JP2003315023A - Three-dimensional measuring apparatus and method therefor - Google Patents

Three-dimensional measuring apparatus and method therefor

Info

Publication number
JP2003315023A
JP2003315023A JP2002122358A JP2002122358A JP2003315023A JP 2003315023 A JP2003315023 A JP 2003315023A JP 2002122358 A JP2002122358 A JP 2002122358A JP 2002122358 A JP2002122358 A JP 2002122358A JP 2003315023 A JP2003315023 A JP 2003315023A
Authority
JP
Japan
Prior art keywords
measured
laser
rotating member
dimensional
dimensional measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002122358A
Other languages
Japanese (ja)
Inventor
Takuji Izumitani
卓司 泉谷
Junzo Niizaki
純三 新崎
Hideyo Takeuchi
英世 竹内
Kazuto Ikeda
和人 池田
Hiroshi Kawamoto
浩 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2002122358A priority Critical patent/JP2003315023A/en
Publication of JP2003315023A publication Critical patent/JP2003315023A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional measuring apparatus for measuring the shape of a three-dimensional object to be measured. <P>SOLUTION: In the three-dimensional measuring apparatus 1, a laser pointer 2 is mounted to a first rotary member 3, the first rotary member 3 is rotatably mounted to a support member 4 within a vertical surface by a horizontal rotary axis, the support member 4 is mounted to a rotatable second rotary member 5 within a horizontal surface by a vertical rotary axis, and a three-dimensional measurement set is provided, where the laser pointer 2 is rotatably composed within the vertical surface by the first rotary member 3 and within the horizontal surface by the second rotary member 5. Additionally, a three-dimensional measuring apparatus 10 has a pair of three-dimensional measurement sets where two pairs of three-dimensional measuring apparatus 1 are formed in a set, and each laser is centered at one point on the surface of an object to be measured. Further, a plurality of three-dimensional measuring apparatus 100 are used to concentrate laser for each set at a plurality of points on the surface of the object to be measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、3次元計測装置お
よびそれを用いた3次元計測方法に関し、例えば、自動
車用部材のように複雑な形状をした立体的なワークの形
状を計測する場合に好適する3次元計測装置および3次
元計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional measuring device and a three-dimensional measuring method using the same, for example, when measuring the shape of a three-dimensional work having a complicated shape such as an automobile member. The present invention relates to a suitable three-dimensional measuring device and three-dimensional measuring method.

【0002】[0002]

【従来の技術】自動車は様々な形状をした多種類かつ多
数の構成部材および部品を組立てて生産されるため、生
産現場においては、多種類かつ多数の構成部材および部
品を準備し、それらの構成部材および部品を順次組付け
ていくが、この構成部材および部品の準備作業時や、組
付け作業時に、正規の構成部材および部品を準備し、あ
るいは組付けて行く必要がある。
2. Description of the Related Art Since an automobile is produced by assembling various types and many components and parts having various shapes, many types and numbers of components and parts are prepared at a production site. The members and the parts are assembled in sequence, but it is necessary to prepare or assemble the regular components and parts during the preparatory work of these constituent members and parts and the assembly work.

【0003】この構成部材および部品を準備し、それら
の構成部材および部品を順次組付けていく場合に、作業
者が肉眼で判別することは、汎用性はあるが、長時間作
業などによる眼精疲労などによって、判別力が低下した
り、見間違いを起したりする可能性がある。
When preparing these constituent members and parts and assembling these constituent members and parts one by one, it is versatile for the operator to discriminate with the naked eye, but it is necessary for a long time to work. There is a possibility that the discriminating power may be deteriorated or a misunderstanding may occur due to fatigue or the like.

【0004】[0004]

【発明が解決しようとする課題】そこで、自動計測ロボ
ットなどを用いて、自動的に計測することが考えられる
が、従来の計測装置は複雑な構造を有し、装置が大型、
かつ重いために、固定式で使用しなければならず、工程
レイアウト変更への対応が困難であり、また高価である
という問題点があった。
Therefore, it is conceivable to automatically measure by using an automatic measuring robot or the like. However, the conventional measuring device has a complicated structure and the device is large in size.
In addition, since it is heavy, it has to be used as a fixed type, which makes it difficult to cope with process layout changes and is expensive.

【0005】また、可搬式の装置でも、センシングツー
ルを被計測物に接触させる構造のもので、取り扱いが不
便であったりして、実用上支障がある場合が多かった。
Further, even a portable device has a structure in which the sensing tool is brought into contact with the object to be measured, and it is often inconvenient to handle and often has a problem in practical use.

【0006】最近では、画像処理によって、高精度で計
測可能な装置も出て来ているが、被計測物を貼付ける必
要があり、このターゲット貼付け精度を高める工夫が必
要である。
Recently, an apparatus capable of measuring with high accuracy by image processing has come out, but it is necessary to stick an object to be measured, and it is necessary to devise to improve the accuracy of sticking the target.

【0007】前述のように、自動車の構成部材および部
品は、他種類、かつ多数であり、例えば、ボディ部材は
複雑な形状が多く、その組付治具も複雑な形状になり易
く、その形状を計測する必要がある場合は、個別に取り
外し、計測するのに有利な計測場所を選定し、その計測
場所に運搬して計測する必要があった。
As described above, there are many other types and components of automobiles. For example, the body member often has a complicated shape, and the assembly jig tends to have a complicated shape. When it was necessary to measure, it was necessary to remove them individually, select a measurement location that was advantageous for measurement, and transport it to that measurement location for measurement.

【0008】そこで、本発明は、複雑な形状の被計測物
でも、比較的簡単な構成で自動的に計測が可能な、3次
元計測装置およびそれを用いた3次元計測方法を提供す
ることを目的とする。
Therefore, the present invention provides a three-dimensional measuring device and a three-dimensional measuring method using the three-dimensional measuring device, which can automatically measure even an object to be measured having a complicated shape with a relatively simple structure. To aim.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1に記載
された3次元計測装置は、レーザポインタを垂直面内ま
たは水平面内で回転自在の第1回転部材に取付け、この
第1回転部材を水平面内または垂直面内で回転自在の第
2回転部材に取付けた3次元計測セットを具備すること
を特徴とするものである。
In the three-dimensional measuring apparatus according to the first aspect of the present invention, a laser pointer is attached to a first rotating member which is rotatable in a vertical plane or a horizontal plane, and the first rotating member is attached. Is equipped with a three-dimensional measurement set in which is attached to a second rotating member that is rotatable in a horizontal plane or in a vertical plane.

【0010】上記の第1回転部材および第2回転部材
は、一方が垂直面内で回転自在の場合は、他方は水平面
内で回転自在に構成されている。すなわち、第1回転部
材が垂直面内で回転自在の場合は、第2回転部材が水平
面内で回転自在であり、第1回転部材が水平面内で回転
自在の場合であれば、第2回転部材は垂直面内で回転自
在に構成される。このような構成によって、レーザポイ
ンタは、垂直面内および水平面内で回転自在に構成され
ることになり、任意の方向にレーザを照射することが出
来る。
When one of the first rotating member and the second rotating member is rotatable in a vertical plane, the other is rotatable in a horizontal plane. That is, when the first rotating member is rotatable in a vertical plane, the second rotating member is rotatable in a horizontal plane, and when the first rotating member is rotatable in a horizontal plane, the second rotating member is rotatable. Is rotatable in a vertical plane. With such a configuration, the laser pointer is configured to be rotatable in the vertical plane and the horizontal plane, and the laser can be emitted in any direction.

【0011】上記の3次元計測装置によれば、レーザポ
インタで被計測物の任意の位置にレーザをスポット状に
当てることによって、照射されたレーザの反射または透
過の有無に基づいて、被計測物の有無を判別することが
出来ると共に、特に、反射を利用する場合は、照射レー
ザと反射レーザとの時間差を利用して、レーザポインタ
と被計測物との間の距離を計測することが出来る。
According to the above-mentioned three-dimensional measuring apparatus, the laser is applied to the spot on the arbitrary position of the object to be measured by the laser pointer, and the object to be measured is detected based on the presence or absence of reflection or transmission of the irradiated laser. It is possible to determine the presence / absence of the object, and particularly when the reflection is used, the distance between the laser pointer and the object to be measured can be measured by using the time difference between the irradiation laser and the reflection laser.

【0012】また、上記の3次元計測装置によれば、レ
ーザポインタを垂直面内および水平面内で回転させて、
レーザを被計測物の表面に走査することによって、被計
測物の表面で透過が阻止されていたレーザが、被計測物
の端部を外れると透過可能になり、あるいは、被計測物
の表面で反射していたレーザが被計測物の端部を外れる
と反射不可能になることを利用して、被計測物の形状を
計測することが出来ると共に、レーザポインタと被計測
物との間の距離の変化を計測することによって、被計測
物の凹凸状態をも計測することが出来る。ただし、この
3次元計測装置を単体で用いる場合は、照射レーザを走
査した反射レーザの捕捉のための工夫が必要になる。そ
こで、上記の3次元計測装置を複数用いることが有用で
ある。
According to the above three-dimensional measuring apparatus, the laser pointer is rotated in the vertical plane and the horizontal plane,
By scanning the laser on the surface of the object to be measured, the laser whose transmission was blocked on the surface of the object to be measured can be transmitted when it goes off the edge of the object to be measured, or on the surface of the object to be measured. It is possible to measure the shape of the measured object by utilizing the fact that the reflected laser becomes unreflective when it comes off the end of the measured object, and the distance between the laser pointer and the measured object can be measured. By measuring the change of, it is possible to measure the uneven state of the measured object. However, when this three-dimensional measuring device is used alone, it is necessary to devise a means for capturing the reflected laser scanned by the irradiation laser. Therefore, it is useful to use a plurality of the above three-dimensional measuring devices.

【0013】本発明の請求項2に記載された3次元計測
装置は、レーザポインタを垂直面内または水平面内で回
転自在の第1回転部材に取付け、この第1回転部材を水
平面内または垂直面内で回転自在の第2回転部材に取付
けた請求項1に記載の3次元計測セット2セットを1組
にした3次元計測セット対を具備することを特徴とする
ものである。
In the three-dimensional measuring apparatus according to the second aspect of the present invention, the laser pointer is attached to a first rotating member which is rotatable in a vertical plane or a horizontal plane, and the first rotating member is placed in the horizontal plane or the vertical plane. It is characterized by comprising a three-dimensional measurement set pair in which two sets of the three-dimensional measurement set according to claim 1 attached to a second rotating member which can be freely rotated inside.

【0014】上記の3次元計測装置によれば、一方の3
次元計測セットのレーザスポットと、他方の3次元計測
セットのレーザスポットとを、被計測物の表面で1点に
集中させることによって、前述と同様に、レーザの透過
または反射を利用して、被計測物の形状を計測すること
が出来るのみならず、一方の3次元計測セットにおける
第1回転部材および第2回転部材の回転角度と、他方の
3次元計測セットにおける第1回転部材および第2回転
部材の回転角度から、被計測物の凹凸状態をも計測する
ことが出来る。しかも、照射レーザを走査して反射レー
ザを捕捉しなくても、第1回転部材および第2回転部材
の回転角度から、被計測物間での距離または被計測物の
表面の凹凸状態が計測出来るので、構成を簡易化出来
る。
According to the above three-dimensional measuring apparatus, one of the three
By concentrating the laser spot of the three-dimensional measurement set and the laser spot of the other three-dimensional measurement set at one point on the surface of the object to be measured, the transmission or reflection of the laser is utilized in the same way as described above, Not only the shape of the measured object can be measured, but also the rotation angles of the first rotating member and the second rotating member in one of the three-dimensional measuring sets and the first rotating member and the second rotation in the other three-dimensional measuring set. It is also possible to measure the uneven state of the object to be measured from the rotation angle of the member. Moreover, the distance between the objects to be measured or the unevenness of the surface of the object to be measured can be measured from the rotation angles of the first rotating member and the second rotating member without scanning the irradiation laser and capturing the reflected laser. Therefore, the configuration can be simplified.

【0015】本発明の請求項3に記載された3次元計測
装置は、前記3次元計測セット2セットを1組にした請
求項2に記載の3次元計測セット対を、複数対具備する
ことを特徴とするものである。
A three-dimensional measuring apparatus according to a third aspect of the present invention comprises a plurality of pairs of the three-dimensional measuring set according to the second aspect, in which two sets of the three-dimensional measuring sets are combined. It is a feature.

【0016】上記の3次元計測装置によれば、前述のよ
うな3次元計測セット2セットを1組にした3次元計測
セット対を複数対具備するので、被計測物の複数の点に
同時にレーザスポットを照射して、被計測物の形状およ
びその表面の凹凸状態を計測することが可能になり、計
測精度が向上すると共に、レーザの走査を不要ないし低
減して、計測時間を短縮することが出来る。3次元計測
セット対は、その対数が多くなるほど計測精度が向上
し、計測時間短縮が図れるが、対数の増加と共にコスト
が上昇する一方、計測精度の向上および計測時間短縮は
コスト上昇に見合わなくなってくるので、実用上は3対
以上、特に4対程度あれば、かなりの用途において十分
である。
According to the above-mentioned three-dimensional measuring apparatus, since a plurality of pairs of three-dimensional measuring sets, each of which is one set of the above-mentioned two three-dimensional measuring sets, are provided, laser beams are simultaneously applied to a plurality of points on the object to be measured. By irradiating a spot, it becomes possible to measure the shape of the object to be measured and the unevenness of the surface thereof, which improves the measurement accuracy and reduces or eliminates the need for laser scanning to shorten the measurement time. I can. As the number of pairs of the three-dimensional measurement set increases, the measurement accuracy improves and the measurement time can be shortened. However, while the cost increases with the increase of the logarithm, the improvement of the measurement accuracy and the reduction of the measurement time do not match the cost increase. Therefore, practically three pairs or more, particularly about four pairs is sufficient for a considerable number of applications.

【0017】本発明の請求項4に記載された3次元計測
方法は、レーザポインタを垂直面内または水平面内で回
転自在の第1回転部材に取付け、この第1回転部材を水
平面内または垂直面内で回転自在の第2回転部材に取付
けた3次元計測セット2セットを1組にした3次元計測
セット対を用いて、各レーザポインタのレーザを被計測
物の1点に集中させて、そのときのレーザの反射または
透過と、第1回転部材および第2回転部材の回転角度か
ら被計測物の形状を計測することを特徴とするものであ
る。
A three-dimensional measuring method according to a fourth aspect of the present invention is characterized in that a laser pointer is attached to a first rotating member rotatable in a vertical plane or a horizontal plane, and the first rotating member is placed in the horizontal plane or the vertical plane. The laser of each laser pointer is concentrated on one point of the object to be measured by using a pair of three-dimensional measurement sets in which two sets of three-dimensional measurement sets attached to the rotatable second rotating member are combined. It is characterized in that the shape of the measured object is measured from the reflection or transmission of the laser at that time and the rotation angles of the first rotating member and the second rotating member.

【0018】上記の3次元計測方法によれば、第1のレ
ーザポインタと第2のレーザポインタとのレーザを被計
測物の1点で集中させて走査することにより、被計測物
の表面でのレーザの透過または反射を利用して被計測物
の有無や形状を計測することが出来ると共に、第1回転
部材および第2回転部材の回転角度から、レーザポイン
タと被計測物との間の距離や被計測物表面の凹凸状態を
も計測することが出来る。
According to the above-mentioned three-dimensional measuring method, the laser beams of the first laser pointer and the second laser pointer are focused and scanned at one point on the object to be measured, so that the surface of the object to be measured is scanned. The presence or shape of the object to be measured can be measured using laser transmission or reflection, and the distance between the laser pointer and the object to be measured can be determined from the rotation angles of the first rotating member and the second rotating member. It is possible to measure the unevenness of the surface of the object to be measured.

【0019】本発明の請求項5に記載された3次元計測
方法は、前記3次元計測セット2セットを1組にした3
次元計測セット対を、複数対具備する3次元計測装置を
用いて、各3次元計測セット対ごとに、各レーザポイン
タのレーザを被計測物の異なる位置に集中させて、その
ときの各レーザの反射または透過と、各第1回転部材お
よび第2回転部材の回転角度から被計測物の形状を計測
することを特徴とするものである
In the three-dimensional measuring method according to the fifth aspect of the present invention, two sets of the three-dimensional measuring set are combined into one set.
By using a three-dimensional measurement device having a plurality of pairs of dimension measurement sets, the laser of each laser pointer is concentrated on different positions of the object to be measured for each pair of three-dimensional measurement sets. It is characterized in that the shape of an object to be measured is measured from reflection or transmission and rotation angles of each of the first rotating member and the second rotating member.

【0020】上記の3次元計測方法によれば、上記と同
様に、被計測物の有無や形状およびレーザポインタと被
計測物との距離や被計測物の表面の凹凸状態が計測出来
ると共に、同時に被計測物の複数個所の形状および凹凸
状態を計測出来るので、計測精度を向上することができ
ると共に、計測時間を短縮することが出来る。
According to the above three-dimensional measuring method, the presence or absence and shape of the object to be measured, the distance between the laser pointer and the object to be measured, and the uneven state of the surface of the object to be measured can be measured at the same time as described above. Since it is possible to measure the shape and unevenness of the object to be measured at a plurality of locations, it is possible to improve the measurement accuracy and reduce the measurement time.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態に係る3
次元計測装置および3次元計測方法について、図面を参
照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The following is a description of embodiments of the present invention.
A dimension measuring device and a three-dimensional measuring method will be described with reference to the drawings.

【0022】図1は単一の3次元計測セットからなる3
次元計測装置の概略構成斜視図である。図1において、
1は3次元計測装置で、レーザポインタ2を、第1回転
部材3の垂直面3aに取付けると共に、この第1回転部
材3を垂直に立設された支持部材4に、水平方向の回転
軸(図示省略)によって垂直面内で回転自在に取付けて
いる。この支持部材4は、垂直方向の回転軸(図示省
略)によって水平面内で回転自在の第2回転部材5に固
定されている。
FIG. 1 shows a three-dimensional measurement set consisting of three sets.
It is a schematic structure perspective view of a dimension measuring device. In FIG.
Reference numeral 1 is a three-dimensional measuring device, in which a laser pointer 2 is attached to a vertical surface 3a of a first rotating member 3, and the first rotating member 3 is attached to a vertically-supported support member 4 by a horizontal rotation axis ( It is mounted rotatably in a vertical plane (not shown). The support member 4 is fixed to a second rotation member 5 which is rotatable in a horizontal plane by a vertical rotation shaft (not shown).

【0023】レーザポインタ2から照射されたレーザ6
を、被計測物(図示省略)の表面でスポット状にする。
すると、被計測物表面でのレーザ6の反射の有無または
透過の有無により、被計測物の有無を判別することが出
来ると共に、照射レーザ6と反射レーザとの時間差を計
測すれば、レーザポインタ2から被計測物の表面までの
距離を計測することが出来る。
Laser 6 emitted from laser pointer 2
Are spotted on the surface of the object to be measured (not shown).
Then, the presence / absence of the object to be measured can be determined by the presence / absence of reflection or transmission of the laser 6 on the surface of the object to be measured, and the laser pointer 2 can be determined by measuring the time difference between the irradiation laser 6 and the reflected laser. The distance from to the surface of the measured object can be measured.

【0024】レーザポインタ2から照射されたレーザ6
は、第1回転部材3によって、垂直面内でその照射角度
を自在に変更することができると共に、第2回転部材5
によって、水平面内でその照射角度を自在に変更するこ
とが出来るため、レーザ6を任意の方向に照射すること
が出来る。そこで、レーザ6を被計測物(図示省略)に
対して走査すると、被計測物端縁部でのレーザ6の反射
または透過状態の変化により、被計測物の端縁を検出し
てその形状を計測することが出来ると共に、その照射レ
ーザ6と反射レーザとの時間差を計測して、被計測物表
面の凹凸状態を計測することが出来る。
Laser 6 emitted from laser pointer 2
The irradiation angle can be freely changed in the vertical plane by the first rotating member 3, and the second rotating member 5
Since the irradiation angle can be freely changed in the horizontal plane, the laser 6 can be irradiated in any direction. Therefore, when the laser 6 is scanned on an object to be measured (not shown), the edge of the object to be measured is detected and its shape is determined by the change in the reflection or transmission state of the laser 6 at the edge of the object to be measured. In addition to being able to perform measurement, the time difference between the irradiation laser 6 and the reflection laser can be measured to measure the unevenness state of the surface of the measured object.

【0025】ここで、レーザポインタ2を第1回転部材
3および第2回転部材5によって回転させて、レーザ6
を走査する場合は、走査のために計測時間がかかり、反
射レーザを捕捉する工夫が必要であるし、レーザポイン
タ2と被計測物との距離も変化するため、補正が必要に
なる。
Here, the laser pointer 2 is rotated by the first rotating member 3 and the second rotating member 5, and the laser 6 is rotated.
When scanning is performed, it takes a measurement time for scanning, it is necessary to devise to capture the reflected laser, and the distance between the laser pointer 2 and the object to be measured also changes, so correction is necessary.

【0026】そこで、実用に際しては、図2に示すよう
に、上記図1に示すレーザポインタ2ないし第2回転部
材5からなる3次元計測セットを具備する3次元計測装
置1を2台用いて、第1の3次元計測装置1aおよび第
2の3次元計測装置1bを対にした3次元計測セット対
で構成された3次元計測装置10を用いることが得策で
ある。そして、第1の3次元計測装置1aのレーザポイ
ンタ2からの照射レーザ6aと、第2の3次元計測装置
1bのレーザポインタ2からの照射レーザ6bとを、被
計測物7の表面で1点Pに集中させる。
Therefore, in practical use, as shown in FIG. 2, two three-dimensional measuring devices 1 each having a three-dimensional measuring set consisting of the laser pointer 2 to the second rotating member 5 shown in FIG. 1 are used. It is advisable to use the three-dimensional measuring device 10 which is composed of a pair of three-dimensional measuring sets in which the first three-dimensional measuring device 1a and the second three-dimensional measuring device 1b are paired. Then, the irradiation laser 6a from the laser pointer 2 of the first three-dimensional measuring apparatus 1a and the irradiation laser 6b from the laser pointer 2 of the second three-dimensional measuring apparatus 1b are provided at one point on the surface of the object to be measured 7. Focus on P.

【0027】すると、被計測部材7の表面からの反射レ
ーザを捕捉することなく、第1の3次元計測装置1aに
おける第1回転部材3および第2回転部材5の回転角度
と、第2の3次元計測装置1bおける第1回転部材3お
よび第2回転部材5の回転角度とから、レーザポインタ
2と被計測物7との間の距離および被計測物7の表面の
凹凸状態を計測可能になるため、反射レーザを捕捉する
工夫や、計測距離データを補正する煩雑さが解消され
る。
Then, the rotation angles of the first rotating member 3 and the second rotating member 5 in the first three-dimensional measuring apparatus 1a and the second rotating member 3 without capturing the reflected laser from the surface of the member to be measured 7. From the rotation angles of the first rotating member 3 and the second rotating member 5 in the dimension measuring device 1b, it becomes possible to measure the distance between the laser pointer 2 and the object 7 to be measured and the uneven state of the surface of the object 7 to be measured. Therefore, the ingenuity of capturing the reflected laser and the complexity of correcting the measured distance data are eliminated.

【0028】上記の図2の3次元計測装置10を用いて
も、3次元計測装置10が1組のみであると、レーザ6
a,6bの走査が必要であり、それだけ計測時間がかか
る。そこで、図3に示すように、図1に示す3次元計測
装置1を2台1組にした、図2に示す3次元計測装置対
1aと1b、1cと1d、1eと1f、1gと1hから
なる3次元計測装置10a,10b,10c,10dの
4組用いた3次元計測装置100を用いることが得策で
ある。
Even if the three-dimensional measuring apparatus 10 of FIG. 2 is used, if the three-dimensional measuring apparatus 10 is only one set, the laser 6
The scanning of a and 6b is necessary, and the measurement time is accordingly long. Therefore, as shown in FIG. 3, a pair of three-dimensional measuring devices 1 shown in FIG. 1 is used as one set, and a pair of three-dimensional measuring devices 1a and 1b, 1c and 1d, 1e and 1f, 1g and 1h shown in FIG. It is advisable to use the three-dimensional measuring apparatus 100 including four sets of three-dimensional measuring apparatuses 10a, 10b, 10c, and 10d.

【0029】このような3次元計測装置100を用いる
と、図4(A)に示すように、各3次元計測装置10
a,10b,10c,10dのレーザ6aと6b,6c
と6d、6eと6f、6gと6hをそれぞれ1組にし
て、ティーチングボックス(以下、T/Bという)操作
により、直線関係を崩さないで全レーザ6a〜6hを一
括操作して、被計測物7aの表面で4レーザスポットP
1〜P4を縦一直線上に整列させた場合は、被計測物7
aの中心線出し機能および/または辺出し機能が得られ
る。
When such a three-dimensional measuring device 100 is used, as shown in FIG.
a, 10b, 10c, 10d lasers 6a and 6b, 6c
And 6d, 6e and 6f, 6g and 6h are set as one set, and all lasers 6a to 6h are collectively operated by a teaching box (hereinafter referred to as T / B) operation without breaking the linear relationship, and the measured object is measured. 4 laser spots P on the surface of 7a
When 1 to P4 are aligned in a vertical straight line, the object to be measured 7
The function of centering and / or the side finding of a can be obtained.

【0030】このような3次元計測方法は、例えば、基
準穴に装着して使用するピンゲージなどの被計測物7a
の中心線出し、すなわち、センター出しに適用すること
が出来る。また、各種ワークの直線辺の空間位置出しに
も適用することが出来る。
Such a three-dimensional measuring method is performed by, for example, a pin gauge or the like 7a to be measured which is attached to a reference hole.
It can be applied to the center line out of, that is, the center out. It can also be applied to the spatial positioning of straight sides of various works.

【0031】また、図4(B)に示すように、各3次元
計測装置10a,10b,10c,10dのレーザ6a
〜6hを、T/B操作によって円周上、かつ等間隔位置
に整列させた関係を崩すことなく一括操作して、被計測
物の基準穴7bの端縁部に沿って4レーザスポットP1
〜P4を円周方向、かつ等間隔に整列させた場合は、円
形の基準穴7bのセンター出し機能が得られる。このよ
うな3次元計測方法は、例えば、任意の形状の被計測物
における円形の基準穴7bのセンター出しに適用するこ
とが出来る。
Further, as shown in FIG. 4B, the laser 6a of each of the three-dimensional measuring devices 10a, 10b, 10c and 10d.
.About.6h are collectively operated by the T / B operation without breaking the relationship in which they are aligned at equal intervals on the circumference of the circle, and four laser spots P1 are provided along the edge of the reference hole 7b of the object to be measured.
When P4 to P4 are aligned in the circumferential direction and at equal intervals, the function of centering the circular reference hole 7b can be obtained. Such a three-dimensional measuring method can be applied to, for example, centering the circular reference hole 7b in an object to be measured having an arbitrary shape.

【0032】さらに、図4(C)に示すように、各3次
元計測装置10a,10b,10c,10dのレーザ6
a〜6hを、T/B操作によって同一平面関係を崩すこ
となく一括操作することによって、被計測物7cの平面
上で4レーザスポットP1〜P4を配置させるようにし
た場合は、平面状のワークまたは辺面部を有する被計測
物7cの基準面出しに適用することが出来る。
Further, as shown in FIG. 4C, the laser 6 of each of the three-dimensional measuring devices 10a, 10b, 10c and 10d is used.
When the four laser spots P1 to P4 are arranged on the plane of the object to be measured 7c by collectively operating the a to 6h without breaking the same plane relationship by the T / B operation, the planar work is performed. Alternatively, it can be applied to the reference surface alignment of the measured object 7c having the side surface portion.

【0033】上記の使用態様は、いずれも3次元計測装
置1,10,100のみで3次元計測を行なう場合につ
いて説明したが、CCDカメラなどの撮像系を併用し
て、被計測物表面でのスポット形状および/またはその
位置を撮影することによって、T/Bを用い、あるいは
T/Bを用いることなく、単一または複数のレーザスポ
ットを自動的に補正配置して3次元計測することが出来
る。
In each of the above-described usage modes, the case where the three-dimensional measurement is performed only by the three-dimensional measuring devices 1, 10, and 100 has been described. However, an image pickup system such as a CCD camera is also used to measure the surface of the object to be measured. By imaging the spot shape and / or its position, it is possible to perform three-dimensional measurement by automatically correcting and arranging single or multiple laser spots without using T / B or without using T / B. .

【0034】図5は例えば自動車ボディ組立工程に、上
記の3次元計測装置100を組込んだオンラインでの3
次元計測システム構成例を示す。図5において、100
は前述の図3に示すような3次元計測セット対10a〜
10dの4組で構成された3次元計測装置で、101は
操作ボックス(T/B)、102は補正カメラで、これ
らはデータ処理装置103に接続されている。104は
較正プレートである。105はワークである自動車ボデ
ィ、106,107は自動車ボディ105をハンドリン
グするハンドリングロボット、108,109はハンド
リングロボット106,107を制御するハンドリング
ロボット制御盤、110は自動車ボディ105に部品1
11を溶接する溶接ロボット、112は溶接ロボット1
10を制御する溶接ロボット制御盤であり、前記ロボッ
ト制御盤108,109,112は、データ処理装置1
03に接続されている。
FIG. 5 shows an online 3D system in which the above three-dimensional measuring apparatus 100 is incorporated in a vehicle body assembly process, for example.
An example of a dimension measurement system configuration is shown. In FIG. 5, 100
Is the three-dimensional measurement set pair 10a-
A three-dimensional measuring device composed of four sets of 10d, 101 is an operation box (T / B), 102 is a correction camera, and these are connected to a data processing device 103. 104 is a calibration plate. Reference numeral 105 is an automobile body that is a work, 106 and 107 are handling robots that handle the automobile body 105, 108 and 109 are handling robot control panels that control the handling robots 106 and 107, and 110 is a part 1 of the automobile body 105.
A welding robot for welding 11 and a welding robot 112
10 is a welding robot control panel for controlling 10, and the robot control panels 108, 109, 112 are the data processing devices 1
It is connected to 03.

【0035】図6〜図8は、上記図3および図5に示し
た3次元計測装置100におけるレーザポイント表示機
能を利用した、補正機能について説明する説明図であ
る。
FIGS. 6 to 8 are explanatory views for explaining the correction function using the laser point display function in the three-dimensional measuring apparatus 100 shown in FIGS. 3 and 5 above.

【0036】図6は、ピンゲ−ジでの補正例を示し、図
6(A)の補正前のレーザ6a〜6hがばらばらの状態
から、補正スイッチONによって、図6(B)の補正後
のように、レーザ6aと6b、6cと6d、6eと6
f、6gと6hがそれぞれ1点P1〜P4に集中され、
かつそれぞれのレーザスポットP1〜P4がピンゲージ
7aの縦方向に延びる中心線8aに沿って、1列状に整
列されている。なお、8bはピンゲージ7aのフランジ
当て面からの距離が既知の基準ラインである。したがっ
て、ピンゲージ7aのセンター出しを行なうことが出来
る。
FIG. 6 shows an example of correction by a pin gauge, in which the lasers 6a to 6h before correction shown in FIG. 6 (A) are separated from each other, and after correction shown in FIG. 6 (B) by turning on the correction switch. Lasers 6a and 6b, 6c and 6d, 6e and 6
f, 6g and 6h are concentrated at one point P1 to P4,
Further, the laser spots P1 to P4 are arranged in a line along a center line 8a extending in the longitudinal direction of the pin gauge 7a. Reference numeral 8b is a reference line whose distance from the flange contact surface of the pin gauge 7a is known. Therefore, it is possible to center the pin gauge 7a.

【0037】図7は基準穴での補正例を示し、図7
(A)に示す補正前のレーザ6a〜6hがばらばらの状
態から、補正スイッチONによって、図7(B)に示す
補正後のように、レーザ6aと6b、6cと6d、6e
と6f、6gと6hがそれぞれ1点P1〜P4に集中さ
れ、かつそれぞれのレーザスポットP1〜P4が基準穴
7bの端縁部に沿って、円周方向かつ等間隔に整列され
ている。したがって、基準穴7bのセンター出しを行な
うことが出来る。
FIG. 7 shows an example of correction in the reference hole.
From the state where the uncorrected lasers 6a to 6h shown in (A) are separated, by turning on the correction switch, the lasers 6a and 6b, 6c and 6d, 6e are changed as shown in FIG. 7B after correction.
And 6f, 6g and 6h are respectively concentrated at one point P1 to P4, and the respective laser spots P1 to P4 are circumferentially arranged at equal intervals along the edge of the reference hole 7b. Therefore, the centering of the reference hole 7b can be performed.

【0038】図8は基準面での補正例を示し、図8
(A)に示す補正前のレーザ6a〜6hがばらばらの状
態から、補正スイッチONによって、図8(B)の補正
後のように、レーザ6aと6b、6cと6d、6eと6
f、6gと6hがそれぞれ1点P1〜P4に集中され、
かつそれぞれのレーザスポットP1〜P4が基準面7c
の表面に、所定の関係位置に整列されている。したがっ
て、基準面7cの基準面出しを行なうことが出来る。
FIG. 8 shows an example of correction on the reference plane.
From the state in which the uncorrected lasers 6a to 6h shown in (A) are separated, the correction switches are turned on so that the lasers 6a and 6b, 6c and 6d, 6e and 6 are corrected as shown in FIG. 8B after the correction.
f, 6g and 6h are concentrated at one point P1 to P4,
And each of the laser spots P1 to P4 is the reference surface 7c.
Are aligned in predetermined relational positions on the surface of the. Therefore, the reference plane of the reference plane 7c can be obtained.

【0039】図9は図3および図5の3次元計測装置1
00における較正機能について説明する説明図で、図9
(A)に示す補正前のレーザ6a〜6hがばらばらの状
態から、補正カメラ102と連動する補正スイッチON
によって、図9(B)に示す補正後のように、レーザ6
aと6b、6cと6d、6eと6f、6gと6hがそれ
ぞれ1点P1〜P4に集中され、かつそれぞれのレーザ
スポットP1〜P4が較正プレート104の基準点位置
に整列されている。なお、104a,104bは水平方
向の基準ラインで、104c,104dは垂直方向の基
準ラインである。したがって、基準ライン104a〜1
04dの各交点で与えられる較正プレート104の基準
点位置の自動較正を行なうことが出来る。
FIG. 9 is a three-dimensional measuring device 1 shown in FIGS. 3 and 5.
9 is an explanatory view for explaining the calibration function in FIG.
From the state in which the uncorrected lasers 6a to 6h shown in FIG.
As shown in FIG. 9B, the laser 6
a and 6b, 6c and 6d, 6e and 6f, 6g and 6h are respectively concentrated at one point P1 to P4, and the respective laser spots P1 to P4 are aligned with the reference point position of the calibration plate 104. Note that 104a and 104b are horizontal reference lines, and 104c and 104d are vertical reference lines. Therefore, the reference lines 104a-1
Automatic calibration of the reference point position of the calibration plate 104 given at each intersection of 04d can be performed.

【0040】以下、図5の3次元計測装置100を用い
た3次元計測システムにおいて具備させる各種機能につ
いて説明する。 ロボット座標変換量表示機能 予め作成したハンドリングロボット106,107や
溶接ロボット110のロボットツールの位置データを、
ロボット106,107,110と3次元計測装置10
0にダウンロードし、実際の各位置にロボット106,
107,110を移動させ、3次元計測装置100によ
り位置計測する。 加工するワークまたは治具(図5の例では自動車ボデ
ィ105)の基準位置を、3次元計測装置100で計測
する。 ワークまたは治具(図5の例では自動車ボディ10
5)に対するロボット106,107,110の位置ズ
レ量を割り出す。 オフラインティーチングで作成したロボットデータ
を、設置ズレ量分一括変換して表示する。
Various functions provided in the three-dimensional measuring system using the three-dimensional measuring apparatus 100 shown in FIG. 5 will be described below. Robot coordinate conversion amount display function The position data of the robot tools of the handling robots 106 and 107 and the welding robot 110 created in advance are
Robots 106, 107, 110 and three-dimensional measuring device 10
0 to the robot 106 at each actual position,
The three-dimensional measuring device 100 measures the position by moving 107 and 110. The three-dimensional measuring device 100 measures the reference position of the workpiece or jig (the automobile body 105 in the example of FIG. 5) to be processed. Work or jig (in the example of FIG. 5, automobile body 10
The amount of positional deviation of the robots 106, 107, 110 with respect to 5) is calculated. The robot data created by offline teaching is collectively converted and displayed for the amount of installation deviation.

【0041】3次元データ単純転送機能 3次元データを、図5の3次元計測装置100や補正カ
メラ102による3次元データ、あるいはロボット10
6,107,110の3次元位置データなどを、図5の
他の各構成要素へ転送可能にする。
Simple three-dimensional data transfer function The three-dimensional data is converted into the three-dimensional data by the three-dimensional measuring device 100 and the correction camera 102 shown in FIG.
The three-dimensional position data of 6, 107, 110 and the like can be transferred to each of the other constituent elements in FIG.

【0042】3次元データ単純受信機能 上記の各種3次元データを、図5の各構成要素で受信可
能にする。
Simple three-dimensional data reception function The various three-dimensional data described above can be received by the respective constituent elements in FIG.

【0043】以下に、図5の3次元計測システムにおい
て追加することが望ましい機能について説明する。 追加機能1 ロボット制御盤ダウンロード・アップロード機能 3次元計測装置100とロボット制御盤108,10
9,112間で、直接3次元データを送受信する機能
The functions that are preferably added to the three-dimensional measurement system shown in FIG. 5 will be described below. Additional function 1 Robot control panel download / upload function 3D measuring device 100 and robot control panels 108, 10
Function to directly send and receive 3D data between 9 and 112

【0044】追加機能2 ロボットリンク位置出し機能 3次元計測装置100とロボット制御盤108,10
9,112間のデータ転送をリアルタイムで行ない、補
正カメラ102で撮像することで、複数のロボット10
6,107,110が把持する個別のワーク(図5の例
では、自動車ボディ105や部品111)同士の位置関
係を自動的に合わせる。
Additional function 2 Robot link positioning function Three-dimensional measuring device 100 and robot control boards 108, 10
Data transfer between the robots 9 and 112 is performed in real time, and the plurality of robots 10 are captured by the correction camera 102.
The positional relationship between the individual workpieces (automobile body 105 and parts 111 in the example of FIG. 5) held by 6, 107, 110 is automatically adjusted.

【0045】[0045]

【発明の効果】本発明の3次元計測装置は、以上のよう
に、レーザポインタを水平面内または垂直面内で回転自
在の第1回転部材に取付け、この第1回転部材を垂直面
内または水平面内で回転自在の第2回転部材に取付けた
3次元計測セットを具備することを特徴とするものであ
るから、レーザを水平面内および垂直面内で自在に走査
することが出来、被計測物表面でのレーザの反射の有無
または透過の有無を利用して、被計測物の形状を計測す
ることが出来る。また、照射レーザと被計測物表面での
反射レーザとの時間差によって、レーザポインタと被計
測物との距離や被計測物表面の凹凸状態を計測すること
が出来る。
As described above, in the three-dimensional measuring apparatus of the present invention, the laser pointer is attached to the first rotary member which is rotatable in the horizontal plane or the vertical plane, and the first rotary member is mounted in the vertical plane or the horizontal plane. It is characterized in that it is equipped with a three-dimensional measurement set attached to a second rotating member that can rotate freely inside, so that the laser can be freely scanned in a horizontal plane and a vertical plane, and the surface of the object to be measured can be scanned. The shape of the object to be measured can be measured by utilizing the presence or absence of laser reflection or the presence or absence of laser transmission. Further, the distance between the laser pointer and the object to be measured and the unevenness of the surface of the object to be measured can be measured by the time difference between the irradiation laser and the reflection laser on the surface of the object to be measured.

【0046】本発明の3次元計測方法は、以上のよう
に、レーザポインタを垂直面内または水平面内で回転自
在の第1回転部材に取付け、この第1回転部材を水平面
内または垂直面内で回転自在の第2回転部材に取付けた
3次元計測セット2セットを1組にした3次元計測セッ
ト対を用いて、各レーザポインタのレーザを被計測物の
1点に集中させて、そのときのレーザの反射または透過
と、第1回転部材および第2回転部材の回転角度から被
計測物の形状を計測することを特徴とするものであるか
ら、第1のレーザポインタと第2のレーザポインタとの
レーザを被計測物の1点で集中させて走査することによ
り、被計測物の表面でのレーザの透過または反射を利用
して被計測物の有無や形状を計測することが出来ると共
に、第1回転部材および第2回転部材の回転角度から、
レーザポインタと被計測物との間の距離や被計測物表面
の凹凸状態をも計測することが出来る
According to the three-dimensional measuring method of the present invention, the laser pointer is attached to the first rotating member which is rotatable in the vertical plane or the horizontal plane as described above, and the first rotating member is placed in the horizontal plane or the vertical plane. A laser of each laser pointer is concentrated on one point of an object to be measured by using a pair of three-dimensional measurement sets, which are two sets of three-dimensional measurement sets attached to a rotatable second rotating member. Since the shape of the object to be measured is measured from the reflection or transmission of the laser and the rotation angles of the first rotating member and the second rotating member, the first laser pointer and the second laser pointer are By concentrating and scanning the laser at one point on the measured object, it is possible to measure the presence or absence and the shape of the measured object by utilizing the transmission or reflection of the laser on the surface of the measured object. 1 rotating member Beauty from the rotational angle of the second rotary member,
It is possible to measure the distance between the laser pointer and the object to be measured as well as the unevenness of the surface of the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る単一の3次元計測セッ
トからなる3次元計測装置の概略構成斜視図である。
FIG. 1 is a schematic perspective view of a three-dimensional measuring apparatus including a single three-dimensional measuring set according to an embodiment of the present invention.

【図2】図1の3次元計測セット2セットを対にした、
本発明の異なる実施形態の3次元計測装置の概略構成斜
視図である。
2 is a pair of two sets of three-dimensional measurement of FIG.
It is a schematic structure perspective view of a three-dimensional measuring device of a different embodiment of the present invention.

【図3】図2の3次元計測装置を4対で構成した、さら
に異なる実施形態の3次元計測装置の概略構成斜視図で
ある。
FIG. 3 is a schematic perspective view of a three-dimensional measuring apparatus according to another embodiment in which the three-dimensional measuring apparatus of FIG. 2 is configured in four pairs.

【図4】(A)はピンゲージの中心線位置出し、辺出し
機能について説明する概略斜視図、(B)は基準穴のセ
ンター出し機能について説明する概略斜視図、(C)は
基準面の面出し機能について説明する概略斜視図であ
る。
4A is a schematic perspective view illustrating a center line positioning function and a side positioning function of a pin gauge, FIG. 4B is a schematic perspective view illustrating a center hole positioning function of a reference hole, and FIG. 4C is a surface of a reference surface. It is a schematic perspective view explaining a delivery function.

【図5】本発明の図3の3次元計測装置を組込んだ自動
車ボディ製造ラインにおける3次元計測システムの概略
構成図である。
5 is a schematic configuration diagram of a three-dimensional measurement system in an automobile body manufacturing line incorporating the three-dimensional measurement device of FIG. 3 of the present invention.

【図6】(A)はピンゲージでの補正例について説明す
る補正前の概略正面図、(B)は補正後の概略正面図で
ある。
6A is a schematic front view before correction for explaining an example of correction with a pin gauge, and FIG. 6B is a schematic front view after correction.

【図7】(A)は基準穴での補正例について説明する補
正前の概略平面図、(B)は補正後の概略平面図であ
る。
7A is a schematic plan view before correction for explaining an example of correction in a reference hole, and FIG. 7B is a schematic plan view after correction.

【図8】(A)は基準面での補正例について説明する補
正前の概略平面図、(B)は補正後の概略平面図であ
る。
8A is a schematic plan view before correction for explaining an example of correction on a reference plane, and FIG. 8B is a schematic plan view after correction.

【図9】(A)は較正機能について説明する較正前の較
正プレートの概略正面図、(B)は較正後の概略正面図
である。
9A is a schematic front view of a calibration plate before calibration for explaining a calibration function, and FIG. 9B is a schematic front view after calibration.

【符号の説明】[Explanation of symbols]

1,1a,1b 3次元計測装置(3次元計測セット) 2 レーザポインタ 3 第1回転部材 4 支持部材 5 第2回転部材 6,6a,6b,6c,6d,6e,6f,6g,6h
レーザ 7 被計測物 7a 被計測物(ピンゲージ) 7b 被計測物(基準穴) 7c 被計測物(基準面) 8a 中心線 8b 基準ライン 10,10a,10b,10c,10d 3次元計測装
置(3次元計測セット対) 100 3次元計測装置(3次元計測セット複数対) 101 操作ボックス(ティーチングボックス) 102 補正カメラ 103 データ処理装置 104 較正プレート 104a,104b,104c,104d 基準ライン 105 ワーク(自動車ボディ) 106,107 ハンドリングロボット 108,109 ハンドリングロボット制御盤 110 溶接ロボット 111 部品 112 溶接ロボット制御盤 P,P1,P2,P3、P4 レーザスポット
1, 1a, 1b Three-dimensional measuring device (three-dimensional measuring set) 2 Laser pointer 3 First rotating member 4 Supporting member 5 Second rotating member 6, 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h
Laser 7 Object to be measured 7a Object to be measured (pin gauge) 7b Object to be measured (reference hole) 7c Object to be measured (reference surface) 8a Center line 8b Reference lines 10, 10a, 10b, 10c, 10d Three-dimensional measuring device (three-dimensional) Measurement set pair) 100 Three-dimensional measurement device (plurality of three-dimensional measurement set) 101 Operation box (teaching box) 102 Correction camera 103 Data processing device 104 Calibration plates 104a, 104b, 104c, 104d Reference line 105 Work (automobile body) 106 , 107 Handling robots 108, 109 Handling robot control panel 110 Welding robot 111 Parts 112 Welding robot control panel P, P1, P2, P3, P4 Laser spot

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 英世 大阪府池田市ダイハツ町1番1号 ダイハ ツ工業株式会社内 (72)発明者 池田 和人 大阪府池田市ダイハツ町1番1号 ダイハ ツ工業株式会社内 (72)発明者 川本 浩 大阪府池田市ダイハツ町1番1号 ダイハ ツ工業株式会社内 Fターム(参考) 2F065 AA01 AA06 AA19 AA20 AA51 BB05 CC11 DD02 DD06 FF04 FF12 FF23 FF31 FF41 FF65 GG04 HH04 JJ03 JJ05 JJ26 PP03 PP05 PP25 QQ25 UU01 UU03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideyo Takeuchi             Daihatsu 1-1 Daihatsu-cho, Ikeda City, Osaka Prefecture             Tsu Industry Co., Ltd. (72) Inventor Kazuto Ikeda             Daihatsu 1-1 Daihatsu-cho, Ikeda City, Osaka Prefecture             Tsu Industry Co., Ltd. (72) Inventor Hiroshi Kawamoto             Daihatsu 1-1 Daihatsu-cho, Ikeda City, Osaka Prefecture             Tsu Industry Co., Ltd. F term (reference) 2F065 AA01 AA06 AA19 AA20 AA51                       BB05 CC11 DD02 DD06 FF04                       FF12 FF23 FF31 FF41 FF65                       GG04 HH04 JJ03 JJ05 JJ26                       PP03 PP05 PP25 QQ25 UU01                       UU03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レーザポインタを垂直面内または水平面
内で回転自在の第1回転部材に取付け、この第1回転部
材を水平面内または垂直面内で回転自在の第2回転部材
に取付けた3次元計測セットを具備することを特徴とす
る3次元計測装置。
1. A three-dimensional structure in which a laser pointer is attached to a first rotating member rotatable in a vertical plane or a horizontal plane, and the first rotating member is attached to a second rotating member rotatable in a horizontal plane or a vertical plane. A three-dimensional measuring device comprising a measuring set.
【請求項2】 レーザポインタを垂直面内または水平面
内で回転自在の第1回転部材に取付け、この第1回転部
材を水平面内または垂直面内で回転自在の第2回転部材
に取付けた請求項1に記載の3次元計測セット2セット
を1組にした3次元計測セット対を具備することを特徴
とする3次元計測装置。
2. The laser pointer is attached to a first rotating member rotatable in a vertical plane or a horizontal plane, and the first rotating member is attached to a second rotating member rotatable in a horizontal plane or a vertical plane. 1. A three-dimensional measuring device, comprising a three-dimensional measuring set pair, which is a set of two three-dimensional measuring sets described in 1.
【請求項3】 前記3次元計測セット2セットを1組に
した請求項2に記載の3次元計測セット対を、複数対具
備することを特徴とする3次元計測装置。
3. A three-dimensional measurement apparatus comprising a plurality of pairs of the three-dimensional measurement set according to claim 2, wherein two sets of the three-dimensional measurement set are combined into one set.
【請求項4】 レーザポインタを垂直面内または水平面
内で回転自在の第1回転部材に取付け、この第1回転部
材を水平面内または垂直面内で回転自在の第2回転部材
に取付けた3次元計測セット2セットを1組にした3次
元計測セット対を用いて、各レーザポインタのレーザを
被計測物の1点に集中させて、そのときのレーザの反射
または透過と、第1回転部材および第2回転部材の回転
角度から被計測物の形状を計測することを特徴とする3
次元計測方法。
4. A three-dimensional structure in which a laser pointer is attached to a first rotating member rotatable in a vertical plane or a horizontal plane, and the first rotating member is attached to a second rotating member rotatable in a horizontal plane or a vertical plane. By using a pair of three-dimensional measurement sets each including two measurement sets, the laser of each laser pointer is concentrated on one point of the measured object, and the reflection or transmission of the laser at that time and the first rotating member and 3. The shape of the object to be measured is measured from the rotation angle of the second rotating member. 3
Dimension measurement method.
【請求項5】 前記3次元計測セット2セットを1組に
した3次元計測セット対を、複数対具備する3次元計測
装置を用いて、各3次元計測セット対ごとに、各レーザ
ポインタのレーザを被計測物の異なる位置に集中させ
て、そのときの各レーザの反射または透過と、各第1回
転部材および第2回転部材の回転角度から被計測物の形
状を計測することを特徴とする3次元計測方法。
5. A laser of each laser pointer is provided for each pair of three-dimensional measurement sets by using a three-dimensional measurement device having a plurality of pairs of three-dimensional measurement sets each including two sets of the three-dimensional measurement sets. Are concentrated on different positions of the measured object, and the shape of the measured object is measured from the reflection or transmission of each laser at that time and the rotation angle of each of the first rotating member and the second rotating member. Three-dimensional measurement method.
JP2002122358A 2002-04-24 2002-04-24 Three-dimensional measuring apparatus and method therefor Withdrawn JP2003315023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122358A JP2003315023A (en) 2002-04-24 2002-04-24 Three-dimensional measuring apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122358A JP2003315023A (en) 2002-04-24 2002-04-24 Three-dimensional measuring apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2003315023A true JP2003315023A (en) 2003-11-06

Family

ID=29537991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122358A Withdrawn JP2003315023A (en) 2002-04-24 2002-04-24 Three-dimensional measuring apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2003315023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740115B1 (en) * 2005-12-20 2007-07-16 한국항공우주연구원 Obstacle identification system using laser for night flight of helicopter
JP2012208370A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Oriented energy system
CN107543505A (en) * 2016-06-23 2018-01-05 沈阳新松机器人自动化股份有限公司 There-dimensional laser scanning device and robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740115B1 (en) * 2005-12-20 2007-07-16 한국항공우주연구원 Obstacle identification system using laser for night flight of helicopter
JP2012208370A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Oriented energy system
CN107543505A (en) * 2016-06-23 2018-01-05 沈阳新松机器人自动化股份有限公司 There-dimensional laser scanning device and robot

Similar Documents

Publication Publication Date Title
US20090157226A1 (en) Robot-cell calibration
US6044308A (en) Method and device for robot tool frame calibration
US7657082B2 (en) Method, apparatus and system for measuring a welding-groove position
US8346392B2 (en) Method and system for the high-precision positioning of at least one object in a final location in space
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
KR102121900B1 (en) Adjustment pipe reproduction apparatus
JP2014508050A (en) Device, system and method for robotic cell calibration
CN102448679A (en) Method and system for extremely precise positioning of at least one object in the end position in space
JP6252597B2 (en) Robot system
JP6622772B2 (en) Measuring system
JP2017217748A (en) Method and system for press-fitting components
JP6603289B2 (en) Robot, robot system, and robot coordinate system setting method
JP2004276151A (en) Transfer robot and teaching method for transfer robot
JPH08278117A (en) Attitude control device for work apparatus relative to work object plane, crucible instrumentation device with the control device and painting device
JP2003315023A (en) Three-dimensional measuring apparatus and method therefor
JP2006297559A (en) Calibration system and robot&#39;s calibration method
CN110560976B (en) Steel coil welding method and system
JP4783834B2 (en) Groove measurement system
JP7198153B2 (en) laser scanner survey target
US7262385B2 (en) Material processing device
JP3397311B2 (en) Tube section center position measuring method and tube processing guide device
JP2017019053A (en) Robot joint system
CN112872578A (en) Robot friction stir spot welding device
JPH11145259A (en) Wafer positioner
JP6015400B2 (en) Weld positioning method for welding member, welding member adjusting device used in the welding positioning method, and welding positioning device for welding member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705