erroneous determination due to differences in power distribution system conditions, accident aspect, etc. The present invention relates to a ground fault accident section locating device characterized by performing accident section locating.

【0002】[0002]

【従来の技術】従来の地絡事故区間標定としては、特開
2001−28833号で示されているようにペテルセ
ンコイル接地系統において零相電圧と零相電流の位相差
を算出し、この位相差の極性によって事故方向を判定
し、位相差を算出する周波数領域を系統の共振周波数以
上とすることで高精度に地絡検出する地絡事故区間標定
システムが知られている。
2. Description of the Related Art As a conventional ground fault accident section orientation, a phase difference between a zero-phase voltage and a zero-phase current is calculated in a Petersen coil ground system as shown in Japanese Patent Laid-Open No. 2001-28833, and this phase difference is calculated. There is known a ground fault accident section locating system that detects a ground fault with high accuracy by determining the accident direction based on the polarity of, and setting the frequency region in which the phase difference is calculated to be equal to or higher than the resonance frequency of the system.

【0003】また、特開平7−87662号で示されて
いるように、配電線路上に分散配置された検出子局によ
り零相電圧および零相電流の発生レベルの大きさの変化
を用いて事故情報を補足し、その情報から地絡発生を判
定し、検出子局メモリに記憶された情報をポーリングし
て、その情報をもとに地絡区間を判定する地絡検出処理
システムが知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 7-87662, an accident is caused by the change in the magnitude of the zero-phase voltage and zero-phase current generated by the detector slave stations distributed on the power distribution line. A ground fault detection processing system that supplements information, determines the occurrence of a ground fault from the information, polls the information stored in the detection slave station memory, and determines the ground fault section based on the information is known. There is.

【0004】[0004]

【発明が解決しようとする課題】上記従来方法にあるよ
うな地絡事故方向検出方法として零相電圧に対する零相
電流の位相差を求め、位相差の符号を単純に判定する従
来からの保護リレー的な判定方法では、放電性地絡のよ
うな間欠的に地絡電流が流れるような事故様相等におい
て、地絡発生時の過渡応答の影響を受け誤判定する可能
性があった。
As a ground fault accident direction detecting method as in the above conventional method, a conventional protection relay for determining the phase difference of the zero phase current with respect to the zero phase voltage and simply determining the sign of the phase difference. In the conventional determination method, there is a possibility that an erroneous determination may be made due to the influence of the transient response when a ground fault occurs in an accident situation in which a ground fault current flows intermittently, such as a discharge ground fault.

【0005】また、従来の検出装置から事故情報をポー
リングにより収集し、その情報をもとに地絡区間を判定
する地絡検出処理システムにおいては、情報収集のため
のポーリング手順が単一的で配置された各検出装置すべ
ての事故情報を収集するため、地絡区間判定に寄与しな
い検出装置の情報も収集することになり、伝送効率が悪
く情報収集元装置の負荷が大きいという欠点があった。
Further, in a ground fault detection processing system that collects accident information from a conventional detection device by polling and determines a ground fault section based on the information, a single polling procedure for collecting information is used. Since the accident information of all the arranged detection devices is collected, the information of the detection device that does not contribute to the ground fault section determination is also collected, and the transmission efficiency is poor and the load of the information collection source device is large. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は配電線路上に分散配置された事故検出装置
において配置点の零相電圧,零相電流センサから零相電
圧,零相電流を入力し、2つのベクトル積をとった電気
量(電力積)の符号を地絡発生前後の所定期間において
期間内の電力積の符号を判定することにより、系統条
件,事故様相等の影響を受け誤判定することなく地絡方
向を判定するようにしたものである。
In order to achieve the above object, the present invention provides a zero-phase voltage at a disposition point, a zero-phase voltage from a zero-phase current sensor, a zero-phase voltage and a zero-phase in an accident detection device distributedly arranged on a distribution line. By inputting a current and determining the sign of the electric product (power product) obtained by taking the product of two vectors in the predetermined period before and after the occurrence of the ground fault, the influence of the system condition, accident aspect, etc. Therefore, the ground fault direction is determined without making an erroneous determination.

【0007】また、検出装置で検出した事故情報を収集
する際に、変電所側最端の検出装置事故情報を先ず収集
し、この収集した事故情報から地絡発生配電線を特定
し、その後に当該配電線上の各検出装置を配電線末端の
方から順次ポーリングすることによって、必要な検出装
置の情報を効率良く収集することを特徴としたものであ
る。
Further, when collecting the accident information detected by the detecting device, the accident information of the detecting device at the end of the substation side is first collected, the ground fault occurrence distribution line is specified from the collected accident information, and then the It is characterized in that necessary detection device information is efficiently collected by sequentially polling each detection device on the distribution line from the end of the distribution line.

【0008】[0008]

【発明の実施の形態】以下、本発明による事故区間標定
装置の実施例について図表を用いながら詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an accident section locating device according to the present invention will be described below in detail with reference to the drawings.

【0009】図1に事故区間標定装置の一実施例である
システム全体構成図を示す。
FIG. 1 is a block diagram of the entire system which is an embodiment of an accident section locating device.

【0010】図1において1は配電系統の背後電源、2
a,2bは配電線路を示す。
In FIG. 1, 1 is a power source behind the power distribution system and 2
Reference numerals a and 2b denote distribution lines.

【0011】このような配電系統構成において、配電線
路の最電源寄り(変電所送り出し部)には配電線遮断器3
a,3bと電圧電流センサ41a,41bが配置され
る。配電線には配電線路に分散配置された区分開閉器4
a,4b、前記の区分開閉器配置点に設置された電圧電
流センサ40a〜40hがあり、零相電圧,零相電流を
検出する。各センサ配置点には事故情報演算部11a〜
11hおよび通信制御部12a〜12hを具備した事故
検出装置10a〜10hを配置する。同様に変電所送り
出し部の配電線遮断機の電圧電流センサには事故情報演
算部21,通信制御部22を具備した変電所事故検出装
置20が設置される。これらの事故検出装置は専用の検
出装置、または既に設置されている配電自動化システム
の変電所装置,子局装置に事故情報演算部11a〜11
h,21を組込むことで実現できる。各事故情報検出装
置は通信伝送路50を介して上位装置である事故区間標
定演算装置30と接続されている。事故区間標定演算装
置は事故情報検出装置と同様に専用装置または既設の配
電自動化システム上位装置に演算機能と通信機能を組込
むことで実現できる。
In such a distribution system configuration, a distribution line breaker 3 is provided near the most power source of the distribution line (substation sending section).
a, 3b and voltage / current sensors 41a, 41b are arranged. Distribution switches on the distribution line are distributed switches 4
a and 4b, and voltage / current sensors 40a to 40h installed at the above-mentioned division switch arrangement points, and detect zero-phase voltage and zero-phase current. The accident information calculation unit 11a to
11h and the accident detection devices 10a to 10h including the communication control units 12a to 12h are arranged. Similarly, a substation accident detection device 20 including an accident information calculation unit 21 and a communication control unit 22 is installed in the voltage / current sensor of the distribution line breaker of the substation sending unit. These accident detection devices are dedicated detection devices, or substation devices and slave station devices of the distribution automation system that are already installed have accident information calculation units 11a to 11a.
It can be realized by incorporating h and 21. Each accident information detection device is connected via a communication transmission line 50 to an accident section orientation calculation device 30, which is a higher-level device. The accident section location calculation device can be realized by incorporating a calculation function and a communication function into a dedicated device or an existing higher-level device of the distribution automation system, like the accident information detection device.

【0012】図2は事故検出装置10の詳細内部機能図
を示す。事故検出装置10は電圧,電流センサからの信
号を入力する電圧電流入力演算部100,入力演算部1
00の演算結果を入力として事故情報演算する事故情報
演算部110,入力演算部100の零相電圧演算結果を
入力として零相電圧変化幅演算を行い事故発生判定し事
故情報演算開始信号を出力するVo変化幅演算部13
0,事故情報判定部120および事故情報を伝送する通
信制御部140から構成される。
FIG. 2 shows a detailed internal functional diagram of the accident detection device 10. The accident detection device 10 includes a voltage / current input calculation unit 100 for inputting signals from a voltage / current sensor, and an input calculation unit 1.
The calculation result of 00 is used as an input, and the accident information calculation unit 110 for calculating the accident information and the zero-phase voltage calculation result of the input calculation unit 100 are used as inputs to perform a zero-phase voltage change width calculation, determine an accident, and output an accident information calculation start signal. Vo change width calculation unit 13
0, an accident information determination unit 120 and a communication control unit 140 that transmits accident information.

【0013】装置動作を説明する前に非接地系統または
リアクトル接地系統(ペテルセンコイル接地:PC接地
と呼ぶ)での地絡事故様相について説明する。図3は説
明のため簡略化した配電系統構成を示す。配電系統は変
電所バンク単位に独立した接地用変成器5または接地用
変圧器6の3次開放三角結線の開放端子に接続された制
限抵抗RnおよびリアクトルLnにより構成される高イ
ンピーダンスで一次側中性点が接地された構成となる。
接地インピーダンスが制限抵抗Rnのみの場合を非接地
系統、RnおよびLnの場合をリアクトル接地系統と呼
んでいる。このような配電系統において配電線路2のF
点にて地絡抵抗Rgの地絡が発生した場合地絡電流If
が発生し、事故点Fを挟んだ両側のセンサ1,センサ2
にはIo1,Io2の零相電流が発生する。図3の配電系
統F点での1線地絡事故時の等価回路を図4に示す。図
4の等価回路においてIo1,Io2はそれぞれ以下の
(1)式および(2)式で表される。
Before explaining the operation of the apparatus, a ground fault accident aspect in a non-grounded system or a reactor grounded system (called Petersen coil ground: PC ground) will be described. FIG. 3 shows a simplified distribution system configuration for explanation. The distribution system is a high impedance primary side with a limiting resistance Rn and a reactor Ln connected to the open terminal of the third open triangular connection of the grounding transformer 5 or the grounding transformer 6 which is independent for each substation bank. It has a structure in which the sex point is grounded.
The case where the ground impedance is only the limiting resistance Rn is called a non-ground system, and the cases where the ground impedance is Rn and Ln are called a reactor ground system. In such a distribution system, F of the distribution line 2
When the ground fault of the ground fault resistance Rg occurs at the point, the ground fault current If
Sensor 1 and sensor 2 on both sides of the accident point F
, A zero-phase current of Io1 and Io2 is generated. FIG. 4 shows an equivalent circuit at the time of a one-wire ground fault at point F of the distribution system in FIG. In the equivalent circuit of FIG. 4, Io1 and Io2 are expressed by the following equations (1) and (2), respectively.

【0014】 Io1=−(1+j(ωC1−1/ωLn)・Rn)Vo/Rn …(1) Io2=jωC2・Vo …(2) 上記(1),(2)式からわかるように事故点Fより電
源側のセンサ1で検出される零相電流Io1にはRnに
よる有効成分とC1,Lnによる無効成分があるのに対
し、F点より負荷側のセンサ2で検出される零相電流I
o2はC2による無効分のみである。また、零相電圧V
oはセンサ1,センサ2で同一の零相電圧を検出するこ
とがわかる。つまり、地絡時の零相電圧は変電所バンク
単位に独立した接地インピーダンスを流れる地絡電流I
fで決まるため変電所バンク内のどの検出点においても
同一の値となる。今、電圧電流センサの極性を統一し、
零相電圧と零相電流のベクトル積(電力積)をとった場
合の電力積符号は正の場合有効分を、負の場合は無効分
を示すことになる。従ってこの電力積の符号判定をする
ことで事故点が検出点より電源側にあるか負荷側にある
かを判定することができる。この電力積の符号は静的な
状態(定常状態)においてはまさに前述の通りである
が、地絡事故発生時の過渡的な状態では、配電線路イン
ピーダンス,接地インピーダンスの影響を受け一定値を
示すことはない。
Io1 = − (1 + j (ωC1-1 / ωLn) · Rn) Vo / Rn (1) Io2 = jωC2 · Vo (2) As can be seen from the above equations (1) and (2), the accident point F The zero-phase current Io1 detected by the sensor 1 on the power source side has an effective component due to Rn and an invalid component due to C1 and Ln, whereas the zero-phase current Io detected at the sensor 2 on the load side from the point F
o2 is only an invalid portion due to C2. Also, the zero-phase voltage V
It can be seen that o detects the same zero-phase voltage in the sensors 1 and 2. That is, the zero-phase voltage at the time of the ground fault is the ground fault current I flowing through the ground impedance independent for each substation bank.
Since it is determined by f, the same value is obtained at any detection point in the substation bank. Now, unify the polarities of the voltage and current sensors,
When the vector product (electric power product) of the zero-phase voltage and the zero-phase current is taken, the electric power product sign indicates an active component when it is positive and an inactive component when it is negative. Therefore, by determining the sign of this power product, it can be determined whether the accident point is on the power supply side or the load side with respect to the detection point. The sign of this power product is exactly as described above in the static state (steady state), but in the transient state when a ground fault occurs, it shows a constant value due to the influence of distribution line impedance and ground impedance. There is no such thing.

【0015】図5に地絡発生時の電力積様相を実験によ
り求めた結果を示す。図5中の115は地絡点より電源側
の検出点での電力積、116は地絡点より負荷側の検出
点での電力積を示す。電源側検出点での電力積115は
地絡発生からの時間経過に応じて電力積符号は正負両方
の値を示すのに対し、地絡点より負荷側の検出点での電
力積116は地絡発生からの時間経過に応じて絶対値の
変化はあるが全て負の領域となる。電力積115の応動
は、前述の過渡応答による影響であり、従来の保護リレ
ーのように整定レベルと検出値の単純比較では系統条
件,事故様相により決まる過渡応答差によっては誤判定
する要因になる。従って、演算した電力積から事故方向
を判定するには、所定の判定期間125,126の全領
域において電力積符号が全て負であることを判定すれば
前述の過渡応答の影響を受けることなく正確な事故方向
判定が可能となる。
FIG. 5 shows a result of experimentally obtaining a power product pattern when a ground fault occurs. In FIG. 5, 115 indicates a power product at a detection point on the power supply side of the ground fault point, and 116 indicates a power product at a detection point on the load side of the ground fault point. The power product 115 at the detection point on the power supply side shows both positive and negative values according to the time elapsed from the occurrence of the ground fault, whereas the power product 116 at the detection point on the load side from the ground fault point is There is a change in the absolute value with the lapse of time after the occurrence of the fault, but all are in the negative region. The response of the electric power product 115 is an effect of the above-mentioned transient response, and in the simple comparison of the settling level and the detected value as in the case of the conventional protection relay, it may be a factor to be erroneously determined depending on the transient response difference determined by the system condition and the appearance of the accident. . Therefore, in order to determine the accident direction from the calculated electric power product, if it is determined that the electric power product signs are all negative in all the regions of the predetermined determination periods 125 and 126, the above-mentioned transient response is not affected, and it is accurate. Accident direction can be determined.

【0016】尚、この所定の判定期間は配電線の系統構
成等の状況に応じて任意にその長さを設定変更すること
が出来る。
The length of the predetermined determination period can be arbitrarily changed according to the situation such as the system configuration of the distribution line.

【0017】図1においてF点で地絡発生した場合の装
置全体動作を図6の動作フローに従って説明する。配電
線路上に分散配置された各センサは地絡による零相電
圧,電流を検出する。センサ出力を入力とする各事故情
報検出装置はセンサからの零相電圧が地絡発生によりバ
ンク内のどの検出点でも同様に変化するため、零相電圧
変化幅演算を実施し、各検出装置が同時に事故発生を判
定する。事故発生判定により事故情報演算部が起動され
事故情報演算(電力積演算)を各検出装置が処理し、各
々の事故方向を判定する。演算した事故情報は内部メモ
リに格納し、上位装置からポーリングされるまで記憶す
る。上位装置である事故区間標定演算装置30は、変電
所事故検出装置20からの事故発生情報割り込み信号に
より変電所事故検出装置20の事故情報を受信し、受信
した情報から地絡発生の当該バンクと当該配電線を判定
する。本実施例では変電所事故検出装置20からの事故
発生情報割り込み信号による情報収集としているが、こ
れは事故区間標定演算装置の周期的なポーリングによる
情報収集方式によっても実現できる。事故区間標定演算
装置30では地絡事故発生配電線路を判定した後、当該
配電線路に分散配置されている事故検出装置の配電線末
端にあるものから順次ポーリングし、事故情報を受信す
る。区間判定は最低2ヶ所の事故検出装置からの情報を
受信した時点で受信情報中の事故方向を比較することに
よって事故区間標定を実施する。受信した事故情報中の
事故方向が逆向きとなる場合は、その事故検出装置に挟
まれた区間が地絡区間と判定して、同方向の場合は次の
事故検出装置をポーリングして事故情報を受信し、同様
の区間判定を実施する。
The operation of the entire apparatus when a ground fault occurs at point F in FIG. 1 will be described according to the operation flow in FIG. Each sensor distributed on the distribution line detects zero-phase voltage and current due to ground fault. In each accident information detection device that uses the sensor output as input, the zero-phase voltage from the sensor changes at any detection point in the bank in the same way due to the occurrence of a ground fault. At the same time, determine the occurrence of an accident. The accident information calculation unit is activated by the accident occurrence determination, and each detection device processes the accident information calculation (power product calculation) to determine each accident direction. The calculated accident information is stored in the internal memory and stored until polled by the host device. The fault zone orientation calculation device 30, which is a higher-level device, receives the fault information of the substation fault detection device 20 by the fault occurrence information interrupt signal from the substation fault detection device 20, and determines from the received information that the ground fault occurred bank concerned. Determine the distribution line. In this embodiment, the information is collected by the accident occurrence information interrupt signal from the substation accident detection device 20, but this can also be realized by the information collection method by the periodic polling of the accident section orientation calculation device. After determining the ground fault accident distribution line, the accident section orientation calculation device 30 sequentially polls from the end of the distribution line of the accident detection device distributed and arranged on the distribution line, and receives the accident information. In the section determination, when the information from at least two accident detection devices is received, the accident section is located by comparing the accident directions in the received information. If the accident direction in the received accident information is opposite, it is determined that the section sandwiched by the accident detection device is a ground fault section, and if it is in the same direction, the next accident detection device is polled and the accident information is polled. Is received and the same section determination is performed.

【0018】この実施例によれば、変電所事故検出装置
20の事故情報から当該地絡発生配電線を配電線2aと
判定し、事故検出装置10d,10c,10bの最小限
のポーリングを実施することで事故区間標定ができ、従
来の全装置の情報をポーリング収集する方法に比べ、伝
送効率を上げ、情報収集の簡略化,情報収集元装置であ
る事故区間標定演算装置30の情報収集処理の負荷を軽
減することができる。
According to this embodiment, the ground fault occurrence distribution line is determined to be the distribution line 2a from the accident information of the substation accident detection device 20, and the minimum polling of the accident detection devices 10d, 10c and 10b is performed. By doing so, it is possible to locate an accident section, which improves transmission efficiency and simplifies information collection compared to the conventional method of polling and collecting information from all devices, and the information collection processing of the accident section orientation calculation device 30 which is the information collection source device. The load can be reduced.

【0019】[0019]

【発明の効果】本発明は、以上説明したように構成され
ているので、系統条件や事故様相による過渡応答の影響
を受けることなく正確に事故位置,方向が検出できると
いう効果がある。そして、事故情報収集において事故発
生バンク,配電線を先ず判定し、その後当該事故配電線
上の事故検出装置情報を収集することで、伝送効率を上
げ、情報収集を簡略化でき、事故情報収集元である事故
区間標定装置の情報収集負荷を軽減する効果がある。
Since the present invention is constructed as described above, there is an effect that the accident position and direction can be accurately detected without being affected by the transient response due to the system condition or the accident aspect. Then, in the accident information collection, the bank where the accident occurred and the distribution line are first determined, and then the information on the accident detection device on the accident distribution line is collected, so that the transmission efficiency can be improved and the information collection can be simplified. This has the effect of reducing the information gathering load of a certain accident segment location device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図である。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】図1の事故情報検出装置の詳細構成図である。FIG. 2 is a detailed configuration diagram of the accident information detection device of FIG.

【図3】地絡事故様相を説明する図である。FIG. 3 is a diagram illustrating a ground fault accident aspect.

【図4】図3の等価回路を示す図である。FIG. 4 is a diagram showing an equivalent circuit of FIG.

【図5】地絡事故時の電力積様相の一シミュレーション
例である。
FIG. 5 is a simulation example of a power product pattern in the event of a ground fault.

【図6】本発明の一実施例を示す全体動作フローであ
る。
FIG. 6 is an overall operation flow showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2a,2b…配電線路、3a,3b…配電線遮断器、4
a〜4h…配電線区分開閉器、10a〜10h…事故検
出装置、11a〜11h…事故情報演算部、12a〜1
2h,22…通信制御部、20…変電所事故検出装置、
21…事故情報演算部、30…事故区間標定演算装置、
40a〜40h,41a,41b…電圧電流センサ、5
0…通信伝送路。
2a, 2b ... Distribution line, 3a, 3b ... Distribution line breaker, 4
a to 4h ... Distribution line section switch, 10a to 10h ... Accident detection device, 11a to 11h ... Accident information calculation unit, 12a to 1
2h, 22 ... Communication control unit, 20 ... Substation accident detection device,
21 ... Accident information calculation unit, 30 ... Accident section orientation calculation device,
40a-40h, 41a, 41b ... Voltage / current sensor, 5
0 ... Communication transmission line.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G033 AA01 AB02 AC02 AD13 AD16 AD18 AF03 AF05 AG14 5G058 EE01 EF03 EH01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G033 AA01 AB02 AC02 AD13 AD16                       AD18 AF03 AF05 AG14                 5G058 EE01 EF03 EH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配電線路上に零相電圧センサ,零相電流セ
ンサを分散配置し、このセンサ出力を入力として、セン
サ設置点を基準とした地絡事故方向を演算する演算装置
を有し、地絡事故の発生を零相電圧変化幅により判定す
る演算手段を備え、地絡事故時の零相電圧と零相電流の
ベクトル積を起動判定前後の所定期間において演算し、
所定期間内のベクトル積の符号を判定することにより地
絡事故方向を求めることを特徴とした配電線事故区間標
定装置。
1. A zero-phase voltage sensor and a zero-phase current sensor are dispersedly arranged on a power distribution line, and a calculation device for calculating a ground fault accident direction with a sensor installation point as a reference by using the sensor output as an input, Equipped with a calculating means for determining the occurrence of a ground fault by the zero-phase voltage change width, the vector product of the zero-phase voltage and the zero-phase current at the time of ground fault is calculated in a predetermined period before and after the start determination,
A distribution line fault section locator characterized by determining the direction of a ground fault by determining the sign of the vector product within a predetermined period.
【請求項2】配電線路上に分散配置された零相電圧セン
サ,零相電流センサおよびセンサ信号を入力として事故
検出演算を行う演算機能および上位装置との通信手段を
有する事故検出装置から事故情報を収集する手段を備え
た配電線事故区間標定装置において、配電線路の変電所
寄り事故検出装置の情報を収集することで地絡事故発生
配電線路を特定し、当該配電線路上の末端から変電所方
向に向かって、順次事故検出装置の事故情報を収集する
ことにより、事故区間の標定を行うことを特徴とした配
電線事故区間標定装置。
2. Accident information from an accident detection device having a zero-phase voltage sensor, a zero-phase current sensor and a calculation function for performing accident detection calculation using sensor signals as inputs, and a communication means with a host device. In the distribution line accident section locator equipped with a means for collecting the information, the information of the accident detection device near the substation of the distribution line is collected to identify the distribution line where the ground fault has occurred, and the substation from the end on the distribution line. A distribution line accident section locating device characterized by locating an accident section by sequentially collecting accident information from an accident detection device in the given direction.
【請求項3】配電線路上に分散配置された零相電圧,零
相電流センサから零相電圧,零相電流を入力し、2つの
ベクトル積をとった電気量(電力積)の符号を地絡発生
前後の所定期間で電力積の符号を判定することにより、
地絡場所を判定するようにした配電線事故区間標定装
置。
3. A zero-phase voltage and a zero-phase current are input from a zero-phase voltage sensor and a zero-phase current sensor distributed on a distribution line, and the sign of the electric quantity (electric power product) obtained by taking two vector products is grounded. By determining the sign of the power product in a predetermined period before and after the occurrence of the
A distribution line accident section locator designed to determine the location of a ground fault.
【請求項4】零相電圧,零相電流センサを有する検出装
置で検出した事故情報を収集する際に、変電所側最端の
検出装置事故情報を先ず収集し、この収集した事故情報
から地絡発生配電線を特定し、その後に当該配電線上の
各検出装置を配電線末端の方から順次ポーリングするこ
とによって、必要な検出装置の情報を収集することを特
徴とした配電線事故区間標定装置。
4. When collecting accident information detected by a detection device having a zero-phase voltage and zero-phase current sensor, the detection device accident information at the end of the substation side is first collected, and the ground information is collected from the collected accident information. A distribution line fault section locating device characterized by collecting necessary detection device information by identifying a distribution line and then sequentially polling each detection device on the distribution line from the end of the distribution line. .
JP2002116932A 2002-04-19 2002-04-19 Distribution line accident section locator Expired - Fee Related JP3826832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116932A JP3826832B2 (en) 2002-04-19 2002-04-19 Distribution line accident section locator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116932A JP3826832B2 (en) 2002-04-19 2002-04-19 Distribution line accident section locator

Publications (2)

Publication Number Publication Date
JP2003319549A true JP2003319549A (en) 2003-11-07
JP3826832B2 JP3826832B2 (en) 2006-09-27

Family

ID=29534295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116932A Expired - Fee Related JP3826832B2 (en) 2002-04-19 2002-04-19 Distribution line accident section locator

Country Status (1)

Country Link
JP (1) JP3826832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163928A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp Method and system for locating fault in ungrounded power distribution system
CN114113914A (en) * 2021-12-08 2022-03-01 国网湖南省电力有限公司 Power distribution network single-phase earth fault detection method based on zero sequence impedance comparison

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163928A (en) * 2013-02-21 2014-09-08 Mitsubishi Electric Corp Method and system for locating fault in ungrounded power distribution system
CN114113914A (en) * 2021-12-08 2022-03-01 国网湖南省电力有限公司 Power distribution network single-phase earth fault detection method based on zero sequence impedance comparison
CN114113914B (en) * 2021-12-08 2023-08-22 国网湖南省电力有限公司 Power distribution network single-phase earth fault detection method based on zero sequence impedance comparison

Also Published As

Publication number Publication date
JP3826832B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
CN102089667B (en) Method and device for supervising secondary circuit of instrument transformer in power system
US9823289B2 (en) Automated digital earth fault system
EP2603960B1 (en) Fault parameter indicator device and related methods
EP2991181B1 (en) Systems and methods for identifying fault location using distributed communication
US9304159B2 (en) Detection and location of electrical connections having a micro-interface abnormality in an electrical system
KR101519923B1 (en) A partial discharge detection system for a distributing board with the acoustic emission sensor
EP2645512B1 (en) Faulty protective earth ground circuit detection system and method
CN103217625A (en) Low current earth fault location method based on transient state current waveform comparison
CN101523680B (en) Electrical fault restricting system
CN112068040A (en) Connection detection circuit and method and electric equipment
US20230194580A1 (en) System and method for management of electric grid
JP2003319549A (en) Distribution line accident section locator
CN117154649A (en) Power supply line control method and system
CN101345408B (en) Method for assigning a fault current to one of the three phase currents of a three-phase system
JP2003299215A (en) Method for validity check of current transformer in switchgear, computer program and device, and switchgear provided with the device
JP2001116792A (en) Method and apparatus for locating fault direction of power distribution line, and electric field and magnetic field sensors
JP4177802B2 (en) Ground fault direction relay device
US11500407B2 (en) Boundary separation scheme for faults in power systems
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP3440368B2 (en) Ground fault direction determining method and ground fault direction determining device in high voltage distribution system
JP2003232827A (en) Accident point orientation system
JP4074805B2 (en) Partial discharge detector
KR20100072455A (en) Method for determining by detecting inpulse originated from arc
JP5589917B2 (en) Distribution line monitoring method and apparatus
JP3240479B2 (en) Micro ground fault section location device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees