JP2003315226A - Evaluation method for toughness in welding-heat influence part of steel material - Google Patents
Evaluation method for toughness in welding-heat influence part of steel materialInfo
- Publication number
- JP2003315226A JP2003315226A JP2002117409A JP2002117409A JP2003315226A JP 2003315226 A JP2003315226 A JP 2003315226A JP 2002117409 A JP2002117409 A JP 2002117409A JP 2002117409 A JP2002117409 A JP 2002117409A JP 2003315226 A JP2003315226 A JP 2003315226A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- steel material
- toughness
- wire
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、建築、橋梁、造船
等に使用する厚板鋼材の溶接熱影響部の靭性評価方法に
関する。
【0002】
【従来の技術】建築、橋梁あるいは造船等の分野に使用
する鋼材は必ずと言えるほど溶接を用いて接合される。
この溶接の際、溶接金属の周辺部の母材部分は加熱され
て変態等を起こし、組織が変化する領域が生じる。この
箇所を溶接熱影響部(以下HAZと記す)と称する。H
AZは熱影響を受けていない鋼材部分と異なる材質にな
り、その多くは鋼材より低下した性能となる。例えば先
の阪神大震災では柱梁接合部、柱柱接合部、柱脚部等の
溶接接合部あるいはその近傍からの破壊発生が多くみら
れて、HAZの材質が大きく影響していると指摘されて
いる。
【0003】しかし、このHAZの材質、特に靭性を評
価するシャルピ−試験の吸収エネルギ−や脆性破面率は
溶接条件で変化するのはもちろんであるが、試験片採取
位置等で変るため、普遍性に乏しい。これらについては
鋼構造論文集第7巻第27号(2000年9月) 頁23〜3
7に「建築用鋼材のHAZ靭性評価方法の提案と靭性評
価結果」で詳細に記載されている。そして、多層溶接で
のHAZ靭性評価はやや過大評価になる傾向があり、ワ
ンビ−ド溶接のHAZ靭性評価方法を提案している。す
なわち、一般の鋼材のHAZ部は溶接熱源に近い部位ほ
ど最高到達温度が高く、高温まで加熱されるため、結晶
粒が粗大化して靱性が低下する傾向がある。
【0004】しかし、多層溶接を行うとこの粗大化した
結晶粒の領域が次の溶接パスにより再度加熱される。こ
の再加熱は前回より溶接熱源が遠くなるため最高到達温
度が低く,再結晶により結晶粒が微細となり靱性が改善
する。この再加熱した部分から試験片を採取すれば、当
然靱性は高く評価される。これに対してワンビ−ド溶接
ではこの再加熱の現象がなく、粗粒化したままで評価す
ることになり厳しい評価となる。また、このワンビ−ド
方法も開先形状と共に、ワイヤ狙い位置等が微妙に影響
し、実用的にはさらに改善の必要がある。これは、溶融
した(溶接)金属と鋼材(母材)との境界(溶融線と称
する)が湾曲した形状になり、シャルピ−試験片のノッ
チは必ずしも溶融線と平行とはならず、結果として溶融
線よりある等しい距離だけ離れた位置の性能を評価して
いることにならないためである。
【0005】そこで、精密な検討をするときは、実溶接
に合わせた熱サイクルを与えた試験片を作製し、これを
シャルピー試験片として加工し試験を行う「再現熱サイ
クル試験」と呼ばれる方法等により、その性能を評価し
ている。しかし、これには制御された急速加熱、急速冷
却のできる設備が必要等で、簡便に鋼材性能を評価する
には不適当である。鋼材の成分、強度、あるいはシャル
ピ−衝撃試験値はJIS等の規格に規定され、品質保証
の対象になっているが、HAZの材質、特にシャルピ−
試験により得られた性能値は重要な必要特性であるにも
関わらず、前述したようにその評価方法は必ずしも十分
に整備されたものでなく、特別にHAZ性能を要求する
場合は個別に規定した試験をする、所謂施工試験等を実
施しているのが実情であった。
【0006】
【発明が解決しようとする課題】そこで、本発明は、再
現性と普遍性のあるHAZのシャルピ−試験を簡便に行
える試験方法を提供し、鋼材使用者が用途に合わせた鋼
材の選択を容易にする、また、その溶接条件の選定を容
易にする方法を提供することを課題とする。
【0007】
【課題を解決するための手段】本発明者等は、HAZの
材質評価において、HAZのシャルピ−試験の再現性を
どう高めるかを検討した結果、いかに垂直な溶融線を作
るかが重要であることを突止めた。その結果から、本発
明の要旨とするところは、特許請求の範囲に記載した通
りの下記の内容である。
(1) 鋼材の溶接熱影響部の靱性を評価する方法であ
って、該鋼材にレ形あるいはI形開先を加工し、該開先
部に、ワイヤ全質量に対する質量%で、Niを12%以
上含有し、かつ、Cr+Niを34%以上含有する溶接
ワイヤを用いて、ガスシ−ルドア−ク溶接またはサブマ
−ジア−ク溶接を行い、該溶接の熱影響部から採取した
試験片にノッチ加工を施してシャルピ−試験を行うこと
を特徴とする鋼材の溶接熱影響部の靭性評価方法。
【0008】
【発明の実施の形態】本発明の実施形態を説明するため
図1に、レ形開先でのワンビ−ド溶接からシャルピー試
験片を採取する模式図を示す。レ形溝加工した鋼材1に
溶接ビ−ド2を作成し、その熱影響部にノッチ4加工し
たシャルピ−試験片3を採取する。図中の破線5は熱影
響部(HAZ)の(最高到達温度の)等温線を示す。等
温線に沿ってシャルピ−試験のノッチ加工ができれば、
その温度まで加熱されたHAZの特性を正確に評価でき
るが、図1に示すように、シャルピ−試験のノッチは垂
直に加工するため、最高到達温度がある範囲を持って加
熱された領域にわたりノッチ加工が行われることにな
り、これがシャルピ−試験による性能値の普遍性を低下
させる原因になる。そこでシャルピー試験片採取面に対
して等温線が垂直になるような条件で溶接することで、
ノッチと等温線が実用上問題のない程度に平行となるよ
うにすれば、試験性能値の普遍性を高めることができ
る。
【0009】本発明はこの垂直な等温線を得るため、レ
形開先あるいはI形開先を使用して、溶接に投入する熱
量を極力溶接ワイヤの溶融に使用し、鋼材の溶融を少な
くする方法である。このため、ワイヤの成分が、Niを
12%以上、かつ、Cr+Niを34%以上含有するも
ので、この溶接ワイヤを使用したガスシ−ルドア−ク溶
接またはサブマ−ジア−ク溶接を行い、その溶接熱影響
部にノッチ加工したシャルピ−試験片を採取し、試験す
ることを特徴とするものである。なお、このときの%は
ワイヤ全質量に対する質量%を示す。Niを12%以上
含有することで、ワイヤの電気抵抗が高くなると共にワ
イヤ溶融温度が低くなり、溶接に投入された熱量の多く
がワイヤ溶融に消費されて鋼材の溶融が少なくなり、レ
形開先あるいはI形開先の鋼材垂直壁側の元の形状を維
持したまま溶接されるので、HAZ部の等温線が垂直に
なる。さらに、ワイヤをフラックスコア−ドワイヤにす
るとワイヤの溶融がより多く、鋼材の溶融が少なくな
り、より垂直な等温域を得られる。
【0010】しかし、中Ni濃度のワイヤを使用した場
合、溶接金属がマルテンサイトと呼ばれる組織になり、
溶接金属に割れが生じる。これを防ぐためCrを適量添
加する。その量はNiが低い領域ほど多くする必要があ
り、Cr+Niを34%以上とした。すなわち、Niを
12%ではCrを22%以上含有するものであり、Ni
を34%以上ではCrがなくても使用できる。なお、サ
ブマ−ジア−ク溶接の場合はフラックスからCrを添加
して溶接金属の割れ防止をすることも可能であるが異相
ができやすく、またワイヤ溶融促進の点からワイヤから
の添加が望ましい。また、Crに置き換えMoの使用も
可能である。MoもCrと同じフェライト形成を促進す
る性質があることによるものである。
【0011】
【実施例】表1に実施例の概要を示す。実施NO.1〜5
が本発明例で、実施NO.6〜9は比較例を示す。実施NO.
1は本発明例で30mm厚の建築用400N/mm2鋼に一方
の端面は直角に、他方の端面は40°傾斜で、底部になる
箇所は半径3mmの丸みを付け、15mm深さに切削した鋼
を突き合わせ、レ形開先を作製し、これにJISZ33
23YF309(Ni:12.6、Cr:24%)系、
1.2mm径のフラックスコア−ドワイヤを使用して、2
20A 26V 速度23cm/min 入熱2.5kJ/mm、シ−
ルドガス20%CO2−80%ArのMAG溶接し、その
溶接金属の厚み方向の中心をシャルピ−試験片の中心と
し、Vノッチ位置の溶融線から0.5mmのJISZ22
02のVノッチシャルピ−試験片を5本採取して0℃で
試験した。
【0012】その結果、溶融線はほぼ直線で、シャルピ
−試験後の破面も場所による相違は認められず、また、
シャルピ−吸収エネルギ−、脆性破面率のバラツキも少
なく、良好な結果であった。実施NO.2も本発明例で2
5mm厚の建築用490N/mm2鋼に深さ15mm、45°傾
斜のレ形溝加工して、これにJISZ3332 YGT
9Ni-2(Ni:57%)系、1.4mm径のワイヤを使
用して、350A 32V 速度19cm/min入熱3.5kJ
/mm、シ−ルドガス2%O2−98%ArのMIG溶接
し、その溶接金属の厚み方向の中心をシャルピ−試験片
の中心として、ノッチ位置溶融線から0.5mmのVノッ
チ試験片を5本採取して0℃で試験した。これも溶融線
はほぼ直線で、シャルピ−試験後の破面も場所による相
違は認められず、また シャルピ−吸収エネルギ−、脆
性破面率のバラツキも少なく、良好な結果であった。
【0013】実施NO.3も本発明例で35mm厚のSM4
90N/mm2鋼に深さ25mm、45°傾斜のレ形溝加工し
て、これにJISZ3332 YGT9Ni-2(Ni:
58、Mo:13%)系、4mm径のワイヤ、と高塩基度
溶融型フラックスを使用して、550A 34V 速度
24cm/min 入熱4.7kJ/mmのSAWをし、その溶接金
属の厚み方向の中心をシャルピ−試験片の中心として、
ノッチ位置溶融線から1.0mmのVノッチ試験片を5本
採取して−20℃で試験した。これも溶融線はほぼ直線
で、シャルピ−試験後の破面も場所による相違は認めら
れず、シャルピ−吸収エネルギ−、脆性破面率の分布範
囲も小さく、良好な結果であった。
【0014】実施NO.4も本発明例で25mm厚のHT7
80N/mm2鋼に深さ15mm、45°傾斜のレ形溝加工し
て、これにInconel82(Ni:73%)系、
3.2mm径ワイヤと高塩基度焼成型フラックスを使用し
て、450A 32V 速度21cm/min 入熱4.1kJ/m
mのSAWをし、その溶接金属の厚み方向の中心をシャル
ピ−試験片の中心として、ノッチ位置溶融線から0.5m
mのVノッチ試験片を5本採取して−20℃で試験し
た。これも溶融線はほぼ直線で、シャルピ−試験後の破
面も場所による相違は認められず、また、シャルピ−吸
収エネルギ−、脆性破面率の分布範囲も小さく、良好な
結果であった。
【0015】実施NO.5も本発明例で15mm厚の建築用
490N/mm2鋼でギャップ5mmのI形開先を組立て、こ
れにInconel625(Ni;62,Cr;22
%)系、1.2mm径ワイヤで、220A 26V 速度1
9cm/min 入熱1.8kJ/mm、シ−ルドガス5%CO2−
95%ArのMIGを2層して、その溶接金属の重ね部
をシャルピ−試験片の中心として、ノッチ位置溶融線か
ら1mmのVノッチシャルピ−試験片を5本採取して、0
℃で試験した。これは、シャルピ−試験後の破面は試験
片中央部に再熱された細かい組織が認められるが、この
量の差はなく、5本のシャルピ−吸収エネルギ−、脆性
破面率の分布範囲も小さく、良好な結果であり、再熱部
を含んだ靱性の評価も安定してできることを確認した。
【0016】実施NO.6は比較例で実施例1と同じ鋼材
と開先を使用し、一般的に使われるJISZ3312
YGW11(Ni,Crなし)の1.2mm径のワイヤを
使用して炭酸ガス溶接で継手を作製して、シャルピ−試
験も実施例1と同じ要領で採取して試験した。これは溶
接金属の中央から表面部の溶込みが底部より大きく、溶
融線が湾曲していた。シャルピ−試験後の破面も溶接金
属の表面側になる部分は溶接金属の破面が観察され、均
一な破面形態でなく、5本のシャルピ−試験値のバラツ
キも大きく、均一な試験片でないことを示していた。
【0017】実施NO.7も比較例で実施例2と同じ開先
を使用して、これにJISZ3321 Y308L(N
i:10、Cr:21%)系、1.4mm径ワイヤを使用
して、350A 32V 速度19cm/min 入熱3.5kJ
/mm、シ−ルドガス2%O2−98%ArのMIG溶接し
て試験した。試験片採取、試験とも実施例2と同じ要領
で行った。しかし、これは溶接金属に割れが認められ、
安定した試験ができなかった。実施NO.8も比較例で、
開先形状は50°V開先で、その他は実施例4と同じ条
件でおこなった。当然であるが、溶融線は斜めで、シャ
ルピ−試験片破面には溶接金属が認められ、溶接金属を
含んだ試験になっており、鋼材の熱影響部のみの試験に
なっていなかった。
【0018】実施NO.9も比較例で、25mm厚のHT7
80N/mm2鋼に深さ15mm、50°傾斜のレ形溝加工
して、これにJISZ3183 S804−H4(N
i:2、Cr:0.6%)系、4mm径ワイヤと高塩基度
焼成型フラックスを使用して、550A 33V 速度
31cm/min 入熱3.5kJ/mmのSAWをし、その溶接金
属の厚み方向の中心をシャルピ−試験片の中心として、
Vノッチ位置溶融線から0.5mmのVノッチ試験片を5
本採取して、−20℃で試験した。これも溶接金属の表
面近傍の溶け込みが溶接金属底部より大きく、溶融線は
斜めに傾き、シャルピ−試験後の破面には溶接金属が認
められ、溶接熱影響部のみの試験になっていなかった。
【表1】
【0019】
【発明の効果】本発明は鋼材の溶接での熱影響部の性
能、特にシャルピ−試験での靱性評価における再現性を
高めるとともに、その普遍性をも高めることができる。
これにより、鋼材提供者および使用者は鋼板毎の性能評
価とその比較が容易にでき、鋼材の選定、あるいは溶接
条件の選定が容易になる。このため、鋼構造物の性能の
信頼性が高まると共に、合理的な鋼材の選択ができるな
ど、産業有用な著しい効果を奏する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the toughness of a welded heat-affected zone of a thick steel material used for construction, bridges, shipbuilding and the like. 2. Description of the Related Art Steel materials used in the fields of construction, bridges, shipbuilding, etc., are almost always joined by welding.
At the time of this welding, the base metal portion at the peripheral portion of the weld metal is heated to cause transformation or the like, and a region where the structure changes is generated. This portion is referred to as a welding heat affected zone (hereinafter, referred to as HAZ). H
AZ is made of a different material from the steel part which is not affected by heat, and many of them have lower performance than steel. For example, in the Great Hanshin Earthquake, many fractures were found at or near welded joints such as beam-column joints, column-column joints, and column bases, and it was pointed out that the HAZ material had a large effect. I have. [0003] However, the material of the HAZ, particularly the absorbed energy and brittle fracture rate in the Charpy test for evaluating the toughness, of course vary depending on the welding conditions. Poor sex. For these, see Structural Journal of Japan, Vol. 7, No. 27, September 2000, pp. 23-3.
No. 7 describes in detail "Proposal of HAZ Toughness Evaluation Method for Building Steel Material and Results of Toughness Evaluation". The evaluation of HAZ toughness in multi-layer welding tends to be somewhat overestimated, and a method for evaluating HAZ toughness in one-bead welding has been proposed. That is, in the HAZ portion of a general steel material, a portion closer to the welding heat source has a higher maximum temperature and is heated to a higher temperature, so that the crystal grains tend to be coarsened and toughness is reduced. However, when multi-layer welding is performed, the region of the coarse crystal grains is heated again by the next welding pass. In this reheating, the maximum heating temperature is lower because the welding heat source is farther than in the previous time, and the crystal grains become finer by recrystallization, and the toughness is improved. If a test piece is collected from the reheated portion, the toughness is naturally evaluated to be high. On the other hand, in the one-bead welding, the reheating phenomenon does not occur, and the evaluation is performed with coarse grains, which is a severe evaluation. In addition, this one-bead method also has a slight effect on the wire aiming position and the like, as well as the groove shape, and further improvement is necessary in practical use. This is because the boundary between the molten (welded) metal and the steel (base metal) (called the fusion line) has a curved shape, and the notch of the Charpy test specimen is not necessarily parallel to the fusion line, and as a result, This is because the performance at a position separated by a certain equal distance from the melting line is not evaluated. [0005] Therefore, when conducting a precise study, a method called a "reproduced heat cycle test" in which a test piece subjected to a heat cycle in accordance with actual welding is prepared, processed into a Charpy test piece and tested. Has evaluated its performance. However, this requires equipment capable of controlled rapid heating and rapid cooling, and is unsuitable for simply evaluating steel material performance. The composition, strength, or Charpy impact test values of steel materials are specified in standards such as JIS and are subject to quality assurance.
Although the performance values obtained by the tests are important necessary characteristics, as described above, the evaluation method is not always well-developed, and when the HAZ performance is specially required, it is individually specified. It is the actual situation that a so-called construction test or the like is conducted. SUMMARY OF THE INVENTION Accordingly, the present invention provides a test method capable of easily performing the HAZ Charpy test with reproducibility and universality. It is an object to provide a method for facilitating selection and facilitating selection of welding conditions. [0007] The present inventors have studied how to improve the reproducibility of the HAZ Charpy test in evaluating the material quality of the HAZ, and as a result, have found out how to make a vertical fusion line. I figured out what was important. From the results, the gist of the present invention is as follows as described in the claims. (1) A method for evaluating the toughness of a heat-affected zone of a steel material, in which a re-shaped or I-shaped groove is formed on the steel material, and the groove is formed by adding Ni in an amount of 12% by mass% to the total mass of the wire. % Or more, and using a welding wire containing 34% or more of Cr + Ni, perform gas shielded arc welding or sub-mark welding, and notch a test piece taken from the heat affected zone of the welding. And evaluating the toughness of the heat affected zone of a steel material by performing a Charpy test. FIG. 1 is a schematic view showing a Charpy test piece sampled from a one-bead welding with a groove in order to explain an embodiment of the present invention. A weld bead 2 is formed on a steel material 1 having a groove-shaped groove, and a Charpy test piece 3 having a notch 4 formed on a heat-affected zone thereof is sampled. The broken line 5 in the figure indicates the (highest reached) isotherm of the heat-affected zone (HAZ). If the Charpy test notch can be made along the isotherm,
Although the properties of the HAZ heated to that temperature can be accurately evaluated, as shown in FIG. 1, the notch of the Charpy test is processed vertically, so the notch over the heated area has a certain range with the highest temperature. Processing is performed, which causes a reduction in the universality of the performance values obtained by the Charpy test. Therefore, by welding under such conditions that the isotherm is perpendicular to the Charpy test specimen sampling surface,
By making the notch and the isotherm parallel to the extent that there is no practical problem, the universality of the test performance value can be increased. According to the present invention, in order to obtain this vertical isotherm, the amount of heat input to welding is used to melt the welding wire as much as possible by using a R-shaped groove or an I-shaped groove to reduce the melting of the steel material. Is the way. Therefore, the component of the wire contains 12% or more of Ni and 34% or more of Cr + Ni, and gas-shielded arc welding or sub-marked arc welding using this welding wire is performed. It is characterized in that a Charpy test piece notched in the heat-affected zone is sampled and tested. In addition,% at this time shows the mass% with respect to the total mass of a wire. By containing 12% or more of Ni, the electric resistance of the wire is increased and the melting temperature of the wire is decreased. Most of the heat input to the welding is consumed for the melting of the wire, and the melting of the steel material is reduced. Since the welding is performed while maintaining the original shape of the steel material vertical wall side of the tip or the I-shaped groove, the isotherm of the HAZ portion becomes vertical. Furthermore, when the wire is made into a flux cored wire, the melting of the wire is increased and the melting of the steel material is reduced, so that a more vertical isothermal region can be obtained. However, when a medium Ni concentration wire is used, the weld metal has a structure called martensite,
Cracks occur in the weld metal. To prevent this, an appropriate amount of Cr is added. It is necessary to increase the amount in the lower Ni region, and the content of Cr + Ni is set to 34% or more. That is, when the Ni content is 12%, the Cr content is 22% or more.
Is more than 34%, it can be used without Cr. In the case of submerged welding, it is possible to add Cr from the flux to prevent cracks in the weld metal, but a different phase is easily formed, and addition from the wire is desirable from the viewpoint of accelerating the melting of the wire. It is also possible to use Mo instead of Cr. This is because Mo also has the same property of promoting ferrite formation as Cr. [0011] Table 1 shows an outline of the embodiment. Implementation NO.1-5
Are examples of the present invention, and Examples 6 to 9 are comparative examples. Implementation NO.
1 is an example of the present invention, which is a 30 mm thick 400N / mm 2 steel for building use, one end face is a right angle, the other end face is inclined at 40 °, the bottom part is rounded with a radius of 3 mm, and cut to a depth of 15 mm. Butted steel is made to make a groove, and JISZ33
23YF309 (Ni: 12.6, Cr: 24%) type,
Using a flux cored wire of 1.2 mm diameter,
20A 26V Speed 23cm / min Heat input 2.5kJ / mm, Shear
MAG welding of 20% CO 2 -80% Ar gas, and the center of the weld metal in the thickness direction was set as the center of the Charpy test specimen, and JISZ22 of 0.5 mm from the melting line at the V notch position.
Five V-notch Charpy test specimens No. 02 were sampled and tested at 0 ° C. As a result, the melting line was almost straight, and the fracture surface after the Charpy test showed no difference depending on the location.
There was little variation in Charpy absorbed energy and brittle fracture ratio, and the results were good. Execution No. 2 is also an example of the present invention.
And Les shaped grooving 5mm thick depth 15mm in building 490 N / mm 2 steel, 45 ° tilt, this JISZ3332 YGT
9 Ni-2 (Ni: 57%) system, using a 1.4 mm diameter wire, 350 A 32 V speed 19 cm / min Heat input 3.5 kJ
/ mm, shield gas 2% O 2 -98% Ar MIG welding, and using the center of the weld metal in the thickness direction as the center of the Charpy test piece, a V notch test piece 0.5 mm from the notch position melting line. Five were taken and tested at 0 ° C. Also in this case, the melting line was almost straight, the fracture surface after the Charpy test showed no difference depending on the location, and there was little variation in the Charpy absorbed energy and the brittle fracture ratio. The embodiment No. 3 is also an example of the present invention.
90 N / mm 2 steel, 25 mm deep, 45 ° inclined groove processing is performed, and JISZ3332 YGT9Ni-2 (Ni:
58, Mo: 13%) system, 4mm diameter wire, and high basicity molten flux, 550A 34V speed 24cm / min Heat input 4.7kJ / mm SAW, thickness direction of the weld metal The center of the Charpy test specimen as
Five V-notch test pieces of 1.0 mm from the melting line at the notch position were sampled and tested at -20 ° C. Also in this case, the melting line was almost straight, the fracture surface after the Charpy test showed no difference depending on the location, and the distribution range of the Charpy absorbed energy and the brittle fracture ratio was small, which was a good result. The embodiment No. 4 is also an example of the present invention.
80N / mm 2 steel, 15mm deep, 45 ° inclined groove processing, Inconel 82 (Ni: 73%) series,
Using a 3.2mm diameter wire and a high basicity firing type flux, 450A 32V speed 21cm / min Heat input 4.1kJ / m
m SAW, and the center of the weld metal in the thickness direction is set as the center of the Charpy test specimen, and 0.5 m from the melting line at the notch position.
Five V-notch specimens of m length were taken and tested at -20 ° C. Also in this case, the melting line was almost straight, the fracture surface after the Charpy test showed no difference depending on the location, and the distribution range of the Charpy absorbed energy and the brittle fracture ratio was small, which was a good result. Embodiment No. 5 is also an example of the present invention, in which an I-shaped groove having a gap of 5 mm is assembled from 490 N / mm 2 steel for construction having a thickness of 15 mm and Inconel 625 (Ni; 62, Cr; 22).
%), 1.2A wire, 220A 26V speed 1
9cm / min heat input 1.8kJ / mm, shield gas 5% CO 2 −
Two layers of MIG of 95% Ar were used, and five welded V-notch Charpy test pieces of 1 mm were taken from the notch position melting line with the overlapped portion of the weld metal as the center of the Charpy test piece.
Tested in ° C. This is because the fracture surface after the Charpy test has a fine structure reheated at the center of the test piece, but there is no difference in this amount, and the distribution range of the five Charpy absorbed energy and the brittle fracture ratio The results were also small and good results, and it was confirmed that the evaluation of toughness including the reheated portion could be stably performed. Example No. 6 is a comparative example using the same steel material and groove as in Example 1 and generally used JISZ3312.
A joint was prepared by carbon dioxide welding using a 1.2 mm diameter wire of YGW11 (without Ni and Cr), and a Charpy test was also taken and tested in the same manner as in Example 1. This was because the penetration from the center of the weld metal to the surface was greater than the bottom, and the melting line was curved. The fracture surface of the weld metal is also observed at the part where the fracture surface after the Charpy test is on the surface side of the weld metal, and the fracture surface of the weld metal is not uniform. It was not. Embodiment No. 7 is also a comparative example, which uses the same groove as in Embodiment 2 and uses JISZ3321 Y308L (N
i: 10, Cr: 21%) system, using a 1.4 mm diameter wire, 350 A 32 V speed 19 cm / min Heat input 3.5 kJ
/ mm, shield gas 2% O 2 -98% Ar MIG welding test. Both the test piece collection and the test were performed in the same manner as in Example 2. However, this is a crack in the weld metal,
A stable test could not be performed. Implementation No. 8 is also a comparative example,
The groove shape was a 50 ° V groove, and the other conditions were the same as in Example 4. As a matter of course, the melting line was oblique, and the weld metal was recognized on the fracture surface of the Charpy test piece. The test included the weld metal, and was not a test of only the heat-affected zone of steel. Example No. 9 is also a comparative example.
80 N / mm 2 steel was machined into a 15 mm deep, 50 ° slanting groove, and JIS Z3183 S804-H4 (N
i: 2, Cr: 0.6%) system, 4mm diameter wire and high basicity sintering type flux, 550A 33V speed 31cm / min Heat input 3.5kJ / mm SAW, and weld metal With the center in the thickness direction as the center of the Charpy test piece,
5 Notch specimens 0.5 mm from the V-notch position melting line
The samples were collected and tested at -20 ° C. Also in this case, the penetration near the surface of the weld metal was larger than the bottom of the weld metal, the melting line was inclined, the weld metal was observed on the fracture surface after the Charpy test, and the test was not limited to the weld heat affected zone only . [Table 1] According to the present invention, the performance of the heat-affected zone in welding of a steel material, in particular, the reproducibility in the evaluation of toughness in the Charpy test and the universality thereof can be improved.
Thereby, the steel material provider and the user can easily evaluate the performance of each steel plate and compare it, and can easily select the steel material or the welding conditions. For this reason, the reliability of the performance of the steel structure is enhanced, and a significant industrially useful effect is exhibited, such as a rational selection of steel materials.
【図面の簡単な説明】
【図1】レ形開先でワンビ−ド溶接した溶接熱影響部か
らシャルピ−試験片を採取する模式図である。
【符号の説明】
1:レ形開先を有する鋼材、
2:溶接ビ−ド、
3:シャルピ−試験片、
4:シャルピ−試験片のノッチ位置、
5:溶接熱影響部BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of sampling a Charpy test specimen from a heat-affected zone of a weld formed by one-bead welding at a groove. [Description of Signs] 1: Steel material having a groove, 2: welding bead, 3: Charpy test piece, 4: Notch position of Charpy test piece, 5: welding heat affected zone
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大北 茂 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 2G052 AA11 AD32 AD52 EB13 EC00 GA05 2G055 AA03 BA14 EA10 FA01 2G061 AA13 AB04 AC04 BA20 CA01 CB08 CB19 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeru Ohkita 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Company Technology Development Division F-term (reference) 2G052 AA11 AD32 AD52 EB13 EC00 GA05 2G055 AA03 BA14 EA10 FA01 2G061 AA13 AB04 AC04 BA20 CA01 CB08 CB19
Claims (1)
法であって、該鋼材にレ形あるいはI形開先を加工し、
該開先部に、ワイヤ全質量に対する質量%で、Niを1
2%以上含有し、かつ、Cr+Niを34%以上含有す
る溶接ワイヤを用いて、ガスシ−ルドア−ク溶接または
サブマ−ジア−ク溶接を行い、該溶接の熱影響部から採
取した試験片にノッチ加工を施してシャルピ−試験を行
うことを特徴とする鋼材の溶接熱影響部の靭性評価方
法。Claims: 1. A method for evaluating the toughness of a heat affected zone of a steel material, comprising the steps of: forming a R-shaped or I-shaped groove on the steel;
In the groove, Ni was added in an amount of 1% by mass based on the total mass of the wire.
Using a welding wire containing not less than 2% and not less than 34% Cr + Ni, gas shielded arc welding or sub-mark welding is performed, and a notch is formed on a test piece taken from a heat affected zone of the welding. A toughness evaluation method for a weld heat affected zone of a steel material, wherein a Charpy test is performed after processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002117409A JP2003315226A (en) | 2002-04-19 | 2002-04-19 | Evaluation method for toughness in welding-heat influence part of steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002117409A JP2003315226A (en) | 2002-04-19 | 2002-04-19 | Evaluation method for toughness in welding-heat influence part of steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003315226A true JP2003315226A (en) | 2003-11-06 |
Family
ID=29534624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002117409A Withdrawn JP2003315226A (en) | 2002-04-19 | 2002-04-19 | Evaluation method for toughness in welding-heat influence part of steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003315226A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014202730A (en) * | 2013-04-10 | 2014-10-27 | 新日鐵住金株式会社 | Test piece for evaluating brittle crack propagation stop characteristics and method for evaluating brittle crack propagation stop characteristics of thick steel plate |
CN109142427A (en) * | 2018-09-30 | 2019-01-04 | 西安石油大学 | A method of characterization material ductile-brittle transiton critical point |
CN109535640A (en) * | 2018-12-06 | 2019-03-29 | 湖北省计量测试技术研究院 | Chalpy impact sample and preparation method thereof with ultralow impact energy value |
CN112975281A (en) * | 2021-02-09 | 2021-06-18 | 芜湖造船厂有限公司 | Method for processing Charpy impact test sample |
CN113732552A (en) * | 2020-05-27 | 2021-12-03 | 宝山钢铁股份有限公司 | Low-carbon micro-alloy steel high-heat input weldability evaluation method based on multi-wire submerged arc welding |
CN115740829A (en) * | 2021-09-02 | 2023-03-07 | 中国石油天然气集团有限公司 | Method for evaluating toughness of coarse grain region of multi-wire submerged arc welding |
-
2002
- 2002-04-19 JP JP2002117409A patent/JP2003315226A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014202730A (en) * | 2013-04-10 | 2014-10-27 | 新日鐵住金株式会社 | Test piece for evaluating brittle crack propagation stop characteristics and method for evaluating brittle crack propagation stop characteristics of thick steel plate |
CN109142427A (en) * | 2018-09-30 | 2019-01-04 | 西安石油大学 | A method of characterization material ductile-brittle transiton critical point |
CN109535640A (en) * | 2018-12-06 | 2019-03-29 | 湖北省计量测试技术研究院 | Chalpy impact sample and preparation method thereof with ultralow impact energy value |
CN113732552A (en) * | 2020-05-27 | 2021-12-03 | 宝山钢铁股份有限公司 | Low-carbon micro-alloy steel high-heat input weldability evaluation method based on multi-wire submerged arc welding |
CN113732552B (en) * | 2020-05-27 | 2022-09-16 | 宝山钢铁股份有限公司 | Low-carbon micro-alloy steel high-heat input weldability evaluation method based on multi-wire submerged arc welding |
CN112975281A (en) * | 2021-02-09 | 2021-06-18 | 芜湖造船厂有限公司 | Method for processing Charpy impact test sample |
CN112975281B (en) * | 2021-02-09 | 2022-06-07 | 芜湖造船厂有限公司 | Method for processing Charpy impact test sample |
CN115740829A (en) * | 2021-09-02 | 2023-03-07 | 中国石油天然气集团有限公司 | Method for evaluating toughness of coarse grain region of multi-wire submerged arc welding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110640277B (en) | Q420 high-strength steel thick plate non-preheating double-wire submerged-arc welding process | |
CN107598340B (en) | Method for welding T-shaped joint of large thick plate | |
EP2279823B1 (en) | Welded structure comprising a large-heat-input butt welded joint having controlled hardness and controlled size of the heat affected zone for excellent brittle fracture resistance | |
CN101367157A (en) | High-strength or ultra-high strong steel laser-electrical arc composite heat source welding method | |
JP2010221298A (en) | Complex method of welding in combination of gas shield arc welding with submerged arc welding, and complex welding machine thereof | |
WO2013179614A1 (en) | Laser-arc hybrid welding method | |
JP6927304B2 (en) | Gas shield arc welding method for steel sheets | |
JPH09170050A (en) | Production of welded dual-phase stainless steel pipe | |
JP2001276977A (en) | Submerged arc welding application method and welding material for austenitic stainless steel | |
EP1055481A1 (en) | Shielding gas mixture for gas-metal arc welding | |
JP2015150597A (en) | Submerged arc welding part excellent in low temperature toughness | |
Lala et al. | Study of hardness of the weld bead formed by partial hybrid welding by metal inert gas welding and submerged arc welding at three different heat inputs | |
CN104520049A (en) | Submerged arc welding method, welded joint formed by said welding method, and steel tube having said welded joint | |
JP2003315226A (en) | Evaluation method for toughness in welding-heat influence part of steel material | |
Srinivasan et al. | Effect of surface tension metal transfer on fume formation rate during flux-cored arc welding of HSLA steel | |
Krivtsun et al. | Hybrid laser-plasma welding of stainless steels | |
WO2023162356A1 (en) | One-sided submerged arc welding method, welded joint, and production method for welded joint | |
JP3300187B2 (en) | Narrow groove TIG arc welding method for 9% Ni steel material to be welded | |
CN114734123A (en) | Welding method of Q420qE +316L composite board | |
JPH02263593A (en) | Wire for gas shielded arc welding | |
Venkadeshwaran et al. | Optimization of welding parameter on aa2014 in gmaw | |
Mupoperi et al. | An Investigation of the Effect of Welding Current on the Mechanical Properties of Mild Steel Joints When Using Arc Welding | |
RU2814639C1 (en) | Electrode for arc welding of parts made of dissimilar steels | |
Chen et al. | Analysis on the microstructure and mechanical properties of welding joint of low alloy structural steel plate by narrow gap MAG | |
Westin et al. | Laser hybrid welding of a lean duplex stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |