JP2003315030A - Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured - Google Patents

Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured

Info

Publication number
JP2003315030A
JP2003315030A JP2002118842A JP2002118842A JP2003315030A JP 2003315030 A JP2003315030 A JP 2003315030A JP 2002118842 A JP2002118842 A JP 2002118842A JP 2002118842 A JP2002118842 A JP 2002118842A JP 2003315030 A JP2003315030 A JP 2003315030A
Authority
JP
Japan
Prior art keywords
ultrasonic
liquid
measurement
measured
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002118842A
Other languages
Japanese (ja)
Inventor
Masahiro Nishikawa
雅弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON IRYO KIKI KK
Kinden Corp
Original Assignee
NIPPON IRYO KIKI KK
Kinden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON IRYO KIKI KK, Kinden Corp filed Critical NIPPON IRYO KIKI KK
Priority to JP2002118842A priority Critical patent/JP2003315030A/en
Publication of JP2003315030A publication Critical patent/JP2003315030A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To develop a low-cost ultrasonic measuring sensor that can be commonly applied to a wide range of measurement field, and to achieve a measurement system of the state of a diversified target to be measured using the sensor. <P>SOLUTION: The ultrasonic measuring sensor 2 comprises: a container body 4; liquid 8 that is sealed to have a liquid surface 10 in the container body 4; and an ultrasonic vibrator 6 that is arranged at the container body 4 so that ultrasonic waves are transmitted in the liquid 8, and the ultrasonic waves that are reflected from the liquid surface 10 are received. When the ultrasonic measuring sensor 4 is arranged at the target to be measured and is connected to an ultrasonic control apparatus 14 by a cable 16, the liquid surface 10 inside the ultrasonic measuring sensor 2 is vibrated an inclined in linking with the vibration and inclination of the target to be measured, and change in the state is measured by ultrasonic waves, thus measuring and observing a change in the state of the wide range of target to be measured. For example, the condition/heart sound measurement of a patient, the identification measurement of a human, crime prevention measurement of a building, acceleration measurement of a mobile unit, and an earthquake measurement become possible by using the ultrasonic measuring sensor. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、寝台・家屋・乗用
車・大地・人などの被計測対象の状態を計測できる計測
装置に関し、更に詳細には、容器本体の中に液面を有す
るように液体を密封し、この液体の中に超音波を送信し
て液面で反射された超音波を受信するように容器に超音
波振動子を配置して超音波計測センサを構成し、この超
音波計測センサを被計測対象又はその近傍に取り付ける
ことにより、被計測対象の状態により生起される液面の
変化を超音波で計測して、被計測対象の生態動静・同定
・防犯・加速度・地震などを効率的に検出できる超音波
計測センサ、超音波計測装置及び被計測対象の計測方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device capable of measuring the state of an object to be measured such as a bed, a house, a passenger car, a ground, and a person. More specifically, it has a liquid level inside the container body. An ultrasonic measurement sensor is constructed by arranging an ultrasonic transducer in a container that seals a liquid, transmits ultrasonic waves in the liquid, and receives ultrasonic waves reflected on the liquid surface. By attaching a measurement sensor to or near the object to be measured, changes in the liquid level caused by the state of the object to be measured are measured with ultrasonic waves, and the biological movement of the object to be measured, identification, crime prevention, acceleration, earthquakes, etc. TECHNICAL FIELD The present invention relates to an ultrasonic measurement sensor, an ultrasonic measurement device, and a measurement method of an object to be measured, which can efficiently detect the.

【0002】[0002]

【従来の技術】一般に、人や物などの動きを計測して人
や物が現在どのような状態にあるかを観察・計測する多
数の例がある。例えば、病院では、入院患者の各寝台に
ナースコール用の押しボタンが設置されており、必要な
時に患者が押しボタンを操作してナースセンターに緊急
連絡できるように構成されている。このブザーと音声会
話によってナースは患者の部屋に急行することができ
る。
2. Description of the Related Art Generally, there are many examples of measuring the movement of a person or an object to observe and measure the current state of the person or the object. For example, in a hospital, a push button for a nurse call is installed in each bed of an inpatient, and the push button is operated by the patient when necessary to make an emergency call to a nurse center. The buzzer and voice conversation allow the nurse to rush to the patient's room.

【0003】また、研究所や極秘情報を扱ったりする職
場では、情報の機密性とセキュリティを確保するため
に、人物の同一性を確認する必要がある。初期の段階で
はパスワードの入力で同一性確認が行なわれていたが、
パスワードでは簡単に破られるため、現在では指紋パタ
ーンや網膜パターンの同一性を確認するなど、より高度
な同一性確認方法が採用されつつある。
In addition, in laboratories and workplaces that handle confidential information, it is necessary to confirm the identity of persons in order to ensure the confidentiality and security of information. At the initial stage, the identity was confirmed by entering the password,
Since passwords can easily be broken, more sophisticated identity confirmation methods are currently being adopted, such as confirming the identity of fingerprint patterns and retina patterns.

【0004】更に、家屋や建物の防犯を行なうために
は、警備会社と契約してドアや窓などに多数のセンサを
取り付け、これらのセンサからの信号をコンピュータに
より集中制御し、信号の異常時には警備員が直接駆けつ
ける等の方法で防犯を集中管理する方式が採用されてい
る。
Further, in order to prevent crimes in houses and buildings, a contract is made with a security company to install many sensors on doors, windows, etc., and signals from these sensors are centrally controlled by a computer. A method of centrally managing crime prevention is adopted by a method such as a security guard rushing directly.

【0005】また、自動車・列車・飛行機といった移動
体には一般に速度センサが配置され、安全運行のために
速度制御が行なわれている。特に、急加速や急減速は搭
乗者に危険な慣性力を作用させるため、加速度センサを
用いて急加速や急減速を防止する等の措置が講じられて
いる。
Further, a speed sensor is generally arranged in a moving body such as an automobile, a train or an airplane, and speed control is performed for safe operation. In particular, since sudden acceleration or deceleration causes a dangerous inertial force on the occupant, measures are taken to prevent sudden acceleration or deceleration by using an acceleration sensor.

【0006】更に、日本は地震国である。近年では阪神
淡路大震災において重大な人的被害及び物的被害を受
け、その影響は現在に到るも解消されていない。将来に
は、東海地震・南海地震・東京地震などが予告されてお
り、地震観測網の広域化と高密度化が要請されている。
Furthermore, Japan is an earthquake nation. In recent years, the Great Hanshin-Awaji Earthquake has caused serious human and property damage, and its effects have not been resolved even now. In the future, Tokai earthquake, Nankai earthquake, Tokyo earthquake, etc. will be announced, and it is demanded to broaden the area and increase the density of the seismic observation network.

【0007】[0007]

【発明が解決しようとする課題】しかし、以上のような
人や物の状態の計測・観察には具体的ケース毎に種々の
問題が存在している。例えば、病院では患者がナースコ
ール用の押しボタンを押さない場合には、ナースセンタ
ーで患者の状態を自発的に観察することは不可能であ
る。夜中に患者が徘徊のために寝台を離れたかどうかの
計測や、患者の心音を常時計測する等のためには極めて
大掛かりな装置が必要であり、全入院患者を観察するな
どといったことは現状では到底不可能なことである。
However, there are various problems in each specific case in the measurement and observation of the state of a person or an object as described above. For example, in a hospital, it is not possible to spontaneously observe a patient's condition at a nurse center if the patient does not press a push button for a nurse call. An extremely large-scale device is required to measure whether or not the patient has left the bed due to loitering in the middle of the night, and to constantly measure the heart sounds of the patient. It is impossible at all.

【0008】また、研究所などで指紋パターンや網膜パ
ターンを計測して個人を特定するシステムは高度のシス
テムであり、一般に普及するためには更なる技術開発と
費用の低減が必須である。同様の理由で、防犯システム
も極めて限定された分野に導入されているに過ぎない。
Further, a system for measuring an fingerprint pattern or a retina pattern to identify an individual at a laboratory or the like is an advanced system, and further technical development and cost reduction are indispensable for its widespread use. For the same reason, the crime prevention system has been introduced only in a very limited field.

【0009】加速度センサに関してはコスト低減の画期
的な方法が開発されれば、広範囲に普及すると思われる
が、現在では加速度測定が必要な分野に限定されてい
る。
With respect to the acceleration sensor, if an epoch-making method for cost reduction is developed, it will be widely spread, but at present, it is limited to a field in which acceleration measurement is required.

【0010】特に、地震測定に関しては、地震計及び測
定システムが高価であるため、気象庁や大学の研究所に
設置されているだけで、広範囲に普及しているとは言い
難い。日本のように地震被害が甚大化している地域で
は、低価格の地震計が開発されれば、家庭を単位として
全国的規模の地震観測網ができ上がるはずである。その
ためには、家庭でも設置できる簡易地震計の開発が急務
である。
In particular, regarding seismic measurement, since seismographs and measuring systems are expensive, it is difficult to say that the seismometers and measuring systems have been widely spread only by being installed at the Meteorological Agency or a research institute of a university. In areas such as Japan where earthquake damage is extremely large, low-priced seismographs should create a nationwide earthquake observation network based on households. To that end, there is an urgent need to develop a simple seismometer that can be installed at home.

【0011】従って、本発明の目的は、患者の動静・心
音計測、人物の同定計測、建物の防犯計測、移動体の加
速度計測、地震計測などの広範囲の計測分野に共通して
利用できる低価格の超音波計測センサを開発し、これを
用いた超音波計測システムにより多様な被計測対象の状
態を計測できる方法を実現することである。
Therefore, an object of the present invention is a low price that can be commonly used in a wide range of measurement fields such as patient movement / heart sound measurement, person identification measurement, building crime prevention measurement, moving body acceleration measurement, and seismic measurement. To develop a method for measuring various states of an object to be measured by an ultrasonic measurement system using this ultrasonic measurement sensor.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために為されたものであり、第1の発明は、容器本
体と、この容器本体の中に液面を有するように密封され
た液体と、この液体の中に超音波を送信して液面で反射
された超音波を受信するように容器に配置された超音波
振動子から構成されることを特徴とする超音波計測セン
サを提供することである。この超音波計測センサを被測
定対象に配置すれば、被測定対象の振動・傾斜に連動し
て超音波計測センサ内部の液面が振動・傾斜し、液面に
よる超音波の反射方向が変動して超音波振動子への反射
超音波の入射強度が変化する。この変化を計測すること
によって、被測定対象の振動や傾斜などを計測すること
が可能になる。超音波計測センサのサイズは任意に調整
できるから、大から小までの広範囲の被測定対象の状態
計測が可能となる。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and the first invention is to seal a container body and a liquid level inside the container body. Ultrasonic measuring sensor, characterized by comprising a liquid and an ultrasonic transducer arranged in a container so as to transmit ultrasonic waves into the liquid and receive the ultrasonic waves reflected by the liquid surface. Is to provide. If this ultrasonic measurement sensor is placed on the object to be measured, the liquid level inside the ultrasonic measurement sensor will vibrate and tilt in conjunction with the vibration and tilt of the object to be measured, and the direction of reflection of ultrasonic waves by the liquid surface will fluctuate. As a result, the incident intensity of reflected ultrasonic waves on the ultrasonic transducer changes. By measuring this change, it becomes possible to measure the vibration or inclination of the object to be measured. Since the size of the ultrasonic measurement sensor can be arbitrarily adjusted, it is possible to measure the state of the measurement target in a wide range from large to small.

【0013】第2の発明は、上述の超音波計測センサ
と、超音波振動子から超音波を液体中に送受信させるよ
うに超音波計測センサを制御する超音波制御装置を組み
合わせた超音波計測装置を提供することである。超音波
振動子は例えば圧電素子から構成されるから、この超音
波振動子を所望の振動数で駆動制御して超音波送信を制
御し、液面で反射した超音波を超音波振動子で受信し、
受信強度や伝達時間などの情報を超音波制御装置で制御
分析して、被測定対象の状態計測が可能となる。
A second aspect of the present invention is an ultrasonic measuring device in which the above ultrasonic measuring sensor is combined with an ultrasonic control device for controlling the ultrasonic measuring sensor so that ultrasonic waves are transmitted and received from the ultrasonic transducer in the liquid. Is to provide. Since the ultrasonic transducer is composed of a piezoelectric element, for example, the ultrasonic transducer is driven and controlled at a desired frequency to control ultrasonic transmission, and the ultrasonic transducer reflects the ultrasonic waves reflected on the liquid surface. Then
It becomes possible to measure the state of the object to be measured by controlling and analyzing information such as reception intensity and transmission time with the ultrasonic control device.

【0014】第3の発明は、上述の超音波計測センサを
被計測対象又はその近傍に取り付け、前記超音波振動子
から超音波を液体中に送信して液面で反射した超音波を
受信制御する超音波制御装置を設け、被計測対象の状態
により生起される液面の変化を反射超音波により計測し
て被計測対象の状態を計測する被計測対象の状態計測方
法を提供することである。このシステムを利用すれば、
超音波計測センサを病院の寝台の下部に取り付ければ患
者の動静を検出でき、シーツの下面に取り付ければ患者
の心音検出が可能となり、また研究所の廊下に取り付け
れば個人の特有の歩行を検出して個人同定が可能とな
る。また、移動体に取り付ければ液面の傾斜から加速度
検出ができ、地中や建物内部の床面に取り付ければ地震
の検出が可能となるなど、極めて広範囲の被計測対象の
状態計測が簡易且つ低価格で可能となる。
According to a third aspect of the present invention, the above-mentioned ultrasonic measurement sensor is attached to an object to be measured or its vicinity, and the ultrasonic wave is transmitted from the ultrasonic transducer into the liquid and the ultrasonic wave reflected by the liquid surface is controlled to be received. An ultrasonic control device is provided to provide a state measurement method for a measurement target that measures the state of the measurement target by measuring the change in the liquid surface caused by the state of the measurement target by reflected ultrasonic waves. . With this system,
An ultrasonic sensor can be attached to the lower part of the hospital bed to detect the patient's movements, attached to the bottom of the sheets to detect the patient's heart sounds, and attached to the corridor of the laboratory to detect the individual's unique gait. Individual identification is possible. Also, if it is attached to a moving body, acceleration can be detected from the inclination of the liquid level, and if it is attached to the floor in the ground or inside a building, an earthquake can be detected. It is possible at a price.

【0015】[0015]

【発明の実施の形態】以下に、本発明に係る超音波計測
センサ、超音波計測装置及び被計測対象の状態計測方法
の実施形態を図面に従って詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an ultrasonic measuring sensor, an ultrasonic measuring device and a state measuring method of an object to be measured according to the present invention will be described in detail below with reference to the drawings.

【0016】図1は本発明に係る超音波計測センサを用
いた超音波と液面が直交する測定状態の説明図である。
超音波計測センサ2は、本体容器4と、その底部に配置
された超音波振動子6と、本体容器4の中に液面10を
形成するように密封された液体8から構成されている。
液面10の上側は空間部12になっている。
FIG. 1 is an explanatory view of a measurement state in which the ultrasonic wave and the liquid surface are orthogonal to each other using the ultrasonic measurement sensor according to the present invention.
The ultrasonic measurement sensor 2 is composed of a main body container 4, an ultrasonic transducer 6 arranged at the bottom of the main body container 4, and a liquid 8 sealed so as to form a liquid level 10 in the main body container 4.
A space 12 is provided above the liquid surface 10.

【0017】液体8は超音波を伝播させる液質であれば
何でも良く、例えば水や有機溶媒、それらの混合溶液が
使用できる。超音波速度を調整するために、この液体8
に粘性材料を分散混合させて適度の粘性を有するように
構成してもよい。
Any liquid may be used as the liquid 8 as long as it propagates ultrasonic waves. For example, water, an organic solvent, or a mixed solution thereof can be used. This liquid 8 to adjust the ultrasonic velocity
Alternatively, a viscous material may be dispersed and mixed to have an appropriate viscosity.

【0018】空間部12には空気などの適当な気体が注
入されても良いが、真空状態に保持することによって液
体8の飽和蒸気で充満させてもよい。また、超音波振動
子6は図示のように上面を液体8の中に液没させ、下面
を大気に直面させてもよい。また、超音波振動子6の下
面を容器4の内底面に接触して配置してもよい。
A suitable gas such as air may be injected into the space 12 or may be filled with the saturated vapor of the liquid 8 by keeping it in a vacuum state. Further, as shown in the figure, the ultrasonic transducer 6 may have its upper surface immersed in the liquid 8 and its lower surface exposed to the atmosphere. Further, the lower surface of the ultrasonic transducer 6 may be arranged in contact with the inner bottom surface of the container 4.

【0019】超音波振動子6はケーブル16により超音
波制御装置14と接続されて超音波計測装置18が完成
される。換言すれば、超音波計測センサ2と超音波制御
装置14がケーブルで接続されて超音波計測装置18が
構成される。超音波計測センサ2は図示しない被計測対
象又はその近傍に固定され、ケーブル16で連結された
超音波制御装置14により遠隔操作されて超音波の送受
信が行なわれる。
The ultrasonic transducer 6 is connected to the ultrasonic controller 14 by the cable 16 to complete the ultrasonic measuring device 18. In other words, the ultrasonic measurement sensor 2 and the ultrasonic control device 14 are connected by a cable to form the ultrasonic measurement device 18. The ultrasonic measurement sensor 2 is fixed to an object to be measured (not shown) or its vicinity, and is remotely operated by an ultrasonic control device 14 connected by a cable 16 to transmit and receive ultrasonic waves.

【0020】超音波制御装置14は、超音波の送信と受
信を制御するだけでなく、送受信される超音波信号をデ
ィスプレイに表示したり、受信超音波を高速フーリエ変
換して周波数分布を演算表示したり、超音波の強度分布
や相関関数を演算表示するなど様々な機能を有してい
る。
The ultrasonic controller 14 not only controls the transmission and reception of ultrasonic waves, but also displays the transmitted and received ultrasonic signals on the display and calculates the frequency distribution by fast Fourier transforming the received ultrasonic waves. And has various functions such as calculating and displaying the intensity distribution of ultrasonic waves and the correlation function.

【0021】超音波制御装置14から送信信号aが超音
波振動子6に出力され、超音波振動子6が超音波振動を
生起して液体8の中に送信超音波cを送信する。送信超
音波cは液面10とほぼ直交しているから、送信超音波
cのほぼ100%が液面10で反射し、受信超音波dと
なって超音波振動子10に受信される。
A transmission signal a is output from the ultrasonic controller 14 to the ultrasonic transducer 6, and the ultrasonic transducer 6 causes ultrasonic vibration to transmit the transmitted ultrasonic wave c into the liquid 8. Since the transmitted ultrasonic wave c is substantially orthogonal to the liquid surface 10, almost 100% of the transmitted ultrasonic wave c is reflected by the liquid surface 10 and is received by the ultrasonic transducer 10 as the received ultrasonic wave d.

【0022】受信超音波dは超音波振動子6により受信
信号bに変換され、この受信信号bはケーブル16を介
して超音波制御装置14に入力され、図示しないディス
プレイに表示される。超音波振動子6の上面と液面10
の間隔をLとし、液体8の中を伝播する超音波速度をV
とすると、送信してから受信するまでの時間間隔Tは、
T=2L/Vで与えられる。この時間間隔Tは到達時間
とも呼ばれる。
The received ultrasonic wave d is converted into a received signal b by the ultrasonic vibrator 6, and this received signal b is input to the ultrasonic wave controller 14 via the cable 16 and displayed on a display not shown. Upper surface of ultrasonic transducer 6 and liquid surface 10
Is L and the ultrasonic velocity propagating in the liquid 8 is V
Then, the time interval T from transmission to reception is
It is given by T = 2 L / V. This time interval T is also called arrival time.

【0023】図2は、図1における送信超音波と受信超
音波の信号波形図である。送信超音波cの殆んどは受信
超音波dとなるから、受信波22は送信波20より少し
だけ減衰した波形になっていることが分る。
FIG. 2 is a signal waveform diagram of the transmission ultrasonic wave and the reception ultrasonic wave in FIG. Since most of the transmitted ultrasonic waves c are received ultrasonic waves d, it can be seen that the received wave 22 has a waveform slightly attenuated from the transmitted wave 20.

【0024】図3は、本発明に係る超音波計測センサを
用いた振動液面に対する超音波測定の説明図である。超
音波計測センサ2が被測定対象又はその近傍に配置さ
れ、被測定対象が振動することにより液面10が同期し
て振動する場合を考察する。
FIG. 3 is an explanatory diagram of ultrasonic measurement on a vibrating liquid surface using the ultrasonic measurement sensor according to the present invention. Consider a case where the ultrasonic measurement sensor 2 is arranged at or near the object to be measured, and the liquid surface 10 vibrates in synchronization when the object to be measured vibrates.

【0025】液面10が波打つために、送信超音波cは
液面10により広範囲に反射され、その一部は超音波振
動子6に到達する受信超音波dとなるが、他は超音波振
動子6から外れて受信されない非受信超音波eとなる。
Since the liquid surface 10 undulates, the transmitted ultrasonic wave c is reflected by the liquid surface 10 over a wide range, and a part of it becomes the received ultrasonic wave d that reaches the ultrasonic vibrator 6, but the others are ultrasonic vibrations. The non-received ultrasonic wave e that is not received by the child 6 is received.

【0026】図4は、図3における送信波と受信波の信
号波形図である。送信波20に対して受信波22の振幅
が極端に低下していることが分る。液面10の振動によ
り超音波の一部だけが超音波振動子6に到達した結果、
受信強度が送信強度より格段に低下したのである。
FIG. 4 is a signal waveform diagram of the transmission wave and the reception wave in FIG. It can be seen that the amplitude of the received wave 22 is extremely lower than that of the transmitted wave 20. As a result of only part of the ultrasonic waves reaching the ultrasonic transducer 6 due to the vibration of the liquid surface 10,
The reception strength was much lower than the transmission strength.

【0027】液面10の平均位置は静止状態と変わらな
いから、到達時間TはT=2L/Vで与えられる。液面
10が不規則振動した場合には、平均液面は静止液面か
らずれるので、到達時間Tは振動状態に依存することに
なる。このように、受信波の波形、受信波強度・受信波
エネルギー、また到達時間Tなどの情報から液面10の
振動の状態を推定することができる。この振動は被計測
対象によって引き起こされているから、被計測対象の振
動状態を推定することになる。
Since the average position of the liquid surface 10 is the same as in the stationary state, the arrival time T is given by T = 2 L / V. When the liquid surface 10 vibrates irregularly, the average liquid surface deviates from the stationary liquid surface, so that the arrival time T depends on the vibration state. In this way, the vibration state of the liquid surface 10 can be estimated from the information such as the waveform of the received wave, the intensity of the received wave and the received wave energy, and the arrival time T. Since this vibration is caused by the measurement target, the vibration state of the measurement target is estimated.

【0028】被計測対象が振動する具体例として、寝台
に本センサを固定して病院の入院患者が寝台から起きた
り離脱する状態を計測する場合、寝台の心臓位置に近い
シーツの下に本センサを固定して患者の心音を計測する
場合、地中や建物に固定して地震を観測する場合、道路
に埋設して自動車の通行量を測定する場合、廊下に埋設
して人物に特有の歩行振動を計測して人物同定を行なう
場合等が考えられる。
As a concrete example of the vibration of the object to be measured, when measuring the state in which an inpatient in a hospital wakes up or leaves the bed by fixing the sensor to the bed, the sensor is placed under the sheet near the heart position of the bed. When measuring the patient's heart sound with a fixed arm, when observing an earthquake by fixing it in the ground or in a building, when burying it in a road to measure the traffic volume of a vehicle, when burying it in a corridor and walking unique to a person There may be a case where the person is identified by measuring the vibration.

【0029】図5は、本発明に係る超音波計測センサを
用いた傾斜液面に対する超音波測定の説明図である。被
計測対象が角度θだけ傾斜すると、被計測対象に固定さ
れている超音波計測センサ2も同じ角度だけ傾斜し、そ
の結果、液面10が傾斜角度θだけ傾斜する。
FIG. 5 is an explanatory diagram of ultrasonic measurement on an inclined liquid surface using the ultrasonic measurement sensor according to the present invention. When the measurement target is tilted by the angle θ, the ultrasonic measurement sensor 2 fixed to the measurement target is also tilted by the same angle, and as a result, the liquid surface 10 is tilted by the tilt angle θ.

【0030】送信超音波cは鉛直線から角度θだけ変位
して射出され、液面10により反射した超音波の一部だ
けが受信超音波dとして超音波振動子6に到達する。即
ち、反射超音波の残部は超音波振動子6に到達せずに、
液体8の中を多重反射と多重散乱しながら減衰すること
になり、受信波を構成しない。
The transmitted ultrasonic wave c is emitted with an angle θ displaced from the vertical line, and only a part of the ultrasonic wave reflected by the liquid surface 10 reaches the ultrasonic transducer 6 as a received ultrasonic wave d. That is, the rest of the reflected ultrasonic waves do not reach the ultrasonic transducer 6,
The liquid 8 is attenuated while being multiple-reflected and multiple-scattered, and does not form a received wave.

【0031】図6は、図5における送信波と受信波の信
号波形図である。送信波20に対し受信波22が多少減
衰していることが分るであろう。減衰量は傾斜角度θが
大きくなるに従って増大し、ある角度以上では受信波強
度がゼロになる。従って、受信波の波形や減衰量により
液面10の傾斜角度が推定でき、被計測対象の状態を推
定することができる。
FIG. 6 is a signal waveform diagram of the transmission wave and the reception wave in FIG. It will be seen that the received wave 22 is somewhat attenuated with respect to the transmitted wave 20. The amount of attenuation increases as the tilt angle θ increases, and the received wave intensity becomes zero above a certain angle. Therefore, the inclination angle of the liquid surface 10 can be estimated from the waveform of the received wave and the attenuation amount, and the state of the measurement target can be estimated.

【0032】図7は、本発明に係る超音波計測センサに
おける受信波の最大振幅と傾斜角度の関係図である。超
音波振動子(Ultrasonic Vibrator)6を底面に配置し
て超音波計測センサ2のサイズを横(W)×縦(D)×
高さ(H)で表現したとき、二つの超音波計測センサで
実測してみた。サイズが100×100×35(mm)
のセンサは実線で表され、サイズが20×20×15
(mm)のセンサは点線で表されている。
FIG. 7 is a relationship diagram between the maximum amplitude of the received wave and the tilt angle in the ultrasonic measurement sensor according to the present invention. An ultrasonic vibrator (Ultrasonic Vibrator) 6 is arranged on the bottom surface, and the size of the ultrasonic measurement sensor 2 is set to horizontal (W) × vertical (D) ×
When expressed in height (H), it was actually measured with two ultrasonic measurement sensors. The size is 100 x 100 x 35 (mm)
Sensor is represented by a solid line and has a size of 20x20x15
The (mm) sensor is represented by the dotted line.

【0033】縦軸は最大受信強度(Maximum Amplitude
of Echo)を示し、横軸は傾斜角度(Angle of Inclinat
ion)を示している。傾斜角度θがゼロのときの最大受
信強度を100(%)と規格化してグラフは画かれ、受
信強度がゼロになる角度をエコー消失角度と呼ぶ。実線
も点線も同様のプロファイルを画き、実線のエコー消失
角度は8.5度であるのに対し、点線のエコー消失角度
は10.5度を与えることが分かる。従って、傾斜角度
θが大きくなると、受信超音波の強度は急激に減衰する
ことが理解される。
The vertical axis represents the maximum amplitude (Maximum Amplitude).
of Echo), and the horizontal axis is the angle of inclination (Angle of Inclinat
ion) is shown. A graph is drawn by normalizing the maximum reception intensity when the inclination angle θ is zero to 100 (%), and the angle at which the reception intensity becomes zero is called an echo disappearance angle. The same profile is drawn for both the solid line and the dotted line, and it can be seen that the echo loss angle of the solid line is 8.5 degrees, whereas the echo loss angle of the dotted line gives 10.5 degrees. Therefore, it is understood that the intensity of the received ultrasonic wave is rapidly attenuated as the inclination angle θ increases.

【0034】図8は超音波計測センサに用いられる超音
波振動子の第1変形例の説明図である。超音波振動子6
としては圧電素子が使用されることが多いが、その他に
電磁超音波素子や電磁振動子など、超音波振動を生起す
る素子であれば何でもよい。一般に、超音波振動子6と
しては平面タイプが多く、超音波を平面波として前方へ
送信する。
FIG. 8 is an explanatory view of a first modification of the ultrasonic transducer used in the ultrasonic measurement sensor. Ultrasonic transducer 6
As the piezoelectric element, a piezoelectric element is often used, but any other element such as an electromagnetic ultrasonic element or an electromagnetic vibrator that causes ultrasonic vibration may be used. Generally, the ultrasonic transducer 6 is of a flat type in many cases and transmits ultrasonic waves forward as a plane wave.

【0035】超音波をできるだけ細く絞るためには、平
面タイプの超音波振動体6aの上に集束レンズ6bを一
体に取り付けた超音波振動子6が考えられる。超音波振
動体6aから上方に平面波を射出し、集束レンズ6bで
集束して送信超音波cを上方へ射出する。この送信超音
波cは焦点Fで一点に集束するように構成されているか
ら、焦点距離を小さくすることにより液体8の中に集束
超音波を伝播させることが可能になる。
In order to narrow down the ultrasonic waves as thinly as possible, an ultrasonic vibrator 6 in which a focusing lens 6b is integrally mounted on a flat type ultrasonic vibrator 6a can be considered. A plane wave is emitted upward from the ultrasonic vibrating body 6a, focused by the focusing lens 6b, and the transmitted ultrasonic wave c is emitted upward. Since this transmitted ultrasonic wave c is configured to focus at one point at the focus F, it becomes possible to propagate the focused ultrasonic wave into the liquid 8 by reducing the focal length.

【0036】図9は超音波計測センサに用いられる超音
波振動子の第2変形例の説明図である。この変形例で
は、圧電素子などの超音波振動体6aを湾曲させ、焦点
Fを有するように構成されている。この湾曲性によって
集束レンズ6bを不要にし、超音波振動体6aだけで超
音波振動子6を構成している。
FIG. 9 is an explanatory view of a second modification of the ultrasonic transducer used in the ultrasonic measurement sensor. In this modification, the ultrasonic vibrating body 6a such as a piezoelectric element is curved and has a focal point F. Due to this curving property, the focusing lens 6b is unnecessary, and the ultrasonic transducer 6 is composed of only the ultrasonic vibrating body 6a.

【0037】超音波振動体6aが振動すると、超音波振
動体6aの各点の振動方向はその湾曲性に従って変化
し、送信超音波cは焦点Fに集中するように射出され
る。湾曲性を高めると焦点距離は小さくなり、センサの
液体の中に集束超音波を伝播させることが可能になる。
When the ultrasonic vibrating body 6a vibrates, the vibrating direction of each point of the ultrasonic vibrating body 6a changes according to its bending property, and the transmitted ultrasonic wave c is emitted so as to concentrate on the focal point F. Increasing the bendability reduces the focal length, allowing focused ultrasound to propagate into the sensor liquid.

【0038】図10は、本発明に係る超音波計測センサ
を生態動静センサとして用いる場合の説明図である。患
者30が病院の寝台31の上で就寝している。寝台上面
31aにおいて患者30の心臓の下方位置に超音波計測
センサ2aが配置され、また寝台下面31bと脚部31
cの位置にも超音波計測センサ2b、2cが固定されて
いる。
FIG. 10 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as an ecological movement sensor. The patient 30 is sleeping on the bed 31 of the hospital. The ultrasonic measurement sensor 2a is disposed below the heart of the patient 30 on the bed upper surface 31a, and the bed lower surface 31b and the legs 31 are provided.
The ultrasonic measurement sensors 2b and 2c are also fixed at the position of c.

【0039】超音波計測センサ2aは患者30の心臓の
鼓動、即ち心音を計測するセンサとして機能し、超音波
計測センサ2b、2cは患者30が寝台31の上で起き
上がったり、寝台31から離れたりする動きを検出する
動静センサとして機能する。これらの受信信号はケーブ
ル16を介して遠隔に配置された超音波制御装置14に
入力され、超音波の送信波と受信波を相互に比較演算し
て患者30の状態を常時計測している。
The ultrasonic measurement sensor 2a functions as a sensor for measuring the heartbeat of the patient 30, that is, the heart sound, and the ultrasonic measurement sensors 2b, 2c are used when the patient 30 gets up on the bed 31 or moves away from the bed 31. It functions as a motion sensor that detects moving movements. These received signals are input to the ultrasonic wave control device 14 arranged remotely via the cable 16, and the transmission wave and the received wave of the ultrasonic waves are mutually compared and calculated to constantly measure the state of the patient 30.

【0040】図11は、本発明に係る超音波計測センサ
を人物同定センサとして用いる場合の説明図である。床
33aには超音波計測センサ2が埋設されており、人物
32が床33aを歩行して状態が示されている。
FIG. 11 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as a person identification sensor. The ultrasonic measurement sensor 2 is embedded in the floor 33a, and a state is shown in which the person 32 walks on the floor 33a.

【0041】一般に、人物32は特有の歩行特性を有し
ており、その歩行特性を信号波形に変換できればどの人
物であるかを同定することができる。人物32が床33
aを歩行すると、超音波計測センサ2により床33aの
振動が計測され、この受信信号はケーブル16を介して
超音波制御装置14に入力される。超音波制御装置14
はこの受信信号を多数の歩行パターンと比較する。
Generally, the person 32 has a unique gait characteristic, and if the gait characteristic can be converted into a signal waveform, it is possible to identify the person. Person 32 is floor 33
When walking a, the ultrasonic measurement sensor 2 measures the vibration of the floor 33a, and the received signal is input to the ultrasonic control device 14 via the cable 16. Ultrasonic controller 14
Compares this received signal with a number of gait patterns.

【0042】歩行パターンが入所許可された人物の歩行
パターンと一致した場合には、超音波制御装置14から
ロック解除信号が出力され、ドア33bのロックが解除
されて、人物32はノブ33cを引いて入室することが
できる。もし計測された歩行パターンが歩行パターンデ
ータと一致しない場合には、超音波制御装置14はロッ
ク継続信号を出力し、人物32がノブ33cを引いても
ドア33bはロック状態を継続する。
When the walking pattern coincides with the walking pattern of the person who is permitted to enter, the ultrasonic control device 14 outputs a lock release signal, the door 33b is unlocked, and the person 32 pulls the knob 33c. Can enter the room. If the measured walking pattern does not match the walking pattern data, the ultrasonic controller 14 outputs a lock continuation signal, and the door 33b continues to be locked even if the person 32 pulls the knob 33c.

【0043】図12は、本発明に係る超音波計測センサ
を防犯センサとして用いる場合の説明図ある。家屋34
の開閉される部分、例えばドア34aや窓34bの近傍
に超音波計測センサ2、2を配置しておく。
FIG. 12 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as a crime prevention sensor. House 34
The ultrasonic measurement sensors 2 and 2 are arranged in the vicinity of the opened / closed portion, for example, the door 34a or the window 34b.

【0044】家屋34の中に人がいない防犯計測状態の
場合に、ドア34a又は窓34bが無理に開放されたと
する。このとき、ドア34aや窓34bだけでなく壁や
床も振動するため、この振動を超音波計測センサ2、2
が計測する。受信信号はケーブル16を介して超音波制
御装置14に入力され、光や音などを発生させるアラー
ム信号が家屋34に送信されて侵入者を撃退できる。ま
た、直ちに警備員をこの家屋34に急行させることもで
きる。
It is assumed that the door 34a or the window 34b is forcibly opened in the crime prevention measurement state where there is no person in the house 34. At this time, not only the door 34a and the window 34b but also the wall and the floor vibrate.
Measures. The received signal is input to the ultrasonic control device 14 via the cable 16, and an alarm signal for generating light or sound is transmitted to the house 34 to repel intruders. In addition, the guard can be immediately rushed to this house 34.

【0045】図13は、本発明に係る超音波計測センサ
を加速度センサとして用いる場合の説明図である。自動
車36の天井に超音波計測センサ2を防振状態で固定し
ておく。従って、自動車36が振動しても超音波計測セ
ンサ2の液面は振動しない。
FIG. 13 is an explanatory view when the ultrasonic measurement sensor according to the present invention is used as an acceleration sensor. The ultrasonic measurement sensor 2 is fixed to the ceiling of the automobile 36 in a vibration-proof state. Therefore, even if the automobile 36 vibrates, the liquid surface of the ultrasonic measurement sensor 2 does not vibrate.

【0046】自動車36がアクセル又はブレーキの操作
により加速状態又は減速状態に入ったとする。このと
き、超音波計測センサ2の液面は慣性力の作用で水平位
置より傾斜する。加速又は減速により液面の傾斜方向は
変化する。この液面の傾斜を検出して受信信号がケーブ
ル16を介して超音波制御装置14に入力される。
It is assumed that the automobile 36 enters an acceleration state or a deceleration state by operating an accelerator or a brake. At this time, the liquid surface of the ultrasonic measurement sensor 2 is inclined from the horizontal position by the action of inertial force. The inclination direction of the liquid surface changes due to acceleration or deceleration. The received signal is input to the ultrasonic control device 14 via the cable 16 by detecting the inclination of the liquid surface.

【0047】超音波制御装置14の中で傾斜角度から加
速度が演算され、加速度が運転者に示され、危険加速度
に入ったときには光や音声によりアラームを発生し、そ
れでも危険加速度状態にあるときにはブレーキを自動制
御して安定速度状態に移行させることもできる。
Acceleration is calculated from the tilt angle in the ultrasonic controller 14, the acceleration is shown to the driver, and an alarm is generated by light or voice when a dangerous acceleration is entered, and when the dangerous acceleration is reached, the brake is applied. Can be automatically controlled to shift to a stable speed state.

【0048】図14は、本発明に係る超音波計測センサ
を地震センサとして用いる場合の説明図である。超音波
計測センサ2は地面40に固定される場合と、土中42
に埋設される場合があるが、この応用例では土中42に
埋設されるとする。
FIG. 14 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as an earthquake sensor. The ultrasonic measurement sensor 2 is fixed on the ground 40 and in the soil 42.
However, in this application example, it is assumed to be buried in the soil 42.

【0049】地震が発生すると、超音波計測センサ2の
液面は振動し、この振動が超音波を用いて検出される。
受信信号はケーブル16を介して地震観測所38の中に
ある超音波制御装置14に入力される。振動状態が精密
に分析され、超音波制御装置14によりマグニチュード
や震源や震央などの地震情報が演算される。
When an earthquake occurs, the liquid surface of the ultrasonic measurement sensor 2 vibrates, and this vibration is detected using ultrasonic waves.
The received signal is input to the ultrasonic control device 14 in the earthquake observatory 38 via the cable 16. The vibration state is precisely analyzed, and the ultrasonic control device 14 calculates earthquake information such as magnitude, epicenter, and epicenter.

【0050】超音波計測センサ2を各家庭の建物内や土
中に配置することもでき、超音波制御装置14を適所に
配置し、超音波制御装置14の信号を地震監視センター
に送信する態勢を確立すれば、地震を全国レベルで監視
することも可能になる。
The ultrasonic measurement sensor 2 can be arranged in the building of each home or in the soil, the ultrasonic control device 14 is arranged at a proper place, and the signal of the ultrasonic control device 14 is transmitted to the earthquake monitoring center. Once established, it will be possible to monitor earthquakes at a national level.

【0051】このように、本発明に係る超音波計測セン
サ2は極めて微小なマイクロセンサから大きなセンサに
まで自在に形成することができ、人や任意の大きさの物
・構造体に配置することが可能である。また、パーソナ
ルコンピュータや超音波専用分析器などの超音波制御装
置14とケーブル16を介して接続するだけで、超音波
計測装置18を構成できる。超音波計測センサ2の中の
液面10が変動するだけで超音波による被測定対象の状
態計測が可能になるから、上記応用例に限らず、種々の
被計測対象の状態計測ができる汎用性の高い超音波によ
る状態計測方法を提供することが可能となる。
As described above, the ultrasonic measurement sensor 2 according to the present invention can be freely formed from an extremely minute microsensor to a large sensor, and can be arranged on a person or an object / structure of any size. Is possible. Further, the ultrasonic measurement device 18 can be configured only by connecting it to the ultrasonic control device 14 such as a personal computer or an ultrasonic wave exclusive analyzer via the cable 16. Since it is possible to measure the state of the object to be measured by ultrasonic waves simply by changing the liquid level 10 in the ultrasonic measurement sensor 2, not only the application example described above but also versatility to measure the state of various objects to be measured. It is possible to provide a state measurement method using ultrasonic waves with high accuracy.

【0052】本発明は上記実施形態に限定されるもので
はなく、本発明の技術的思想を逸脱しない範囲における
種々の変形例、設計変更等をその技術的範囲内に包含す
るものであることは云うまでもない。
The present invention is not limited to the above embodiment, and various modifications, design changes and the like within the technical scope of the present invention are included in the technical scope thereof. Needless to say.

【0053】[0053]

【発明の効果】第1の発明によれば、容器本体の中に液
面を有するように液体を密封し、この容器に超音波振動
子を配置し、液体の中に超音波を送信して液面で反射さ
れた超音波を受信するように超音波計測センサを構成し
たから、小から大に到るまで自在にサイズを調整でき
る。従って、小さな被測定対象から大きな被測定対象に
までこの超音波計測センサを組み込むことが可能であ
り、世に存在する殆んどの物体や構造物を被測定対象と
して状態計測することが可能となる。しかも構造が極め
て単純であるから耐久性があり、この中に封入された液
体の液面を振動させたり傾斜させるだけで被測定対象の
状態計測を可能とするから、液面の振動や傾斜を生起す
る被測定対象が全て測定可能な対象となる。
According to the first aspect of the invention, the liquid is hermetically sealed in the container body so as to have the liquid level, the ultrasonic transducer is arranged in the container, and ultrasonic waves are transmitted into the liquid. Since the ultrasonic measurement sensor is configured to receive the ultrasonic waves reflected on the liquid surface, the size can be freely adjusted from small to large. Therefore, this ultrasonic measurement sensor can be incorporated from a small object to be measured to a large object to be measured, and it becomes possible to measure the state of almost any object or structure existing in the world as the object to be measured. Moreover, since the structure is extremely simple, it has durability, and since it is possible to measure the state of the measured object simply by vibrating or tilting the liquid surface of the liquid enclosed in this, it is possible to reduce the vibration and tilt of the liquid surface. All the measured objects that occur are measurable objects.

【0054】第2の発明によれば、超音波計測センサと
超音波を制御分析できる超音波制御装置を組み合わせる
だけで超音波計測装置を構成でき、しかも超音波制御装
置として超音波専用機だけでなくコンピューターなどの
装置も使用できるから、超音波を用いた汎用性の高い超
音波計測装置を提供することができる。
According to the second aspect of the invention, the ultrasonic measuring device can be constructed only by combining the ultrasonic measuring sensor and the ultrasonic controlling device capable of controlling and analyzing the ultrasonic wave. Since a device such as a computer can be used instead, a versatile ultrasonic measuring device using ultrasonic waves can be provided.

【0055】第3の発明によれば、超音波計測センサを
被計測対象又はその近傍に取り付け、超音波振動子から
超音波を液体中に送信して液面で反射した超音波を受信
制御する超音波制御装置を設け、被計測対象の状態によ
り生起される液面の変化を反射超音波により計測して被
計測対象の状態計測を可能とするから、液面に振動や傾
斜を与える全ての人・物が計測対象となる汎用性の高い
状態計測方法を提供できる。例えば、超音波計測センサ
を病院の寝台の下部に取り付ければ患者の動静を検出で
き、シーツの下面に取り付ければ患者の心音検出が可能
となり、また研究所の廊下に取り付ければ個人の特有の
歩行を検出して個人同定が可能となる。また、移動体に
取り付ければ液面の傾斜から加速度検出ができ、地中や
建物内部に取り付ければ地震の検出が可能となるなど、
極めて広範囲の被計測対象の状態計測が簡易且つ低価格
で可能となる。
According to the third aspect of the invention, the ultrasonic measurement sensor is attached to the object to be measured or its vicinity, the ultrasonic wave is transmitted from the ultrasonic transducer into the liquid, and the ultrasonic wave reflected by the liquid surface is controlled to be received. An ultrasonic controller is provided to measure the change in the liquid level caused by the state of the measured object by reflected ultrasonic waves to enable measurement of the state of the measured object. It is possible to provide a highly versatile state measuring method in which a person or an object is a measurement target. For example, if the ultrasonic measurement sensor is attached to the lower part of the bed of the hospital, the movement of the patient can be detected, if it is attached to the lower surface of the sheet, the heart sound of the patient can be detected, and if it is attached to the corridor of the laboratory, it can be used to walk unique to the individual It is possible to detect and identify the individual. Also, if it is attached to a moving body, acceleration can be detected from the inclination of the liquid surface, and if it is installed in the ground or inside a building, an earthquake can be detected.
It is possible to easily and inexpensively measure the state of the measurement target in an extremely wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超音波計測センサを用いた超音波
と液面が直交する測定状態の説明図である。
FIG. 1 is an explanatory diagram of a measurement state in which an ultrasonic wave and a liquid surface are orthogonal to each other using an ultrasonic measurement sensor according to the present invention.

【図2】図1における送信超音波と受信超音波の信号波
形図である。
FIG. 2 is a signal waveform diagram of a transmission ultrasonic wave and a reception ultrasonic wave in FIG.

【図3】本発明に係る超音波計測センサを用いた振動液
面に対する超音波測定の説明図である。
FIG. 3 is an explanatory diagram of ultrasonic measurement on a vibrating liquid surface using the ultrasonic measurement sensor according to the present invention.

【図4】図3における送信波と受信波の信号波形図であ
る。
FIG. 4 is a signal waveform diagram of a transmission wave and a reception wave in FIG.

【図5】本発明に係る超音波計測センサを用いた傾斜液
面に対する超音波測定の説明図である。
FIG. 5 is an explanatory diagram of ultrasonic measurement on an inclined liquid surface using the ultrasonic measurement sensor according to the present invention.

【図6】図5における送信波と受信波の信号波形図であ
る。
6 is a signal waveform diagram of a transmission wave and a reception wave in FIG.

【図7】本発明に係る超音波計測センサにおける受信波
の最大振幅と傾斜角度の関係図である。
FIG. 7 is a diagram showing the relationship between the maximum amplitude of a received wave and the tilt angle in the ultrasonic measurement sensor according to the present invention.

【図8】超音波計測センサに用いられる超音波振動子の
第1変形例の説明図である。
FIG. 8 is an explanatory diagram of a first modification of the ultrasonic transducer used in the ultrasonic measurement sensor.

【図9】超音波計測センサに用いられる超音波振動子の
第2変形例の説明図である。
FIG. 9 is an explanatory diagram of a second modified example of the ultrasonic transducer used in the ultrasonic measurement sensor.

【図10】本発明に係る超音波計測センサを生態動静セ
ンサとして用いる場合の説明図である。
FIG. 10 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as an ecological movement sensor.

【図11】本発明に係る超音波計測センサを人物同定セ
ンサとして用いる場合の説明図である。
FIG. 11 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as a person identification sensor.

【図12】本発明に係る超音波計測センサを防犯センサ
として用いる場合の説明図ある。
FIG. 12 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as a crime prevention sensor.

【図13】本発明に係る超音波計測センサを加速度セン
サとして用いる場合の説明図である。
FIG. 13 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as an acceleration sensor.

【図14】図14は、本発明に係る超音波計測センサを
地震センサとして用いる場合の説明図である。
FIG. 14 is an explanatory diagram when the ultrasonic measurement sensor according to the present invention is used as an earthquake sensor.

【符号の説明】[Explanation of symbols]

2・2a・2b・2cは超音波計測センサ、4は容器本
体、6は超音波振動子、6aは超音波振動体、6bは集
束レンズ、8は液体、10は液面、12は空間部、14
は超音波制御装置、16はケーブル、20は送信波、2
2は受信波、30は患者、31は寝台、31aは寝台上
面、31bは寝台下面、31cは脚部、32は人物、3
3aは床、33bはドア、33cはノブ、34は家屋、
34aはドア、34bは窓、36は自動車、38は地震
観測所、40は地面、42は土中、aは送信信号、bは
受信信号、cは送信超音波、dは受信超音波、eは非受
信超音波、θは傾斜角度。
2, 2a, 2b, and 2c are ultrasonic measurement sensors, 4 is a container body, 6 is an ultrasonic vibrator, 6a is an ultrasonic vibrator, 6b is a focusing lens, 8 is a liquid, 10 is a liquid surface, and 12 is a space portion. , 14
Is an ultrasonic controller, 16 is a cable, 20 is a transmitted wave, 2
2 is a received wave, 30 is a patient, 31 is a bed, 31a is a bed upper surface, 31b is a bed lower surface, 31c is a leg portion, 32 is a person, 3
3a is a floor, 33b is a door, 33c is a knob, 34 is a house,
34a is a door, 34b is a window, 36 is an automobile, 38 is an earthquake observatory, 40 is the ground, 42 is underground, a is a transmitted signal, b is a received signal, c is a transmitted ultrasonic wave, d is a received ultrasonic wave, e Is non-received ultrasonic wave, θ is inclination angle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容器本体と、この容器本体の中に液面を
有するように密封された液体と、この液体の中に超音波
を送信して液面で反射された超音波を受信するように容
器に配置された超音波振動子から構成されることを特徴
とする超音波計測センサ。
1. A container body, a liquid sealed in the container body so as to have a liquid surface, an ultrasonic wave transmitted into the liquid, and an ultrasonic wave reflected by the liquid surface received. An ultrasonic measurement sensor comprising an ultrasonic transducer arranged in a container.
【請求項2】 容器本体と、この容器本体の中に液面を
有するように密封された液体と、この液体の中に超音波
を送信して液面で反射された超音波を受信するように容
器に配置された超音波振動子から構成される超音波計測
センサと、前記超音波振動子から超音波を液体中に送受
信させるように超音波計測センサを制御する超音波制御
装置を設けることを特徴とする超音波計測装置。
2. A container main body, a liquid sealed in the container main body so as to have a liquid surface, ultrasonic waves transmitted into the liquid, and ultrasonic waves reflected by the liquid surface being received. An ultrasonic measurement sensor including an ultrasonic transducer arranged in a container, and an ultrasonic control device for controlling the ultrasonic measurement sensor to transmit and receive ultrasonic waves in the liquid from the ultrasonic transducer are provided. Ultrasonic measuring device characterized by.
【請求項3】 容器本体と、この容器本体の中に液面を
有するように密封された液体と、この液体の中に超音波
を送信して液面で反射された超音波を受信するように容
器に配置された超音波振動子から超音波計測センサを構
成し、この超音波計測センサを被計測対象又はその近傍
に取り付け、前記超音波振動子から超音波を液体中に送
信して液面で反射した超音波を受信制御する超音波制御
装置を設け、被計測対象の状態により生起される液面の
変化を液面からの反射超音波により計測して被計測対象
の状態を計測することを特徴とする被計測対象の状態計
測方法。
3. A container body, a liquid sealed in the container body so as to have a liquid surface, ultrasonic waves transmitted into the liquid, and ultrasonic waves reflected by the liquid surface. An ultrasonic measurement sensor is configured from the ultrasonic transducer arranged in the container, and the ultrasonic measurement sensor is attached to the measurement target or in the vicinity thereof, and ultrasonic waves are transmitted from the ultrasonic transducer into the liquid. An ultrasonic controller that controls the reception of the ultrasonic waves reflected on the surface is provided, and the change in the liquid level caused by the state of the measurement target is measured by the reflected ultrasonic waves from the liquid level to measure the state of the measurement target. A method for measuring a state of an object to be measured, which is characterized in that
JP2002118842A 2002-04-22 2002-04-22 Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured Pending JP2003315030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118842A JP2003315030A (en) 2002-04-22 2002-04-22 Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118842A JP2003315030A (en) 2002-04-22 2002-04-22 Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured

Publications (1)

Publication Number Publication Date
JP2003315030A true JP2003315030A (en) 2003-11-06

Family

ID=29535569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118842A Pending JP2003315030A (en) 2002-04-22 2002-04-22 Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured

Country Status (1)

Country Link
JP (1) JP2003315030A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216006A (en) * 2003-01-17 2004-08-05 Kinden Corp Apparatus for determining status of human using ultrasonic vibration sensor and method of determining status of human using the same
JP2007304955A (en) * 2006-05-12 2007-11-22 Kansai Electric Power Co Inc:The Individual specifying system and security system
JP2007307309A (en) * 2006-05-22 2007-11-29 Kansai Electric Power Co Inc:The Device for detecting biological information by means of ultrasonic vibration sensor, indoor environment control method using biological information, and indoor environment controller
JP2010145017A (en) * 2008-12-19 2010-07-01 Sharp Corp Heating cooker and earthquake informing system including the same
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration
WO2013100046A1 (en) * 2011-12-28 2013-07-04 株式会社東芝 Liquid surface level measurement device, method, and program
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
DE102013207897A1 (en) * 2013-04-30 2014-10-30 BSH Bosch und Siemens Hausgeräte GmbH Method for horizontally aligning a device with a mist generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216006A (en) * 2003-01-17 2004-08-05 Kinden Corp Apparatus for determining status of human using ultrasonic vibration sensor and method of determining status of human using the same
US7290451B2 (en) 2003-01-17 2007-11-06 Kinden Corporation Status discriminating apparatus of human, animal, machine or the like using ultrasonic vibration detecting sensor, and status discriminating method of human, animal, machine or the like using the same
JP2007304955A (en) * 2006-05-12 2007-11-22 Kansai Electric Power Co Inc:The Individual specifying system and security system
JP2007307309A (en) * 2006-05-22 2007-11-29 Kansai Electric Power Co Inc:The Device for detecting biological information by means of ultrasonic vibration sensor, indoor environment control method using biological information, and indoor environment controller
JP2010145017A (en) * 2008-12-19 2010-07-01 Sharp Corp Heating cooker and earthquake informing system including the same
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration
WO2013100046A1 (en) * 2011-12-28 2013-07-04 株式会社東芝 Liquid surface level measurement device, method, and program
JP2013140029A (en) * 2011-12-28 2013-07-18 Toshiba Corp Liquid level measuring device, method and program
US9557208B2 (en) 2011-12-28 2017-01-31 Kabushiki Kaisha Toshiba Liquid level measuring apparatus, method, and program
JP2013140119A (en) * 2012-01-06 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Method of monitoring reactor bottom section, apparatus for monitoring reactor bottom section, and nuclear reactor
DE102013207897A1 (en) * 2013-04-30 2014-10-30 BSH Bosch und Siemens Hausgeräte GmbH Method for horizontally aligning a device with a mist generator

Similar Documents

Publication Publication Date Title
US7894305B2 (en) Methods for detecting humans
US7694567B2 (en) Acoustic detection of hidden objects and material discontinuities
US6731210B2 (en) System and method for detecting, localizing, or classifying a disturbance using a waveguide sensor system
JP6965879B2 (en) Object detection device, in-vehicle radar system, surveillance radar system, object detection method and program
CN110187341A (en) The monitoring method and system of physical activity posture, human body attitude monitor
Sabatier et al. Laser-Doppler-based acoustic-to-seismic detection of buried mines
US7319639B2 (en) Acoustic concealed item detector
FI123062B (en) Method and system of control
Saquib et al. BlinDar: An invisible eye for the blind people making life easy for the blind with Internet of Things (IoT)
US20040220753A1 (en) Home-land intelligent system&#39;s technology &#34;H-LIST&#34;
EP1959408A1 (en) Sensor for detecting human intruders, and security system
Kuc Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification
JP2003315030A (en) Ultrasonic measuring sensor, apparatus thereof, and method for measuring state of object to be measured
JP6806247B2 (en) Object detection device, in-vehicle radar system, surveillance radar system, object detection method and program of object detection device
JP5515146B2 (en) Security device, program
EP0027738A2 (en) Intrusion alarm system
US5307137A (en) Terrain imaging apparatus and method
NZ554060A (en) Sensor assembly
Tahat A wireless ranging system for the blind long-cane utilizing a smart-phone
JPH06324160A (en) Seismic intensity forecasting system
US11619542B2 (en) Distributed acoustic sensing based natural frequency measurement of civil infrastructures
JP4927441B2 (en) Individual identification system and security system
Ye Life detection technique in earthquake search and rescue
JPH0926353A (en) Multifunction seismometer
Ekimov et al. Human detection range by active Doppler and passive ultrasonic methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080903