JP2003318422A - Photoelectric converter and method of manufacturing same - Google Patents

Photoelectric converter and method of manufacturing same

Info

Publication number
JP2003318422A
JP2003318422A JP2002123940A JP2002123940A JP2003318422A JP 2003318422 A JP2003318422 A JP 2003318422A JP 2002123940 A JP2002123940 A JP 2002123940A JP 2002123940 A JP2002123940 A JP 2002123940A JP 2003318422 A JP2003318422 A JP 2003318422A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conversion device
semiconductor particles
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002123940A
Other languages
Japanese (ja)
Other versions
JP4045118B2 (en
Inventor
Makoto Sugawara
信 菅原
Atsuo Kishu
淳雄 旗手
Akiko Setoguchi
晶子 瀬戸口
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002123940A priority Critical patent/JP4045118B2/en
Publication of JP2003318422A publication Critical patent/JP2003318422A/en
Application granted granted Critical
Publication of JP4045118B2 publication Critical patent/JP4045118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve low conversion efficiency in the conventional method of manufacturing a photoelectric converter utilizing crystalline semiconductor particle. <P>SOLUTION: A large amount of the p-type crystalline semiconductor particle 3 including the oxide layer 6 at the surface is provided on an aluminum layer 1, the aluminum layer 1 and the p-type crystalline semiconductor particle 3 are fused with the heating process, an insulation substance 2 is supplied to fill the space among the crystalline semiconductor particle 3, the oxide layer 6 at the upper part of the crystalline semiconductor particle 3 is removed, and the n-type semiconductor 4 is formed to the part where the oxide layer 6 is removed at the upper part of the crystalline semiconductor particle 3. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽光発電に使用さ
れる光電変換装置とその製造方法に関し、特に結晶シリ
コン粒子を用いた光電変換装置とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device used for solar power generation and a manufacturing method thereof, and more particularly to a photoelectric conversion device using crystalline silicon particles and a manufacturing method thereof.

【0002】[0002]

【従来の技術】シリコン原料の使用量が少量でかつ低コ
ストな次世代太陽電池の出現が強く望まれている。省資
源に有利な粒形もしくは球形のシリコン結晶粒子を用い
る従来の光電変換装置を図4に示す。この光電変換装置
は、基板1上に低融点金属層8を形成し、この低融点金
属層8上に半導体粒子3を配設し、この半導体粒子3上
に第2導電形の非晶質半導体層7と透明導電層5を上記
低融点金属層8との間に絶縁層2を介して形成したもの
である(例えば特許第2641800号公報参照)。
2. Description of the Related Art The advent of a next-generation solar cell that uses a small amount of silicon raw material and is low in cost is strongly desired. FIG. 4 shows a conventional photoelectric conversion device using grain-shaped or spherical silicon crystal particles, which is advantageous for resource saving. In this photoelectric conversion device, a low melting point metal layer 8 is formed on a substrate 1, semiconductor particles 3 are disposed on the low melting point metal layer 8, and an amorphous semiconductor of the second conductivity type is formed on the semiconductor particles 3. The layer 7 and the transparent conductive layer 5 are formed between the low melting point metal layer 8 and the insulating layer 2 (see, for example, Japanese Patent No. 2641800).

【0003】また、図5に示すように、金属電極1上に
アルミニウム層10を形成し、このアルミニウム層10
上に半導体粒子3を配設し、この半導体粒子3上に第2
導電形の微結晶半導体層9と透明電極層5を上記アルミ
ニウム層10との間に絶縁層2を介して形成する光電変
換装置も開示されている(例えば特開平3−22837
9号公報参照)。
Further, as shown in FIG. 5, an aluminum layer 10 is formed on the metal electrode 1, and the aluminum layer 10 is formed.
The semiconductor particles 3 are arranged on the semiconductor particles 3
A photoelectric conversion device in which a conductive type microcrystalline semiconductor layer 9 and a transparent electrode layer 5 are formed between the aluminum layer 10 and an insulating layer 2 is also disclosed (for example, Japanese Patent Laid-Open No. 3-22837).
No. 9).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図4に
示す従来の光電変換装置では、半導体粒子3と絶縁層2
の界面においてキャリアの再結合速度が非常に大きく、
半導体粒子3内で発生したキャリアを上手く取り出せな
いため、変換効率が低いという問題があった。
However, in the conventional photoelectric conversion device shown in FIG. 4, the semiconductor particles 3 and the insulating layer 2 are used.
The recombination rate of carriers is very high at the interface of
Since the carriers generated in the semiconductor particles 3 cannot be taken out well, there is a problem that the conversion efficiency is low.

【0005】また、図5に示す従来の光電変換装置にお
いても半導体粒子3と絶縁層2の界面における再結合が
大きいため、変換効率が低いという問題があった。
Further, the conventional photoelectric conversion device shown in FIG. 5 also has a problem that conversion efficiency is low because recombination at the interface between the semiconductor particles 3 and the insulating layer 2 is large.

【0006】本発明は上記従来技術における問題を解消
するためになされたものであり、その目的は高い変換効
率と高い生産性を有する光電変換装置とその製造方法を
提供することにある。
The present invention has been made to solve the above problems in the prior art, and an object thereof is to provide a photoelectric conversion device having high conversion efficiency and high productivity, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る光電変換装置の製造方法によれば、
表面に酸化層を有するp形の結晶半導体粒子を一方の電
極となるアルミニウム層上に多数配設し、前記アルミニ
ウム層とp形の結晶半導体粒子を加熱処理にて溶着し、
この結晶半導体粒子間に絶縁物質を充填するとともに、
この結晶半導体粒子上部の酸化層を除去してn形半導体
部を形成することを特徴とする。
In order to achieve the above object, according to the method of manufacturing a photoelectric conversion device according to claim 1,
A large number of p-type crystal semiconductor particles having an oxide layer on the surface thereof are arranged on an aluminum layer to be one electrode, and the aluminum layer and the p-type crystal semiconductor particles are welded by heat treatment,
While filling the insulating material between the crystalline semiconductor particles,
It is characterized in that the oxide layer above the crystalline semiconductor particles is removed to form an n-type semiconductor portion.

【0008】前記加熱処理を580℃以上で行うことが
望ましい。
It is desirable to perform the heat treatment at 580 ° C. or higher.

【0009】また、前記加熱処理時に前記結晶半導体粒
子の前記酸化層が前記アルミニウム層との反応により除
去されて、前記結晶半導体粒子と前記アルミニウム層と
が溶着することが望ましい。
Further, it is preferable that the oxide layer of the crystalline semiconductor particles is removed by a reaction with the aluminum layer during the heat treatment so that the crystalline semiconductor particles and the aluminum layer are welded.

【0010】また、請求項4に係る光電変換装置によれ
ば、p形の結晶半導体粒子を一方の電極となるアルミニ
ウム層上に多数配設するとともに、この結晶半導体粒子
間に絶縁物質を充填して前記結晶半導体粒子上部にn形
半導体層を形成した光電変換装置において、前記アルミ
ニウム層中に、このアルミニウム層と前記結晶半導体粒
子の表面に形成された酸化層との反応を制御する反応助
剤を含むことを特徴とする。
Further, according to the photoelectric conversion device of the fourth aspect, a large number of p-type crystal semiconductor particles are provided on the aluminum layer to be one of the electrodes, and an insulating material is filled between the crystal semiconductor particles. In the photoelectric conversion device in which an n-type semiconductor layer is formed on the crystalline semiconductor particles, a reaction aid for controlling the reaction between the aluminum layer and the oxide layer formed on the surface of the crystalline semiconductor particles in the aluminum layer. It is characterized by including.

【0011】前記反応助剤は、ホウ素、亜鉛、シリコ
ン、酸素、炭素、窒素であることが望ましい。
The reaction aid is preferably boron, zinc, silicon, oxygen, carbon or nitrogen.

【0012】また、請求項6に係る光電変換装置の製造
方法によれば、p形の結晶半導体粒子を一方の電極とな
るアルミニウム層上に多数配設して加熱処理して溶着
し、この結晶半導体粒子の表面に酸化層を形成し、この
結晶半導体粒子間に絶縁物質を充填するとともに、この
結晶半導体粒子上部の酸化層を除去してn形半導体層を
形成することを特徴とする。
Further, according to the method of manufacturing a photoelectric conversion device in accordance with a sixth aspect, a large number of p-type crystal semiconductor particles are arranged on an aluminum layer which is to be one of the electrodes, heat-treated and welded to form the crystal. An oxide layer is formed on the surface of the semiconductor particles, an insulating material is filled between the crystal semiconductor particles, and the oxide layer above the crystal semiconductor particles is removed to form an n-type semiconductor layer.

【0013】前記酸化層は酸処理によって形成すること
が望ましい。
The oxide layer is preferably formed by acid treatment.

【0014】前記酸処理に硝酸又は過酸化水素を用いる
ことが望ましい。
It is desirable to use nitric acid or hydrogen peroxide for the acid treatment.

【0015】前記酸処理は50℃以上300℃以下で行
うことが望ましい。
It is desirable that the acid treatment is performed at 50 ° C. or higher and 300 ° C. or lower.

【0016】[0016]

【発明の実施の形態】以下、図面に基づいて本発明を詳
細に説明する。図1は本発明に係る光電変換装置の一実
施形態を示す断面図であり、1はアルミニウム層、2は
絶縁層、3は第1導電形の粒状結晶シリコン、4は第2
導電形の半導体層、5は上部電極層、6は酸化層であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of a photoelectric conversion device according to the present invention, in which 1 is an aluminum layer, 2 is an insulating layer, 3 is a first conductivity type granular crystalline silicon, and 4 is a second layer.
A conductive type semiconductor layer, 5 is an upper electrode layer, and 6 is an oxide layer.

【0017】アルミニウム層1はアルミニウムやアルミ
ニウム合金などからなり、このアルミニウム層1の下部
には基材としての金属、ガラス、セラミック及び樹脂等
を設けてもよい。また、アルミニウム層1の内部又は表
面に、粒状結晶シリコン3の周囲の酸化層6の形成を促
す反応助剤を含む。このような反応助剤としては、ホウ
素、亜鉛、シリコン、酸素、炭素、窒素が好ましい。
The aluminum layer 1 is made of aluminum, an aluminum alloy or the like, and a metal, glass, ceramics, resin or the like as a base material may be provided below the aluminum layer 1. Further, a reaction aid for promoting the formation of the oxide layer 6 around the granular crystalline silicon 3 is included inside or on the surface of the aluminum layer 1. As such a reaction aid, boron, zinc, silicon, oxygen, carbon and nitrogen are preferable.

【0018】絶縁層2は、正極と負極の分離を行うため
に粒状結晶シリコン3間に充填する。絶縁層2として
は、ガラス材料、樹脂材料等がある。絶縁層2は酸化層
6との反応が小さい材料が好ましい。絶縁層2が酸化層
6と反応しすぎると酸化層6が破壊されて特性が低下す
るために好ましくない。
The insulating layer 2 is filled between the granular crystalline silicon 3 in order to separate the positive electrode and the negative electrode. The insulating layer 2 is made of a glass material, a resin material, or the like. The insulating layer 2 is preferably made of a material that has a small reaction with the oxide layer 6. If the insulating layer 2 reacts too much with the oxide layer 6, the oxide layer 6 is destroyed and the characteristics deteriorate, which is not preferable.

【0019】p形の粒状結晶シリコン3はシリコンから
なるが、このシリコンに微量元素としてB、Alを含ん
でもよい。粒状結晶シリコン3は、気相成長法、アトマ
イズ法、直流プラズマ法等で形成できるが、非接触環境
下に融液を落下させる融液落下法が好ましい。例えばシ
リコンに添加してp形を呈するB、Alを1×1014
1020atm/cm3程度添加したものである。
Although the p-type granular crystalline silicon 3 is made of silicon, the silicon may contain B and Al as trace elements. The granular crystalline silicon 3 can be formed by a vapor phase growth method, an atomizing method, a direct current plasma method or the like, but a melt dropping method of dropping the melt in a non-contact environment is preferable. For example, B and Al exhibiting p-type by being added to silicon are 1 × 10 14 to
About 10 20 atm / cm 3 was added.

【0020】p形の粒状結晶シリコン3は表面に酸化層
6を有する。酸化層6は、P形の結晶シリコン粒子3と
絶縁層2との界面に形成する。酸化層6を形成すること
で結晶シリコン粒子3と絶縁層2との界面における再結
合を低減させ、変換効率を向上させることが可能とな
る。この酸化層6は酸素を含む雰囲気下において500
℃以上1414℃以下で形成することが望ましい。50
0℃以下の温度では酸化層6の品質が低下するために好
ましくなく、1414℃以上の温度ではシリコン3が溶
融するために好ましくない。また、酸化層6を形成した
後、水素を含む雰囲気下でアニールしてもよい。水素が
粒状結晶シリコン3内の欠陥を不活性化して、特性が向
上するために好ましい。水素アニールは酸化層6を形成
した後に行うことが好ましく、アニール温度は900℃
以上1350℃以下が好ましい。
The p-type granular crystalline silicon 3 has an oxide layer 6 on its surface. The oxide layer 6 is formed at the interface between the P-type crystalline silicon particles 3 and the insulating layer 2. By forming the oxide layer 6, recombination at the interface between the crystalline silicon particles 3 and the insulating layer 2 can be reduced and the conversion efficiency can be improved. The oxide layer 6 has a thickness of 500 in an atmosphere containing oxygen.
It is desirable to form it at a temperature of not lower than 14 ° C and not higher than 14 ° C. Fifty
A temperature of 0 ° C. or lower is not preferable because the quality of the oxide layer 6 is deteriorated, and a temperature of 1414 ° C. or higher is not preferable because the silicon 3 is melted. After forming the oxide layer 6, annealing may be performed in an atmosphere containing hydrogen. Hydrogen is preferable because it inactivates defects in the granular crystalline silicon 3 and improves the characteristics. Hydrogen annealing is preferably performed after forming the oxide layer 6, and the annealing temperature is 900 ° C.
Above 1350 ° C. is preferable.

【0021】n形半導体層4は、プラズマドーピング
法、熱拡散法、イオン注入法、熱CVD法、プラズマC
VD法、触媒CVD法、スパッタリング法等で形成す
る。また、n形半導体層4の膜厚は5nm以上500n
m以下であることが好ましい。n形半導体層4の膜厚が
5nm未満では、n形半導体層4の膜厚分布により膜4
が途切れる恐れがあるために好ましくない。n形半導体
層4の膜厚が500nmを超えると、n形半導体層4の
光吸収が大きくなり変換効率が低下するために好ましく
ない。n形半導体層4は、n形を呈するP等を微量添加
する。添加の微量元素濃度は、例えば1×1014〜10
22atm/cm3程度である。また、n形半導体層4
は、結晶、微結晶、非晶質のいずれでもよい。また、n
形半導体層4は、シリコン、シリコンカーバイト、シリ
コンゲルマニウム等で形成される。
The n-type semiconductor layer 4 is formed by plasma doping method, thermal diffusion method, ion implantation method, thermal CVD method, plasma C
It is formed by a VD method, a catalytic CVD method, a sputtering method, or the like. Further, the film thickness of the n-type semiconductor layer 4 is 5 nm or more and 500 n or more.
It is preferably m or less. When the film thickness of the n-type semiconductor layer 4 is less than 5 nm, the film 4 is formed due to the film thickness distribution of the n-type semiconductor layer 4.
Is not preferable because there is a risk of breaks. When the film thickness of the n-type semiconductor layer 4 exceeds 500 nm, the light absorption of the n-type semiconductor layer 4 increases and the conversion efficiency decreases, which is not preferable. The n-type semiconductor layer 4 is added with a small amount of P or the like exhibiting n-type. The concentration of the trace element added is, for example, 1 × 10 14 to 10
It is about 22 atm / cm 3 . In addition, the n-type semiconductor layer 4
May be crystalline, microcrystalline, or amorphous. Also, n
The shaped semiconductor layer 4 is formed of silicon, silicon carbide, silicon germanium, or the like.

【0022】上部電極膜5は、酸化錫、酸化インジウ
ム、酸化亜鉛等をスパッタリング法等で形成する。膜厚
及び屈折率を調整することにより反射防止効果を持たせ
ることも可能である。更に、その上に銀又は銅ペースト
を適切なパターンで補助電極を形成してもよい。補助電
極の形成方法には、インクジェット法、転写法、スクリ
ーン印刷法等がある。
The upper electrode film 5 is formed of tin oxide, indium oxide, zinc oxide or the like by a sputtering method or the like. It is also possible to provide an antireflection effect by adjusting the film thickness and the refractive index. Further, an auxiliary electrode may be formed on the silver or copper paste in an appropriate pattern. The method of forming the auxiliary electrode includes an inkjet method, a transfer method, a screen printing method, and the like.

【0023】図2は請求項1に係る光電変換装置の製造
方法を示す図である。まず、表面に酸化層6を有するp
形結晶シリコン粒子3をアルミニウム層1上に配設する
(図2(a))。配設の方法には、振動整列法、吸引
法、印刷法、静電整列法等いずれを用いてもよい。次
に、結晶シリコン粒子3とアルミニウム層1を577℃
以上の温度で加熱処理して溶着する(図2(b))。こ
のとき、酸化層6とアルミニウム層1の反応を制御する
目的で、アルミニウム層1にホウ素、亜鉛、シリコン、
酸素、炭素、窒素からなる反応助剤を加える。また、溶
着の際に、アルミニウムやホウ素を結晶シリコン粒子3
内に拡散させp+領域を同時に形成してもよい。アルミ
ニウムの拡散深さは0.1μm以上50μm以下が適当
である。次に、絶縁層2を形成する(図2(c))。絶
縁層2が結晶シリコン粒子3の上部を覆いすぎると、p
n接合の面積が低下して変換効率が低下するために好ま
しくない。pn接合部の断面積と結晶シリコン粒子3の
断面積の比を開口率として定義すると、開口率は50%
以上が好ましく、より好ましくは80%以上である。次
に、結晶シリコン粒子3上部の酸化層6を除去する(図
2(d))。酸化層6の除去には、フッ酸等によるウエ
ットエッチング法、プラズマアッシング等のドライエッ
チング法等を用いる。次に、n形半導体層4をSi球3
上部に形成する(図2(e))。次に、上部電極5を形
成する(図2(f))。更に、補助電極としてフィンガ
ーやバスバー(不図示)を適宜設けてもよい。
FIG. 2 is a diagram showing a method of manufacturing the photoelectric conversion device according to the first aspect. First, p having an oxide layer 6 on the surface
The shaped crystalline silicon particles 3 are arranged on the aluminum layer 1 (FIG. 2A). As the disposing method, any of a vibration alignment method, a suction method, a printing method, an electrostatic alignment method and the like may be used. Next, the crystalline silicon particles 3 and the aluminum layer 1 are heated to 577 ° C.
It heat-processes at the above temperature and welds (FIG.2 (b)). At this time, in order to control the reaction between the oxide layer 6 and the aluminum layer 1, boron, zinc, silicon,
A reaction aid consisting of oxygen, carbon and nitrogen is added. In addition, when welding, aluminum or boron is added to the crystalline silicon particles 3
The p + region may be simultaneously formed by diffusing it. The appropriate diffusion depth of aluminum is 0.1 μm or more and 50 μm or less. Next, the insulating layer 2 is formed (FIG. 2C). If the insulating layer 2 covers the upper portions of the crystalline silicon particles 3 too much, p
This is not preferable because the area of the n-junction is reduced and the conversion efficiency is reduced. When the ratio of the cross-sectional area of the pn junction and the cross-sectional area of the crystalline silicon particles 3 is defined as the aperture ratio, the aperture ratio is 50%.
It is preferably at least 80%, more preferably at least 80%. Next, the oxide layer 6 on the crystalline silicon particles 3 is removed (FIG. 2D). To remove the oxide layer 6, a wet etching method using hydrofluoric acid or the like, a dry etching method such as plasma ashing, or the like is used. Next, the n-type semiconductor layer 4 is formed on the Si sphere 3
It is formed on the upper portion (FIG. 2E). Next, the upper electrode 5 is formed (FIG. 2F). Further, fingers or bus bars (not shown) may be appropriately provided as auxiliary electrodes.

【0024】図3は請求項6に係る光電変換装置の製造
方法を示す図である。まず、p形結晶シリコン粒子3を
アルミニウム層1上に配設する(図3(a))。配設の
方法には、振動整列法、吸引法、印刷法、静電整列法等
いずれを用いてもよい。次に、結晶シリコン粒子3とア
ルミニウム層1を577℃以上の温度に加熱して溶着す
る(図3(b))。加熱工程の際に、結晶シリコン粒子
3の表面に酸化層6やp+領域を同時に形成してもよ
い。次に、結晶シリコン粒子3の表面に酸化層6を形成
する(図3(c))。酸化層6を形成する方法として
は、酸処理で形成することが好ましい。酸処理は、硝酸
又は過酸化水素を用いることが好ましい。この酸処理は
50℃以上300℃以下の加熱処理であることが好まし
い。次に、絶縁層2を形成する(図3(d))。次に、
結晶シリコン粒子3上部の酸化層6を除去する。(図3
(e))次に、n形半導体層4をSi球3上部に形成す
る(図3(f))。次に、上部電極5を形成する(図3
(g))。
FIG. 3 is a diagram showing a method for manufacturing a photoelectric conversion device according to a sixth aspect. First, the p-type crystalline silicon particles 3 are arranged on the aluminum layer 1 (FIG. 3A). As the disposing method, any of a vibration alignment method, a suction method, a printing method, an electrostatic alignment method and the like may be used. Next, the crystalline silicon particles 3 and the aluminum layer 1 are heated to a temperature of 577 ° C. or higher and welded (FIG. 3B). During the heating step, the oxide layer 6 and the p + region may be simultaneously formed on the surface of the crystalline silicon particles 3. Next, the oxide layer 6 is formed on the surface of the crystalline silicon particles 3 (FIG. 3C). The oxide layer 6 is preferably formed by acid treatment. The acid treatment preferably uses nitric acid or hydrogen peroxide. The acid treatment is preferably a heat treatment at 50 ° C. or higher and 300 ° C. or lower. Next, the insulating layer 2 is formed (FIG. 3D). next,
The oxide layer 6 on the crystalline silicon particles 3 is removed. (Fig. 3
(E)) Next, the n-type semiconductor layer 4 is formed on the Si sphere 3 (FIG. 3 (f)). Next, the upper electrode 5 is formed (FIG. 3).
(G)).

【0025】[0025]

【実施例1】次に、本発明の光電変換装置の実施例を説
明する。
Example 1 Next, an example of the photoelectric conversion device of the present invention will be described.

【0026】まず、厚み15nmの酸化層6を有する平
均粒径700μmの粒状結晶p形シリコン3をアルミニ
ウム基板1上に密に1層配設し、650℃に加熱して基
板1と粒状結晶シリコン3を溶着させた。このとき用い
たアルミニウム基板1へ添加する反応助剤を変化させて
特性を評価した結果を表1にまとめる。次に、酸化ホウ
素系のガラス転移点500℃のガラスペースト2を粒状
結晶シリコン3間に充填して加熱焼成して絶縁層2を形
成した。その上にn形結晶シリコン層4を30nmの厚
みにプラズマCVD法で形成した。次に、酸化錫からな
る保護膜5をスパッタリング法で100nm形成して評
価した。酸化層6が無い粒状結晶p形シリコン3を用い
た場合の変換効率は7.8%であった。
First, one layer of granular crystal p-type silicon 3 having an average particle diameter of 700 μm and having an oxide layer 6 having a thickness of 15 nm is densely arranged on an aluminum substrate 1 and heated to 650 ° C. to heat the substrate 1 and the granular crystalline silicon. 3 was welded. Table 1 summarizes the results of evaluating the characteristics by changing the reaction aid added to the aluminum substrate 1 used at this time. Next, a boron oxide-based glass paste 2 having a glass transition point of 500 ° C. was filled in the granular crystalline silicon 3 and heated and baked to form the insulating layer 2. An n-type crystalline silicon layer 4 having a thickness of 30 nm was formed thereon by plasma CVD. Next, a protective film 5 made of tin oxide was formed to a thickness of 100 nm by a sputtering method and evaluated. The conversion efficiency when the granular crystal p-type silicon 3 without the oxide layer 6 was used was 7.8%.

【0027】[0027]

【表1】 [Table 1]

【0028】上記結果から分かるように、酸化層6を有
する粒状結晶p形シリコン3を用いることにより変換効
率が10%以上に向上している。また、アルミニウム層
1内に反応助剤として、ホウ素、亜鉛、シリコン、酸
素、炭素、窒素を添加すると、変換効率が11%以上に
向上し、好適である。
As can be seen from the above results, by using the granular crystal p-type silicon 3 having the oxide layer 6, the conversion efficiency is improved to 10% or more. Further, it is preferable to add boron, zinc, silicon, oxygen, carbon, and nitrogen as a reaction aid in the aluminum layer 1 because the conversion efficiency is improved to 11% or more.

【0029】[0029]

【実施例2】まず、アルミニウム基板1上に平均粒径2
00μmの粒状結晶p形シリコン3を密に1層配設し、
600℃に加熱して基板1と粒状結晶シリコン3を溶着
させた。次に、加熱した過酸化水素中に浸漬し、粒状結
晶シリコン3の表面に酸化層6を形成した。次に、酸化
亜鉛系のガラス転移点530℃のガラスペーストを粒状
結晶シリコン3間に充填して加熱焼成して絶縁層2を形
成した。その上にイオン注入法でn形結晶シリコン部4
を10nmの厚みに形成した。次に、酸化亜鉛からなる
保護膜5をスパッタリング法で100nmの厚みに形成
して評価した。その結果、変換効率は10.5%を得る
ことができ、これは酸化層6を設けない素子の変換効率
7.8%を大きく上回る結果であった。上記酸処理温度
を50℃〜300℃まで変化させて評価を行ったが、い
ずれも同様の効果を示した。また、上記過酸化水素を硝
酸に変更した場合においても同様の効果を示した。
[Embodiment 2] First, an average grain size of 2 on an aluminum substrate 1.
One layer of granular crystal p-type silicon 3 of 00 μm is densely arranged,
The substrate 1 and the granular crystalline silicon 3 were welded by heating at 600 ° C. Next, it was dipped in heated hydrogen peroxide to form an oxide layer 6 on the surface of the granular crystalline silicon 3. Next, a zinc oxide-based glass paste having a glass transition point of 530 ° C. was filled in the granular crystalline silicon 3 and heated and baked to form the insulating layer 2. Then, an n-type crystalline silicon portion 4 is formed thereon by ion implantation.
Was formed to a thickness of 10 nm. Next, a protective film 5 made of zinc oxide was formed to a thickness of 100 nm by a sputtering method and evaluated. As a result, a conversion efficiency of 10.5% could be obtained, which was much higher than the conversion efficiency of 7.8% of the element having no oxide layer 6. The acid treatment temperature was changed from 50 ° C. to 300 ° C. and evaluated, and all showed similar effects. Further, the same effect was exhibited when the hydrogen peroxide was changed to nitric acid.

【0030】[0030]

【発明の効果】以上のように、請求項1の光電変換装置
の製造方法によれば、表面に酸化層を有するp形の結晶
半導体粒子を一方の電極となるアルミニウム層上に多数
配設して加熱処理して溶着し、この結晶半導体粒子間に
絶縁物質を充填するとともに、この結晶半導体粒子上部
の酸化層を除去してn形半導体層を形成することから、
結晶シリコン粒子と絶縁層との界面における再結合を低
減させて変換効率を向上させることが可能となり、高い
変換効率を有する光電変換装置の作製が可能となる。
As described above, according to the method of manufacturing a photoelectric conversion device of the first aspect, a large number of p-type crystalline semiconductor particles having an oxide layer on the surface thereof are provided on the aluminum layer which serves as one electrode. Since heat treatment is performed to fuse the crystalline semiconductor particles with each other, an insulating material is filled between the crystalline semiconductor particles, and the oxide layer above the crystalline semiconductor particles is removed to form an n-type semiconductor layer.
The recombination at the interface between the crystalline silicon particles and the insulating layer can be reduced to improve the conversion efficiency, and the photoelectric conversion device having high conversion efficiency can be manufactured.

【0031】また、請求項4の光電変換装置では、一方
の電極となるアルミニウム層中に、このアルミニウム層
上に多数配設された結晶半導体粒子の表面に形成された
酸化層との反応を制御する反応助剤を含むことから、結
晶半導体粒子の表面に酸化層を容易に形成することがで
き、結晶シリコン粒子と絶縁層との界面における再結合
を低減させて、高い変換効率を有する光電変換装置を提
供できる。
Further, in the photoelectric conversion device according to the fourth aspect, the reaction with the oxide layer formed on the surface of the crystalline semiconductor particles arranged in large numbers in the aluminum layer to be one electrode is controlled. Since it contains a reaction auxiliary agent for forming the oxide layer, an oxide layer can be easily formed on the surface of the crystalline semiconductor particles, recombination at the interface between the crystalline silicon particles and the insulating layer can be reduced, and photoelectric conversion with high conversion efficiency can be achieved. A device can be provided.

【0032】さらに、請求項6の光電変換装置の製造方
法によれば、p形の結晶半導体粒子を一方の電極となる
アルミニウム層上に多数配設して加熱処理して溶着し、
この結晶半導体粒子の表面に酸化層を形成し、この結晶
半導体粒子間に絶縁物質を充填するとともに、この結晶
半導体粒子上部の酸化層を除去してn形半導体層を形成
することから、結晶シリコン粒子と絶縁層との界面にお
ける再結合を低減させて変換効率を向上させることが可
能となり、高い変換効率を有する光電変換装置の作製が
可能となる。
Further, according to the method of manufacturing a photoelectric conversion device of claim 6, a large number of p-type crystal semiconductor particles are arranged on an aluminum layer to be one of the electrodes, heat-treated and welded.
An oxide layer is formed on the surface of the crystalline semiconductor particles, an insulating material is filled between the crystalline semiconductor particles, and the oxide layer above the crystalline semiconductor particles is removed to form an n-type semiconductor layer. It is possible to reduce recombination at the interface between the particles and the insulating layer to improve the conversion efficiency, and it is possible to manufacture a photoelectric conversion device having high conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換装置を示す断面図である。FIG. 1 is a cross-sectional view showing a photoelectric conversion device of the present invention.

【図2】本発明の光電変換装置の製造方法の一実施形態
を示す断面図である。
FIG. 2 is a cross-sectional view showing an embodiment of a method for manufacturing a photoelectric conversion device of the present invention.

【図3】本発明の光電変換装置の製造方法の他の実施形
態を示す断面図である。
FIG. 3 is a cross-sectional view showing another embodiment of the method for manufacturing a photoelectric conversion device of the present invention.

【図4】従来の光電変換装置を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional photoelectric conversion device.

【図5】従来の他の光電変換装置を示す断面図である。FIG. 5 is a cross-sectional view showing another conventional photoelectric conversion device.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・絶縁層 3・・・・第1導電形の粒状結晶シリコン 4・・・・第2導電形の半導体部 5・・・・上部電極膜 6・・・・保護層 7・・・・第2導電形の非晶質半導体層 8・・・・低融点金属層 9・・・・第2導電形の微結晶半導体層 10・・・アルミペースト 1 ... substrate 2 ... Insulating layer 3 ··· First conductivity type granular crystalline silicon 4 ... Semiconductor part of the second conductivity type 5 ... Upper electrode film 6 ... Protective layer 7 ... Amorphous semiconductor layer of second conductivity type 8 ... Low melting point metal layer 9 ... Second-conductivity-type microcrystalline semiconductor layer 10 ... Aluminum paste

フロントページの続き (72)発明者 有宗 久雄 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀八日市工場内 Fターム(参考) 5F051 AA02 AA03 CB04 CB13 CB19 CB24 CB27 CB29 CB30 DA03 DA09 DA20 FA22 GA02 Continued front page    (72) Inventor Hisao Arimune             6 at 1166 Haseno, Jamizo-cho, Yokaichi-shi, Shiga               Kyocera Corporation Shiga Yokaichi Factory F term (reference) 5F051 AA02 AA03 CB04 CB13 CB19                       CB24 CB27 CB29 CB30 DA03                       DA09 DA20 FA22 GA02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 表面に酸化層を有するp形の結晶半導体
粒子を一方の電極となるアルミニウム層上に多数配設し
て加熱処理して溶着し、前記結晶半導体粒子間に絶縁物
質を充填するとともに、この結晶半導体粒子上部の酸化
層を除去してn形半導体層を形成することを特徴とする
光電変換装置の製造方法。
1. A large number of p-type crystal semiconductor particles having an oxide layer on the surface thereof are arranged on an aluminum layer to be one electrode, heat-treated and welded, and an insulating substance is filled between the crystal semiconductor particles. At the same time, the oxide layer above the crystalline semiconductor particles is removed to form an n-type semiconductor layer, which is a method for manufacturing a photoelectric conversion device.
【請求項2】 前記加熱処理を580℃以上で行うこと
を特徴とする請求項1記載の光電変換装置の製造方法。
2. The method for manufacturing a photoelectric conversion device according to claim 1, wherein the heat treatment is performed at 580 ° C. or higher.
【請求項3】 前記加熱処理時に前記結晶半導体粒子の
酸化層が前記アルミニウム層との反応により除去され
て、前記結晶半導体粒子とアルミニウム層とが溶着する
ことを特徴とする請求項1記載の光電変換装置の製造方
法。
3. The photoelectric conversion device according to claim 1, wherein the oxide layer of the crystalline semiconductor particles is removed by a reaction with the aluminum layer during the heat treatment, and the crystalline semiconductor particles and the aluminum layer are welded to each other. Method of manufacturing converter.
【請求項4】 p形の結晶半導体粒子を一方の電極とな
るアルミニウム層上に多数配設するとともに、この結晶
半導体粒子間に絶縁物質を充填して前記結晶半導体粒子
上部にn形半導体層を形成した光電変換装置において、
前記アルミニウム層中に、このアルミニウム層と前記結
晶半導体粒子の表面に形成された酸化層との反応を制御
する反応助剤を含むことを特徴とする光電変換装置。
4. A large number of p-type crystal semiconductor particles are provided on an aluminum layer to be one electrode, and an insulating material is filled between the crystal semiconductor particles to form an n-type semiconductor layer above the crystal semiconductor particles. In the formed photoelectric conversion device,
A photoelectric conversion device, wherein the aluminum layer contains a reaction aid for controlling the reaction between the aluminum layer and the oxide layer formed on the surface of the crystalline semiconductor particles.
【請求項5】 前記反応助剤がホウ素、亜鉛、シリコ
ン、酸素、炭素、窒素のいずれかであることを特徴とす
る請求項4記載の光電変換装置。
5. The photoelectric conversion device according to claim 4, wherein the reaction aid is any one of boron, zinc, silicon, oxygen, carbon and nitrogen.
【請求項6】 p形の結晶半導体粒子を一方の電極とな
るアルミニウム層上に多数配設して加熱処理して溶着
し、この結晶半導体粒子の表面に酸化層を形成し、この
結晶半導体粒子間に絶縁物質を充填するとともに、この
結晶半導体粒子上部の酸化層を除去してn形半導体層を
形成することを特徴とする光電変換装置の製造方法。
6. A large number of p-type crystal semiconductor particles are disposed on an aluminum layer to be one electrode and heat-treated for welding to form an oxide layer on the surface of the crystal semiconductor particles. A method for manufacturing a photoelectric conversion device, characterized in that an insulating material is filled in between and an oxide layer above the crystalline semiconductor particles is removed to form an n-type semiconductor layer.
【請求項7】 前記酸化層を酸処理によって形成するこ
とを特徴とする請求項6記載の光電変換装置の製造方
法。
7. The method for manufacturing a photoelectric conversion device according to claim 6, wherein the oxide layer is formed by acid treatment.
【請求項8】 前記酸処理に硝酸又は過酸化水素を用い
ることを特徴とする請求項7記載の光電変換装置の製造
方法。
8. The method for manufacturing a photoelectric conversion device according to claim 7, wherein nitric acid or hydrogen peroxide is used for the acid treatment.
【請求項9】 前記酸処理を50℃以上300℃以下で
行うことを特徴とする請求項7記載の光電変換装置の製
造方法。
9. The method for manufacturing a photoelectric conversion device according to claim 7, wherein the acid treatment is performed at 50 ° C. or higher and 300 ° C. or lower.
JP2002123940A 2002-04-25 2002-04-25 Photoelectric conversion device and manufacturing method thereof Expired - Fee Related JP4045118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123940A JP4045118B2 (en) 2002-04-25 2002-04-25 Photoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123940A JP4045118B2 (en) 2002-04-25 2002-04-25 Photoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003318422A true JP2003318422A (en) 2003-11-07
JP4045118B2 JP4045118B2 (en) 2008-02-13

Family

ID=29539087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123940A Expired - Fee Related JP4045118B2 (en) 2002-04-25 2002-04-25 Photoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4045118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311256A (en) * 2004-04-26 2005-11-04 Kyocera Corp Photoelectric converter, method for manufacturing the same, and photovoltaic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311256A (en) * 2004-04-26 2005-11-04 Kyocera Corp Photoelectric converter, method for manufacturing the same, and photovoltaic device
JP4535767B2 (en) * 2004-04-26 2010-09-01 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
US7829782B2 (en) 2004-04-26 2010-11-09 Kyocera Corporation Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device

Also Published As

Publication number Publication date
JP4045118B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
KR100974221B1 (en) Method for forming selective emitter of solar cell using laser annealing and Method for manufacturing solar cell using the same
KR101579854B1 (en) Ion implanted selective emitter solar cells with in situ surface passivation
JP2013531371A (en) Selective emitter solar cells formed by a hybrid process of diffusion and ion implantation.
CN112701170A (en) Improved front contact heterojunction process
TW200937658A (en) Method for making solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US9252300B2 (en) Method for backside-contacting a silicon solar cell, silicon solar cell and silicon solar module
TW200937645A (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
KR101370126B1 (en) Method for forming selective emitter of solar cell using annealing by laser of top hat type and Method for manufacturing solar cell using the same
US7829782B2 (en) Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2018147910A (en) High efficiency solar cell and method of manufacturing the same
JP4045118B2 (en) Photoelectric conversion device and manufacturing method thereof
TWI415272B (en) Method of fabricating rear surface point contact of solar cells
JP5022743B2 (en) Photoelectric conversion element
KR101408872B1 (en) Method of fabricating a nano pattern by using rapid thermal process to Au thin layer
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
CN109743884B (en) Metallization structure for solar cells
JP2003218369A (en) Photoelectric conversion device
JP2006156584A (en) Method of spreading impurity in crystal silicon particle, photoelectric converter and photovoltaic generator
JP2004031741A (en) Photoelectric converter and its manufacturing method
JP4926101B2 (en) Photoelectric conversion device
KR102118905B1 (en) Solar cell including a tunnel oxide layer and method of manufacturing the same
JP4243495B2 (en) Method for manufacturing photoelectric conversion device
JP2005079143A (en) Crystal silicon and photoelectric converter employing it
JP2003158278A (en) Photoelectric convertor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees