JP2003318414A - Super abrupt junction-type varactor - Google Patents

Super abrupt junction-type varactor

Info

Publication number
JP2003318414A
JP2003318414A JP2002121745A JP2002121745A JP2003318414A JP 2003318414 A JP2003318414 A JP 2003318414A JP 2002121745 A JP2002121745 A JP 2002121745A JP 2002121745 A JP2002121745 A JP 2002121745A JP 2003318414 A JP2003318414 A JP 2003318414A
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor substrate
diffusion layer
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002121745A
Other languages
Japanese (ja)
Inventor
Takeshi Omukae
毅 大迎
Mitsuo Hatamoto
光夫 畑本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002121745A priority Critical patent/JP2003318414A/en
Publication of JP2003318414A publication Critical patent/JP2003318414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a performance index Q of a super abrupt junction-type varactor. <P>SOLUTION: A lightly doped N- type semiconductor layer 3 is formed on a heavily doped N+ type semiconductor substrate 2. A P+ type layer 3 is the P+ type diffusion layer formed by ion-implanting P-type impurities from a main surface of the semiconductor layer 3. An N+ type layer 5 is a diffusion layer formed adjacently to the P+ type layer 4 just below the P+ type layer 4, and it is formed by ion-implanting N-type impurities in a way similar to the P+ type layer 4. A guard ring 6 is a circular diffusion layer formed to surround a periphery of the P+ type layer 4 and the N+ type layer 5, and the ring mainly improves breakdown voltage. For improving the performance index Q, red phosphorus (P) is ion-implanted to the semiconductor substrate 2 and specific resistance of the semiconductor substrate 2 is dropped. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超階段接合型可変
容量ダイオードの性能指数Qの向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a figure of merit Q of a hyper-stair junction type variable capacitance diode.

【0002】[0002]

【従来の技術】一般的に超階段接合型可変容量ダイオー
ドは、印加する電位差によって生じる空乏層の広がりを
制御することで、容量値を可変とするダイオードであ
り、主にラジオのチューニングに用いられる。
2. Description of the Related Art Generally, a super staircase junction type variable capacitance diode is a diode whose capacitance value is variable by controlling the spread of a depletion layer caused by an applied potential difference, and is mainly used for radio tuning. .

【0003】図3は、一般的な超階段接合型可変容量ダ
イオード(以下、超階段接合型バラクタダイオード31
と称す)の断面図である。
FIG. 3 shows a general super staircase junction type variable capacitance diode (hereinafter, referred to as superstaircase junction type varactor diode 31).
Is a sectional view of FIG.

【0004】高濃度のN+型の半導体基板32上に、低
濃度のN−形の半導体層33を形成する。半導体層33
は、例えばエピタキシャル成長法によって形成されたエ
ピタキシャル層である。
A low concentration N− type semiconductor layer 33 is formed on a high concentration N + type semiconductor substrate 32. Semiconductor layer 33
Is an epitaxial layer formed by, for example, an epitaxial growth method.

【0005】P+型層34は、半導体層33の主表面か
らP型の不純物をイオン注入することで形成したP+型
の拡散層である。N+型層35は、P+型層34直下
に、P+型層34と隣接してPN接合を成すように形成
された拡散層であり、P+型層34と同様にN型の不純
物をイオン注入して形成される。ガードリング36は、
P+型層34とN+型層35との周囲を取り囲むように
形成した環状の拡散層であり、主に耐圧を向上させるた
めのものである。
The P + type layer 34 is a P + type diffusion layer formed by ion-implanting P type impurities from the main surface of the semiconductor layer 33. The N + type layer 35 is a diffusion layer formed immediately below the P + type layer 34 so as to be adjacent to the P + type layer 34 so as to form a PN junction, and similarly to the P + type layer 34, ion implantation of N type impurities is performed. Formed. The guard ring 36
It is an annular diffusion layer formed so as to surround the P + type layer 34 and the N + type layer 35, and is mainly for improving the breakdown voltage.

【0006】[0006]

【発明が解決しようとする課題】ところで、超階段接合
型バラクタダイオード31は、FMラジオチューナーに
使われるため、チューニング受信周波数をAMラジオチ
ューナーよりも広く受信し、感度良好であることが要求
される。そのためには、性能指数Q(トランジスタの高
周波特性を数値化したもの)を高く維持する必要があ
る。性能指数Qが高ければ、その超階段接合型バラクタ
ダイオードの高周波特性は高いことを意味し、高周波受
信においても感度が良好であることを示す。
By the way, since the hyper-stair junction varactor diode 31 is used in an FM radio tuner, it is required to receive a tuning reception frequency wider than that of an AM radio tuner and to have good sensitivity. . For that purpose, it is necessary to maintain a high figure of merit Q (a numerical value of the high frequency characteristics of the transistor). If the figure of merit Q is high, it means that the high frequency characteristics of the hyper-staircase junction type varactor diode are high, and that the sensitivity is good even in high frequency reception.

【0007】ここで、性能指数Qは Q=1/(2π・f・Ct・rs) で表すことができる。fは受信する周波数、CtはPN
接合容量、rsは直列抵抗値をそれぞれ表す。つまり、
性能指数Qを高くするためには2πと受信周波数fが一
定値であるため、PN接合容量Ct又は直列抵抗値rs
を下げる必要がある。ここで、直列抵抗値rsは半導体
基板32の比抵抗に依存する。
Here, the performance index Q can be expressed by Q = 1 / (2π · f · Ct · rs). f is the received frequency, Ct is PN
Junction capacitance and rs represent series resistance values, respectively. That is,
In order to increase the figure of merit Q, since 2π and the reception frequency f are constant values, the PN junction capacitance Ct or the series resistance value rs
Need to lower. Here, the series resistance value rs depends on the specific resistance of the semiconductor substrate 32.

【0008】そこで、超階段接合型バラクタダイオード
31において、直列抵抗値rsを下げるため、半導体基
板32に砒素(As)やアンチモン(Sb)を導入し
て、半導体基板32の比抵抗を下げ、高濃度化すること
で、性能指数Qを向上させる方法があるが、その効果は
不十分であった。
In order to reduce the series resistance value rs in the hyper-stair junction type varactor diode 31, therefore, arsenic (As) or antimony (Sb) is introduced into the semiconductor substrate 32 to lower the specific resistance of the semiconductor substrate 32 and increase it. There is a method of improving the performance index Q by increasing the concentration, but the effect was insufficient.

【0009】[0009]

【課題を解決するための手段】本発明は半導体基板32
にイオン注入する不純物として、上述した砒素(As)
やアンチモン(Sb)よりもシリコンに対する固溶度が
高く、更に低比抵抗の性質を有する燐(P)、特に赤燐
(P)を用いることで、超階段接合型バラクタダイオー
ド31の直列抵抗値を下げて、性能指数Qを向上させて
品質の高いFMラジオチューナーを提供するものであ
る。
The present invention provides a semiconductor substrate 32.
Arsenic (As) described above is used as an impurity for ion implantation into
By using phosphorus (P), which has a higher solid solubility in silicon than that of antimony (Sb) and has a low specific resistance, particularly red phosphorus (P), the series resistance value of the super-step junction varactor diode 31 is increased. To improve the figure of merit Q to provide a high quality FM radio tuner.

【0010】本発明の請求項1では、一導電型の半導体
基板と、前記半導体基板上に形成した低濃度の一導電型
の半導体層と、前記半導体層の主表面から形成した逆導
電型の拡散層と、前記逆導電型の拡散層の直下に、隣接
するように形成した高濃度の一導電型の拡散層と、を有
する超階段接合型可変容量ダイオードにおいて、前記半
導体基板に赤燐を導入して、前記半導体基板の比抵抗を
下げることを特徴とする超階段接合型可変容量ダイオー
ドを提供する。
According to claim 1 of the present invention, a semiconductor substrate of one conductivity type, a semiconductor layer of one conductivity type having a low concentration formed on the semiconductor substrate, and an opposite conductivity type formed from the main surface of the semiconductor layer. In a super stair junction variable capacitance diode having a diffusion layer and a high-concentration one-conductivity-type diffusion layer formed immediately below the opposite-conductivity-type diffusion layer, red phosphorus is applied to the semiconductor substrate. The present invention provides a super staircase junction variable capacitance diode characterized by reducing the specific resistance of the semiconductor substrate.

【0011】本発明の請求項2では、前記逆導電型の拡
散層と前記一導電型の拡散層との周囲に、一導電型のガ
ードリングが形成されていることを特徴とする超階段接
合型可変容量ダイオードを提供する。
According to a second aspect of the present invention, a one-conductivity type guard ring is formed around the opposite-conductivity-type diffusion layer and the one-conductivity type diffusion layer. Type variable capacitance diode is provided.

【0012】[0012]

【発明の実施の形態】図1は本発明の半導体装置に係る
断面図であり、超階段接合型可変容量ダイオード1を示
す。
1 is a cross-sectional view of a semiconductor device of the present invention, showing a super stair junction type variable capacitance diode 1.

【0013】高濃度のN+型の半導体基板2上に、低濃
度のN−形の半導体層3を形成する。主に、半導体層3
はエピタキシャル成長法によって形成されたエピタキシ
ャル層である。
A low concentration N− type semiconductor layer 3 is formed on a high concentration N + type semiconductor substrate 2. Mainly the semiconductor layer 3
Is an epitaxial layer formed by an epitaxial growth method.

【0014】P+型層4は、半導体層3の主表面からP
型の不純物をイオン注入することで形成したP+型の拡
散層である。N+型層5は、P+型層4直下に、P+型
層4と隣接して形成された拡散層であり、P+型層4と
同様にN型の不純物をイオン注入して形成される。ガー
ドリング6は、P+型層4とN+型層5との周囲を取り
囲むように形成した環状の拡散層であり、主に耐圧を向
上させるためのものである。
The P + type layer 4 extends from the main surface of the semiconductor layer 3 to P
This is a P + type diffusion layer formed by ion implantation of a type impurity. The N + type layer 5 is a diffusion layer formed immediately below the P + type layer 4 and adjacent to the P + type layer 4, and is formed by ion implantation of N type impurities similarly to the P + type layer 4. The guard ring 6 is an annular diffusion layer formed so as to surround the P + type layer 4 and the N + type layer 5, and is mainly for improving the breakdown voltage.

【0015】図2は、図1のX−X´線断面における不
純物濃度分布(プロファイル)を示したものである。接
合深さが0〜1.5μmまでは、P+型層4が位置し、
その不純物濃度のピーク値は5×1019(atoms・c
m-3)である。接合深さが1.5〜2.0μmまでは、
N+型層5が位置し、その不純物濃度のピーク値は2×
1017(atoms・cm-3)である。接合深さが2.0〜
2.5μmまでは、半導体層3が位置し、その不純物濃
度は3×1016(atoms・cm-3)で、一定値となる。接
合深さが2.5以下は、半導体基板2が位置し、その不
純物濃度のピーク値は4×1019(atoms・cm-3)であ
る(図2の実線:P Sub参照)。
FIG. 2 shows an impurity concentration distribution (profile) in the cross section taken along the line XX 'in FIG. When the junction depth is 0 to 1.5 μm, the P + type layer 4 is located,
The peak value of the impurity concentration is 5 × 10 19 (atoms · c
m -3 ). When the junction depth is 1.5 to 2.0 μm,
The N + type layer 5 is located, and the peak value of the impurity concentration is 2 ×
It is 10 17 (atoms · cm −3 ). Bonding depth is 2.0 ~
The semiconductor layer 3 is located up to 2.5 μm, and its impurity concentration is 3 × 10 16 (atoms · cm −3 ) and has a constant value. When the junction depth is 2.5 or less, the semiconductor substrate 2 is located, and the peak value of the impurity concentration is 4 × 10 19 (atoms · cm −3 ) (see solid line in FIG. 2: P Sub).

【0016】ここで、従来例で半導体基板2に不純物注
入した砒素(As)及びアンチモン(Sb)を比較する
ために図示した。砒素(As)は半導体基板2内では、
その不純物濃度は3×1019(atoms・cm-3)となる
(図2の破線のAs Sub参照)。また、アンチモ
ン(Sb)半導体基板2内では、その不純物濃度は4×
1018(atoms・cm-3)となる(図2の破線のSb S
ub参照)。
Here, it is shown for comparison with arsenic (As) and antimony (Sb) in which impurities are implanted into the semiconductor substrate 2 in the conventional example. In the semiconductor substrate 2, arsenic (As) is
The impurity concentration becomes 3 × 10 19 (atoms · cm −3 ) (see As Sub indicated by a broken line in FIG. 2). In the antimony (Sb) semiconductor substrate 2, the impurity concentration is 4 ×.
10 18 (atoms · cm −3 ) (Sb S indicated by the broken line in FIG. 2)
ub).

【0017】つまり、赤燐(P)、砒素(As)、アン
チモン(Sb)をそれぞれイオン注入した半導体基板2
のピーク値濃度をP Sub、As Sub、Sb Su
bとすると、P Sub>As Sub>Sb Subと
いう関係となる。
That is, the semiconductor substrate 2 into which red phosphorus (P), arsenic (As) and antimony (Sb) have been ion-implanted, respectively.
The peak value concentration of P Sub, As Sub, Sb Su
Letting b be, P Sub> As Sub> Sb Sub.

【0018】本発明者の実験によれば、以下の結果が得
られた(f=1(MHz)の時)。
According to the experiments conducted by the present inventor, the following results were obtained (when f = 1 (MHz)).

【0019】半導体基板の不純物が、アンチモン(S
b)、砒素(As)、赤燐(P)であるとき、それらの
性能指数Q(1V時)はそれぞれ、30、40、48と
なった。
The impurities of the semiconductor substrate are antimony (S
b), arsenic (As), and red phosphorus (P), their performance indexes Q (at 1 V) were 30, 40, and 48, respectively.

【0020】以上より、半導体基板2に赤燐(P)を不
純物としてイオン注入すると、アンチモン(Sb)を注
入した半導体基板に対しては、性能指数Qが1.2倍と
なり、砒素(As)を注入した半導体基板に対しては、
1.6倍という結果が得られた。
As described above, when red phosphorus (P) is ion-implanted in the semiconductor substrate 2 as an impurity, the figure of merit Q is 1.2 times that of the semiconductor substrate in which antimony (Sb) is implanted, and arsenic (As). For the semiconductor substrate in which
A result of 1.6 times was obtained.

【0021】[0021]

【発明の効果】以上より、半導体基板2に比抵抗の小さ
な赤燐(P)を不純物としてイオン注入することで、従
来例に比して1.2倍、1.6倍程度の性能指数Qが向
上した。そして、性能指数Qが向上することで、超階段
接合型バラクタダイオード31は、FMラジオチューナ
ーとして、チューニング受信周波数を広くとることが可
能となる。
As described above, by performing ion implantation of red phosphorus (P) having a small specific resistance into the semiconductor substrate 2 as an impurity, the performance index Q is about 1.2 times or 1.6 times that of the conventional example. Has improved. The improved performance index Q allows the hyper-stair junction varactor diode 31 to have a wide tuning reception frequency as an FM radio tuner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超階段接合型可変容量ダイオードを示
す断面図である。
FIG. 1 is a cross-sectional view showing a hyper-step junction variable capacitance diode of the present invention.

【図2】図1のX−X´線断面図の不純物濃度である。FIG. 2 is an impurity concentration in a cross-sectional view taken along the line XX ′ of FIG.

【図3】従来の超階段接合型可変容量ダイオードを示す
断面図である。
FIG. 3 is a cross-sectional view showing a conventional hyper-step junction variable capacitance diode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板と、 前記半導体基板上に形成した低濃度の一導電型の半導体
層と、 前記半導体層の主表面から形成した逆導電型の拡散層
と、 前記逆導電型の拡散層の直下に、隣接するように形成し
た高濃度の一導電型の拡散層と、 を有する超階段接合型可変容量ダイオードにおいて、 前記半導体基板の不純物が赤燐であることを特徴とする
超階段接合型可変容量ダイオード。
1. A semiconductor substrate of one conductivity type, a low-concentration semiconductor layer of one conductivity type formed on the semiconductor substrate, a diffusion layer of an opposite conductivity type formed from a main surface of the semiconductor layer, A super staircase junction type varactor diode having a high-concentration one-conductivity-type diffusion layer formed directly adjacent to a conductivity-type diffusion layer, wherein the impurity of the semiconductor substrate is red phosphorus. Is a super stair junction type variable capacitance diode.
【請求項2】 前記逆導電型の拡散層と前記一導電型の
拡散層との周囲に、一導電型のガードリングが形成され
ていることを特徴とする超階段接合型可変容量ダイオー
ド。
2. The super staircase junction type variable capacitance diode, wherein a guard ring of one conductivity type is formed around the diffusion layer of the opposite conductivity type and the diffusion layer of the one conductivity type.
JP2002121745A 2002-04-24 2002-04-24 Super abrupt junction-type varactor Pending JP2003318414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002121745A JP2003318414A (en) 2002-04-24 2002-04-24 Super abrupt junction-type varactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121745A JP2003318414A (en) 2002-04-24 2002-04-24 Super abrupt junction-type varactor

Publications (1)

Publication Number Publication Date
JP2003318414A true JP2003318414A (en) 2003-11-07

Family

ID=29537558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121745A Pending JP2003318414A (en) 2002-04-24 2002-04-24 Super abrupt junction-type varactor

Country Status (1)

Country Link
JP (1) JP2003318414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253073B2 (en) 2004-01-23 2007-08-07 International Business Machines Corporation Structure and method for hyper-abrupt junction varactors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253073B2 (en) 2004-01-23 2007-08-07 International Business Machines Corporation Structure and method for hyper-abrupt junction varactors
US7700453B2 (en) 2004-01-23 2010-04-20 International Business Machines Corporation Method for forming hyper-abrupt junction varactors

Similar Documents

Publication Publication Date Title
US7279390B2 (en) Schottky diode and method of manufacture
US20130313571A1 (en) Silicon carbide bipolar junction transistor comprising shielding regions and methods of manufacturing the same
US9349854B2 (en) Semiconductor device and method of manufacturing the same
US20140308792A1 (en) Methods of producing bipolar transistors having emitter-base junctions of varying depths and/or doping concentrations
US8802532B2 (en) Bipolar transistor and method for manufacturing the same
US20190252410A1 (en) Integrated Circuit With Resurf Region Biasing Under Buried Insulator Layers
EP1164643A3 (en) Diode having breakdown voltage adjustable to arbitrary value without increase of parasitic capacitance and process for fabrication thereof
US9640528B2 (en) Low-cost complementary BiCMOS integration scheme
US20100230774A1 (en) Diode Having High Breakdown Voltage and Low on-Resistance
KR101398125B1 (en) Self aligned fast recovery diode and fabrication method thereof
US9466665B2 (en) High voltage diode
JP2009164584A (en) Schottky diode of semiconductor device, and method for manufacturing the same
US9379180B2 (en) Super junction for semiconductor device and method for manufacturing the same
US20120007152A1 (en) Low gate charging rectifier having mos structure and p-n junction, and manufacturing method of the same
US9029235B2 (en) Trench isolation MOS P-N junction diode device and method for manufacturing the same
KR100928204B1 (en) CMOS-based flat-panel avalanche photodiode using silicon epilayer and its manufacturing method
US11271076B2 (en) Systems and methods for junction termination in semiconductor devices
US20200105901A1 (en) Method of making triple well isolated diode
JP2003318414A (en) Super abrupt junction-type varactor
EP0756760B1 (en) Semiconductor device with guard ring and process for its production
CN101473442A (en) Silicon carbide and related wide-bandgap transistors on semi insulating epitaxy
SE541291C2 (en) Feeder design with high current capability
JP2005033210A (en) Rectifying and protection diode
JP2008235560A (en) Hetero junction bipolar transistor
GB2561388A (en) Silicon carbide integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

RD01 Notification of change of attorney

Effective date: 20051226

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430