JP2003314803A - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JP2003314803A
JP2003314803A JP2002116482A JP2002116482A JP2003314803A JP 2003314803 A JP2003314803 A JP 2003314803A JP 2002116482 A JP2002116482 A JP 2002116482A JP 2002116482 A JP2002116482 A JP 2002116482A JP 2003314803 A JP2003314803 A JP 2003314803A
Authority
JP
Japan
Prior art keywords
pipe
evaporator
steam
heat recovery
evaporator outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002116482A
Other languages
Japanese (ja)
Inventor
Keisuke Sonoda
圭介 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002116482A priority Critical patent/JP2003314803A/en
Publication of JP2003314803A publication Critical patent/JP2003314803A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovery boiler performing steam separation of steam to be fed from a vaporizer to a heater even if eliminating a steam drum. <P>SOLUTION: This waste heat recovery boiler is provided with the vaporizer which heats water supply flowing inside multiple vaporizer pipes 34 by waste heat discharged from a waste heat generation source such as a gas turbine to generate the vapor, and comprises to collect two-phase flow of the steam and the water generated in the vaporizer pipes 34 into a vaporizer outlet pipe header 35. A rotational vane 50 as a rotational flow forming means is provided in a vaporizer outlet connecting pipe connected to the outlet side of the vaporizer outlet pipe header 35. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン等か
ら排出される排気ガスの排熱を利用して蒸気を生成する
排熱回収ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler which produces steam by utilizing exhaust heat of exhaust gas discharged from a gas turbine or the like.

【0002】[0002]

【従来の技術】排熱回収ボイラは、たとえばガスタービ
ン等と組み合わせて構成されるコンバインドサイクル発
電プラントに使用されている。コンバインドサイクル発
電プラントでは、ガスタービンによって発電機を駆動し
て発電し、さらに、ガスタービンから排出される排気ガ
スの排熱を利用して蒸気を発生させる。この蒸気を蒸気
タービンへ供給すれば発電機の駆動に利用することがで
きるので、蒸気タービンによっても発電することがで
き、従って、高効率で環境に優しい発電プラントとして
注目されている。
2. Description of the Related Art Exhaust heat recovery boilers are used in combined cycle power plants constructed in combination with, for example, gas turbines. In a combined cycle power plant, a gas turbine drives a generator to generate electric power, and exhaust heat of exhaust gas discharged from the gas turbine is used to generate steam. If this steam is supplied to a steam turbine, it can be used to drive a generator, so that power can also be generated by the steam turbine, and therefore it is attracting attention as a highly efficient and environmentally friendly power plant.

【0003】このようなコンバインドサイクル発電プラ
ントにおいて、ガスタービン等の排熱発生源から排出さ
れる排熱を利用して蒸気を発生させる装置として、排熱
回収ボイラ(Heat Recovery Steam Generator)が知ら
れている。以下では、排熱回収ボイラの一例として、コ
ンバインド用三圧再熱自然循環排熱回収ボイラ(以下で
は、「HRSG」と略す)を図6に示して簡単に説明す
る。
In such a combined cycle power plant, a heat recovery steam generator is known as a device for generating steam by utilizing exhaust heat discharged from an exhaust heat generating source such as a gas turbine. ing. Hereinafter, as an example of the exhaust heat recovery boiler, a combined three-pressure reheat natural circulation exhaust heat recovery boiler (hereinafter abbreviated as “HRSG”) will be briefly described with reference to FIG. 6.

【0004】同図に示す従来のHRSG10は、下方か
ら上方に向かって排気ガスGを導くケーシング11内
に、排気ガスGの流れ方向である下から上に向かって順
番に、高圧蒸発器12、中圧蒸発器13及び低圧蒸発器
14が配置されている。高圧蒸発器12は、高圧蒸気ド
ラム15から供給されて多数の蒸発器管16内を流れる
給水をガスタービン排気Gで加熱して高圧蒸気SHを生
成する。この場合の給水は、後述する中圧蒸発器13の
給水W1から分岐させてケーシング11内を通過する給
水管17を流れ、ガスタービン排気Gの排熱で予熱され
たものが使用される。
In the conventional HRSG 10 shown in the same drawing, a high pressure evaporator 12 is introduced into a casing 11 which guides the exhaust gas G from the lower side to the upper side in order from the lower side to the upper side which is the flow direction of the exhaust gas G. A medium pressure evaporator 13 and a low pressure evaporator 14 are arranged. The high-pressure evaporator 12 heats the feed water supplied from the high-pressure steam drum 15 and flowing through the many evaporator tubes 16 by the gas turbine exhaust G to generate high-pressure steam SH. The water supply in this case is water that has been preheated by the exhaust heat of the gas turbine exhaust G by branching from the water supply W1 of the medium-pressure evaporator 13 described later and flowing through the water supply pipe 17 that passes through the inside of the casing 11.

【0005】中圧蒸発器13は、中圧蒸気ドラム18か
ら供給されて多数の蒸発器管19内を流れる給水W1を
ガスタービン排気Gで加熱して中圧蒸気SIを生成す
る。なお、給水W1の給水管20はケーシング11内を
通過しており、従って、ガスタービン排気Gで予熱され
た給水が使用される。低圧蒸発器14は、低圧蒸気ドラ
ム21から供給されて多数の蒸発器管22内を流れる給
水W2をガスタービン排気Gで加熱して低圧蒸気SLを
生成する。なお、給水W2の給水管23はケーシング1
1内を通過しており、従って、ガスタービン排気Gで予
熱された給水が使用される。また、上述した高圧蒸気S
H、中圧蒸気SI及び低圧蒸気SLは、ケーシング11
内の過熱器(図示省略)に導かれ、再加熱することで過
熱度を与えてから蒸気タービン等へ供給される。
The medium-pressure evaporator 13 heats the feed water W1 supplied from the medium-pressure steam drum 18 and flowing in a large number of evaporator pipes 19 by the gas turbine exhaust G to generate medium-pressure steam SI. The water supply pipe 20 of the water supply W1 passes through the inside of the casing 11, so that the water supply preheated by the gas turbine exhaust G is used. The low-pressure evaporator 14 heats the feed water W2 supplied from the low-pressure steam drum 21 and flowing in the many evaporator tubes 22 with the gas turbine exhaust G to generate the low-pressure steam SL. In addition, the water supply pipe 23 of the water supply W2 is the casing 1
1 through which the feed water preheated in the gas turbine exhaust G is used. In addition, the high pressure steam S described above
H, medium pressure steam SI and low pressure steam SL are casing 11
It is led to an internal superheater (not shown) and reheated to give a superheat degree before being supplied to a steam turbine or the like.

【0006】さて、上述した高圧蒸発器12、中圧蒸発
器13及び低圧蒸発器14について標準的な系統模式図
を図7に示す。なお、図中の符号30は蒸発器、31は
蒸気ドラム、32は降水管、33は蒸発器入口管寄せ、
34は蒸発器管、35は蒸発器出口管寄せ、36Lは左
側蒸発器出口連絡管、36Rは右側蒸発器出口連絡管、
37は給水管、38は飽和蒸気管、Wは給水である。
A standard system diagram of the above-described high-pressure evaporator 12, intermediate-pressure evaporator 13 and low-pressure evaporator 14 is shown in FIG. In the figure, reference numeral 30 is an evaporator, 31 is a steam drum, 32 is a downcomer, 33 is an evaporator inlet pipe,
34 is an evaporator pipe, 35 is an evaporator outlet pipe, 36L is a left evaporator outlet communication pipe, 36R is a right evaporator outlet communication pipe,
37 is a water supply pipe, 38 is a saturated steam pipe, and W is water supply.

【0007】この蒸発器30では、給水管37を介して
蒸気ドラム31内に給水Wの供給を受ける。この給水W
は、左右一対の降水管32から蒸発器入口管寄せ33へ
流出し、さらに、蒸発器入口管寄せ33から多数の蒸発
器管34へ分配される。蒸発器管34は、一端が蒸発器
入口管寄せ33に接続され、他端が蒸発器出口管寄せ3
5に接続されたU字状の管である。給水Wは、蒸発器管
34内を流れることによって蒸発器管34の周囲を下か
ら上へ上昇していく高温のガスタービン排気Gに加熱さ
れ、蒸気及び水の二相流となって蒸発器出口管寄せ35
へ流入する。なお、蒸発器管34は、同一円周上におい
てそれぞれが蒸発器出口管寄せ35の管中心に向けて1
本または複数本接続されている。
In the evaporator 30, the water supply W is supplied into the steam drum 31 through the water supply pipe 37. This water supply W
Flows out from the pair of left and right downcomer pipes 32 to the evaporator inlet header 33, and is further distributed from the evaporator inlet header 33 to a large number of evaporator pipes 34. One end of the evaporator pipe 34 is connected to the evaporator inlet pipe 33, and the other end is connected to the evaporator outlet pipe 3
It is a U-shaped tube connected to 5. The water supply W is heated by the high temperature gas turbine exhaust G that rises from the bottom to the top of the evaporator pipe 34 by flowing in the evaporator pipe 34, and becomes a two-phase flow of steam and water. Outlet heading 35
Flow into. In addition, the evaporator pipes 34 are respectively arranged toward the center of the evaporator outlet pipe 35 on the same circumference.
Books or multiple books are connected.

【0008】この後、蒸気及び水の二相流は、左側蒸発
器出口連絡管36L及び右側蒸発器出口連絡管36Rに
分流して蒸気ドラム31へ戻る。蒸気ドラム31では、
飽和蒸気管38を通って飽和蒸気が流出し、水は降水管
32から流出する給水Wと合流して再循環する。すなわ
ち、上述した蒸気ドラム31は、図示省略の過熱器へ水
を含むことなく蒸気のみが供給されるように設置したも
のである。
After that, the two-phase flow of steam and water is split into the left evaporator outlet communication pipe 36L and the right evaporator outlet communication pipe 36R and returns to the steam drum 31. In the steam drum 31,
Saturated steam flows out through the saturated steam pipe 38, and the water merges with the feed water W flowing out of the downcomer pipe 32 and is recirculated. That is, the above-mentioned steam drum 31 is installed so that only steam is supplied to the superheater (not shown) without containing water.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した構
成の排熱回収ボイラにおいては、装置コストの低減が求
められている。このような背景から、圧力容器となるた
めコストの高い蒸気ドラム31を廃止することが検討さ
れている。しかしながら、蒸発器30から過熱器へ供給
する蒸気は、蒸気クオリティーを1以上にして水分が含
まれないようにする必要があるため、蒸気ドラム30に
代わる何らかの対策が必要となる。このような蒸気ドラ
ム30に代わる装置として汽水分離器を設置することも
考えられるが、蒸気ドラム30と同様に圧力容器となる
ため、装置コストの低減はあまり期待できない。
By the way, in the exhaust heat recovery boiler having the above-mentioned structure, it is required to reduce the device cost. From such a background, it is considered to abolish the steam drum 31, which is a pressure vessel and is expensive. However, the steam supplied from the evaporator 30 to the superheater needs to have a steam quality of 1 or more so as not to contain water, and therefore, some measure to replace the steam drum 30 is required. It is conceivable to install a brackish water separator as an apparatus replacing the steam drum 30. However, since the steam container is a pressure vessel like the steam drum 30, reduction in apparatus cost cannot be expected so much.

【0010】本発明は、上記の事情に鑑みてなされたも
ので、蒸気ドラムを廃止しても蒸発器から過熱器へ供給
する蒸気の汽水分離を行うことができる排熱回収ボイラ
の提供を目的としている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust heat recovery boiler capable of separating steam supplied from an evaporator to a superheater into brackish water even if the steam drum is abolished. I am trying.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するため、以下の手段を採用した。請求項1に記載の
排熱回収ボイラは、ガスタービン等の排熱発生源から排
出される排熱で多数の蒸発器管内を流れる給水を加熱し
て蒸気を発生させる蒸発器を備え、前記蒸発器管内で発
生させた蒸気及び水の二相流を蒸発器出口管寄せに集め
るように構成された排熱回収ボイラにおいて、前記蒸発
器出口管寄せの出口側に連結された蒸発器出口連絡管内
に旋回流形成手段を設けたことを特徴とするものであ
る。
The present invention adopts the following means in order to solve the above problems. The exhaust heat recovery boiler according to claim 1 is provided with an evaporator that heats feed water flowing in a large number of evaporator tubes with exhaust heat discharged from an exhaust heat generation source such as a gas turbine to generate steam, In a heat recovery steam generator configured to collect the two-phase flow of steam and water generated in the evaporator pipe to the evaporator outlet pipe, inside the evaporator outlet communication pipe connected to the outlet side of the evaporator outlet pipe It is characterized in that a swirl flow forming means is provided in the.

【0012】このような排熱回収ボイラによれば、蒸発
器出口管寄せの出口側に連結された蒸発器出口連絡管内
に旋回流形成手段を設けたので、二相流は旋回流形成手
段を通過することにより管内壁に沿った旋回流となって
出口側へ流れていく。このため、蒸気と水との二相流に
は遠心力が作用し、両者の比重が異なることから、比重
の大きい水は外側に集まり、反対に比重の小さい蒸気は
が中心部に集まって分離される。
According to such an exhaust heat recovery boiler, since the swirl flow forming means is provided in the evaporator outlet communication pipe connected to the outlet side of the evaporator outlet pipe, the two-phase flow is formed by the swirl flow forming means. By passing, it becomes a swirling flow along the inner wall of the pipe and flows toward the outlet side. For this reason, centrifugal force acts on the two-phase flow of steam and water, and the specific gravities of the two differ, so that water with a large specific gravity gathers outside, and steam with a small specific gravity conversely separates in the central part. To be done.

【0013】請求項1記載の排熱回収ボイラにおいて
は、旋回流形成手段として旋回ベーンまたは旋回リボン
が好適であり、二相流が旋回ベーンや旋回リボンを通過
すると管内壁に沿った旋回流となる。(請求項2及び
3)
In the exhaust heat recovery boiler according to claim 1, swirl vanes or swirl ribbons are suitable as swirl flow forming means, and when the two-phase flow passes through the swirl vanes or swirl ribbons, swirl flow along the inner wall of the pipe is generated. Become. (Claims 2 and 3)

【0014】また、請求項1記載の排熱回収ボイラにお
いては、前記旋回流形成手段が、前記蒸発器出口連絡管
内に形成されて出口方向の管内壁側へ管内流路断面積を
狭めていく傾斜面と、前記蒸発器出口連絡管と交差して
接続された横断出口連絡管とを具備して構成されたもの
でもよく、これにより、傾斜面で管の内壁側へ集められ
た二相流は、横断出口連絡管の接線方向から流入する。
従って、横断出口連絡管に流入した二相流は、管内壁に
沿った旋回流となる。(請求項4)
Further, in the exhaust heat recovery boiler according to the first aspect, the swirl flow forming means is formed in the evaporator outlet communication pipe and narrows the cross-sectional area of the pipe passage toward the pipe inner wall side in the outlet direction. It may be configured to include an inclined surface and a transverse outlet communication pipe connected to intersect with the evaporator outlet communication pipe, whereby the two-phase flow collected on the inner wall side of the pipe at the inclined surface. Flows in from the tangential direction of the transverse outlet connecting pipe.
Therefore, the two-phase flow that has flowed into the transverse outlet communication pipe becomes a swirl flow along the inner wall of the pipe. (Claim 4)

【0015】請求項1から4のいずれかに記載の排熱回
収ボイラにおいては、前記蒸発器出口連絡管または前記
横断出口連絡管の内部に飽和蒸気入口を略同心に開口さ
せた飽和蒸気管を配置して二重管構造とすればよく、こ
れにより、中心部に集められた蒸気は外側の水を含むこ
となく飽和蒸気管から確実に流出する。(請求項5)
In the exhaust heat recovery boiler according to any one of claims 1 to 4, a saturated steam pipe in which a saturated steam inlet is opened substantially concentrically is provided inside the evaporator outlet communication pipe or the transverse outlet communication pipe. It suffices to arrange them in a double pipe structure, which ensures that the steam collected in the central portion flows out from the saturated steam pipe without containing water on the outside. (Claim 5)

【0016】請求項1から3のいずれかに記載の排熱回
収ボイラにおいては、前記旋回流形成手段の下流側でか
つ前記蒸発器出口連絡管の外側に拡径出口連絡管を設け
て二重管構造とし、前記蒸発器出口連絡管と前記拡径出
口連絡管との間を連通させるスリットを設け、該スリッ
トより下流側の蒸発器出口連絡管を飽和蒸気管として用
いてもよく、これにより、外側の水はスリットから拡径
出口連絡管へ流出し、中心部に集められた蒸気は外側の
水を含むことなくそのまま飽和蒸気管として用いられる
蒸発器出口連絡管から確実に流出する。(請求項6)
In the exhaust heat recovery boiler according to any one of claims 1 to 3, a diameter expansion outlet communication pipe is provided on the downstream side of the swirl flow forming means and outside the evaporator outlet communication pipe. A tube structure may be provided with a slit for communicating between the evaporator outlet communication pipe and the expanded outlet communication pipe, and the evaporator outlet communication pipe on the downstream side of the slit may be used as a saturated vapor pipe. The outer water flows out from the slit to the expanded diameter outlet communication pipe, and the steam collected in the central portion surely flows out from the evaporator outlet communication pipe used as a saturated steam pipe without containing the outer water. (Claim 6)

【0017】また、請求項1から6のいずれかに記載の
排熱回収ボイラにおいては、前記蒸発器出口管寄せまた
は前記横断出口連絡管が水平に設置されている時、前記
飽和蒸気管が上向きに導かれ、前記蒸発器出口管寄せが
下向きに導かれることが好ましく、これにより、上向き
に導かれる比重の小さい蒸気に比重の大きな水が含まれ
るのを防止することができ、蒸気と水とを確実に分離さ
せることができる。(請求項7)
Further, in the exhaust heat recovery boiler according to any one of claims 1 to 6, when the evaporator outlet pipe or the transverse outlet connecting pipe is installed horizontally, the saturated steam pipe is directed upward. It is preferable that the evaporator outlet pipe is guided downward, whereby it is possible to prevent water with a large specific gravity from being included in the steam with a small specific gravity that is guided upward. Can be reliably separated. (Claim 7)

【0018】また、請求項1から6のいずれかに記載の
排熱回収ボイラにおいては、前記蒸発器出口管寄せまた
は前記横断出口連絡管が鉛直または傾斜して設置されて
いる時、前記飽和蒸気管が前記蒸発器出口管寄せの上端
部側に開口して上向きに導かれることが好ましく、これ
により、比重の大きい水が上端部側の開口から上向きに
流出するのは困難になるので、蒸気と水とを確実に分離
させることができる。(請求項8)
Further, in the exhaust heat recovery boiler according to any one of claims 1 to 6, when the evaporator outlet pipe or the transverse outlet communication pipe is installed vertically or inclined, the saturated steam It is preferable that the pipe is opened to the upper end side of the evaporator outlet pipe side and guided upward, so that it becomes difficult for water having a large specific gravity to flow upward from the upper end side opening. And water can be reliably separated. (Claim 8)

【0019】[0019]

【発明の実施の形態】以下、本発明に係る排熱回収ボイ
ラの一実施形態を図面に基づいて説明する。なお、以下
の各実施形態では、従来例として図7に示した蒸発器3
0及びその蒸発器出口管寄せ35を拡大した要部の図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an exhaust heat recovery boiler according to the present invention will be described below with reference to the drawings. In each of the following embodiments, the evaporator 3 shown in FIG. 7 as a conventional example is used.
No. 0 and the evaporator outlet pipe header 35 will be described with reference to the enlarged main drawings.

【0020】<第1の実施形態>図1(a)は、蒸発器
管出口寄せ周辺を拡大して示した要部断面図であり、図
中の符号34は蒸発器管、35は蒸発器出口管寄せ、3
6は蒸発器出口連絡管、40は飽和蒸気管、50は旋回
ベーンである。この実施形態においては、蒸発器出口管
寄せ35が水平に設置された横置き管寄せの構成例が示
されており、図示の例では、図1(b)に示すように、
蒸発器管34を同一円周上に4本接続した4本取りとし
てある。
<First Embodiment> FIG. 1 (a) is an enlarged cross-sectional view of an essential portion of the vicinity of an outlet of an evaporator pipe, in which reference numeral 34 is an evaporator tube and 35 is an evaporator. Outlet heading, 3
6 is an evaporator outlet communication pipe, 40 is a saturated steam pipe, and 50 is a swirl vane. In this embodiment, a configuration example of a horizontally placed header in which the evaporator outlet header 35 is installed horizontally is shown. In the illustrated example, as shown in FIG.
The four evaporator tubes 34 are connected on the same circumference.

【0021】蒸発器出口管寄せ35では、給水が多数の
蒸発器管34を通過する過程で加熱されて蒸気及び水の
二相流となったものを集め、飽和蒸気のみを図示省略の
過熱器へ供給する。蒸発器出口管寄せ35の外周面に
は、同一円周上において管中心へ向けた4本の蒸発器管
34が放射状に接続され、管内部と連通している。この
ように、4本の蒸発器管34が同一円周上に接続された
構成は一般的には「4本取り」と呼ばれており、この4
本取りが蒸発器出口管寄せ35の軸方向に多数配列され
ている。なお、図1は蒸発器管4について4本取りの例
を示しているが、この数は4本に限定されることはな
く、1本及び複数本から適宜選択することができる。
In the evaporator outlet header 35, the feed water which is heated in the process of passing through a large number of evaporator tubes 34 and becomes a two-phase flow of steam and water is collected, and only saturated steam is superheated (not shown). Supply to. On the outer peripheral surface of the evaporator outlet pipe header 35, four evaporator pipes 34 directed toward the pipe center are radially connected on the same circumference and communicate with the inside of the pipe. As described above, the structure in which the four evaporator tubes 34 are connected on the same circumference is generally referred to as “four-piece take”.
A large number of main arrangements are arranged in the axial direction of the evaporator outlet pipe head 35. Although FIG. 1 shows an example in which four evaporator tubes 4 are taken, the number is not limited to four and can be appropriately selected from one and plural.

【0022】さて、本発明では、蒸発器出口管寄せ35
の出口(下流)側に接続されている蒸発器出口連絡管3
6の直管部の内部に、旋回流形成手段として旋回ベーン
50を設置してある。この旋回ベーン50は、たとえば
板状翼または羽根を円周方向へ複数枚配列したものであ
り、蒸発器出口管寄せ35から蒸発器出口連絡管36へ
流れてきた二相流を回転させて旋回流に変換する機能を
有している。
Now, in the present invention, the evaporator outlet pipe head 35
Outlet connection pipe 3 connected to the outlet (downstream) side of the
A swirl vane 50 is installed inside the straight pipe portion 6 as a swirl flow forming means. The swirl vane 50 is, for example, a plurality of plate-shaped blades or blades arranged in the circumferential direction, and swirls by rotating the two-phase flow flowing from the evaporator outlet header 35 to the evaporator outlet communication pipe 36. It has the function of converting into a flow.

【0023】このような構成とすれば、蒸発器出口管寄
せ35に流入した蒸気及び水の二相流は、蒸発器出口連
絡管36内に設置された旋回ベーン50を通過すること
で旋回流となる。この結果、二相流は蒸発器出口連絡管
36の内壁に沿って旋回しながら出口方向へ導かれ、遠
心力が作用することによって比重の大きい水は外側とな
る内壁側へ集まり、比重の小さい蒸気は管の中心側へ集
まるので、蒸気と水とは蒸発器出口連絡管36内におい
て旋回ベーン50の下流側で分離される。従って、蒸発
器出口連絡管36の中心に集まった蒸気のみを過熱器へ
導くようにすれば、蒸気ドラム31を廃止しても蒸気ク
オリティーが1以上の蒸気を過熱器へ供給することが可
能になる。
With such a structure, the two-phase flow of steam and water flowing into the evaporator outlet pipe 35 passes through the swirl vanes 50 installed in the evaporator outlet communication pipe 36, and thereby the swirl flow is generated. Becomes As a result, the two-phase flow is guided in the outlet direction while swirling along the inner wall of the evaporator outlet communication pipe 36, and due to the centrifugal force, water having a large specific gravity gathers on the inner wall side which is the outer side, and the specific gravity is small. Since steam collects on the center side of the pipe, the steam and water are separated in the evaporator outlet communication pipe 36 downstream of the swirl vanes 50. Therefore, if only the steam collected at the center of the evaporator outlet communication pipe 36 is guided to the superheater, it is possible to supply steam having a steam quality of 1 or more to the superheater even if the steam drum 31 is eliminated. Become.

【0024】上述したように、蒸発器出口連絡管36内
で半径方向に分離された蒸気及び水をそれぞれ所望の機
器へ確実に導く具体的な構成例として、図1(a)に示
すように、蒸発器出口連絡管36内に飽和蒸気管40を
略同心に開口させて配置した二重管構造がある。この飽
和蒸気管40は、その一端部となる開口部41が旋回ベ
ーン50の下流側に適当な距離をもって開口している。
そして、飽和蒸気管40は蒸発器出口連絡管36を貫通
し、水平に設置された蒸発器出口管寄せ35から90度
程度方向転換して上向きに導かれる。一方、蒸発器出口
管寄せ35に連結された蒸発器出口連絡管36は、開口
部41より下流側において、旋回流形成及び蒸気・水の
分離に必要な直管部を形成した後、飽和蒸気管40とは
逆向きに蒸発器出口管寄せ35から90度程度下向きに
方向転換している。
As shown in FIG. 1 (a), as a concrete structural example for surely guiding the steam and water separated in the radial direction in the evaporator outlet communication pipe 36 to the desired equipment as described above. There is a double pipe structure in which a saturated steam pipe 40 is arranged in the evaporator outlet communication pipe 36 so as to be opened substantially concentrically. The saturated steam pipe 40 has an opening 41, which is one end thereof, opened downstream of the swirl vane 50 with an appropriate distance.
Then, the saturated steam pipe 40 penetrates through the evaporator outlet communication pipe 36, and is turned around by 90 degrees from the horizontally installed evaporator outlet pipe header 35 to be guided upward. On the other hand, the evaporator outlet communication pipe 36 connected to the evaporator outlet pipe 35 forms a straight pipe portion required for swirling flow formation and steam / water separation on the downstream side of the opening 41, and then the saturated vapor is formed. It is turned downward from the evaporator outlet pipe head 35 by about 90 degrees in the opposite direction to the pipe 40.

【0025】このようにすれば、開口部41から飽和蒸
気管40へ流入した比重の小さい蒸気は容易に上向きの
流れを形成して過熱器へ導かれ、外側を流れる比重の大
きい水は蒸発器出口連絡管36に導かれて下向きの流れ
を形成するため、まんがいち比重の大きい水が飽和蒸気
管40内を流れる蒸気に混じっても上向きの流れに追従
することができずに分離される。従って、蒸気と水との
分離はより確実なものとなり、過熱器へはクオリティー
の高い蒸気を安定供給することができる。なお、蒸発器
30において上述した蒸気と水の二相流が生じやすいの
は、ガスタービンの排気ガス温度が安定しない運転起動
時や負荷変動時などであり、上述した本発明の構成を採
用すれば、このような場合においても蒸気ドラムを廃止
することが可能になる。
In this way, the steam having a small specific gravity flowing from the opening 41 into the saturated steam pipe 40 easily forms an upward flow and is guided to the superheater, and the water having a large specific gravity flowing outside is evaporated. Since the downward flow is formed by being guided to the outlet communication pipe 36, even if water with a large specific gravity is mixed with the steam flowing in the saturated steam pipe 40, it cannot follow the upward flow and is separated. Therefore, the separation of steam and water becomes more reliable, and high-quality steam can be stably supplied to the superheater. It is to be noted that the above-described two-phase flow of steam and water is likely to occur in the evaporator 30 when the gas turbine exhaust gas temperature is not stable when the engine is started or when the load changes. For example, even in such a case, the steam drum can be eliminated.

【0026】ところで、上述した旋回流形成手段の旋回
ベーン50については、たとえば図2に示した第1変形
例のように、旋回リボン55を採用することができる。
この旋回リボン55は、たとえば薄い金属板を捻って蒸
発器出口連絡管36の内径と略一致する螺旋形状を形成
したものであり、適当な手段をもって管内に固定されて
いる。このような旋回リボン55を設置すると、この旋
回リボン55を通過した二相流は旋回流となって遠心力
の作用を受ける。このため、上述した旋回ベーン50と
同様にして、二相流を蒸気と水とに分離することができ
る。
By the way, as the swirl vane 50 of the swirl flow forming means described above, a swirl ribbon 55 can be adopted as in the first modification shown in FIG. 2, for example.
The swirling ribbon 55 is, for example, a thin metal plate twisted to form a spiral shape substantially matching the inner diameter of the evaporator outlet communication pipe 36, and is fixed in the pipe by an appropriate means. When such a swirl ribbon 55 is installed, the two-phase flow passing through the swirl ribbon 55 becomes a swirl flow and is subjected to the action of centrifugal force. Therefore, the two-phase flow can be separated into steam and water in the same manner as the swirl vane 50 described above.

【0027】なお、分離した蒸気を導く飽和蒸気管4
0、及び水を導く蒸発器出口連絡管36については、図
1に示した実施形態と同様の構成を採用して蒸気と水と
の分離をより確実なものとすれば、過熱器へクオリティ
ーの高い蒸気を安定供給することができる。
The saturated steam pipe 4 for guiding the separated steam
0 and the evaporator outlet communication pipe 36 that guides water, if the same configuration as that of the embodiment shown in FIG. 1 is adopted to more reliably separate steam and water, the quality of the superheater is improved. High steam can be supplied stably.

【0028】次に、図3に示す第2変形例について説明
する。この第2変形例では、旋回ベーン50の下流で管
中央部に集めた蒸気を図示省略の過熱器へ導く飽和蒸気
管40の構成が異なっている。この変形例では、旋回ベ
ーン50の下流側でかつ蒸発器出口連絡管36の外側
に、蒸発器出口連絡管36を拡径してなる拡径出口連絡
管36Aを略同心に設けた二重管構造を採用している。
そして、内側の蒸発器出口連絡管36と外側の拡径出口
連絡管36Aとの間を連通させるスリット37を設け、
このスリット37より下流側の蒸発器出口連絡管36が
飽和蒸気管40として用いられている。なお、旋回ベー
ン50とスリット37との間には、旋回流の形成及び蒸
気と水との分離が十分になされるよう、適当な長さの直
管部が設けられている。
Next, a second modification shown in FIG. 3 will be described. In the second modified example, the structure of the saturated steam pipe 40 that guides the steam collected in the central portion of the pipe downstream of the swirl vane 50 to a superheater (not shown) is different. In this modification, a double-walled pipe in which a diameter-expanded outlet communication pipe 36A formed by expanding the evaporator outlet communication pipe 36 is provided substantially concentrically on the downstream side of the swirl vane 50 and outside the evaporator outlet communication pipe 36. The structure is adopted.
Then, a slit 37 is provided to connect the inside evaporator outlet communication pipe 36 and the outside diameter expansion outlet communication pipe 36A,
The evaporator outlet communication pipe 36 on the downstream side of the slit 37 is used as a saturated steam pipe 40. A straight pipe portion having an appropriate length is provided between the swirl vane 50 and the slit 37 so that swirl flow is sufficiently formed and steam and water are sufficiently separated.

【0029】このため、飽和蒸気管40として用いる蒸
発器出口連絡管36は、スリット37の下流側に流れを
乱さないよう適当な直管部を確保した後、90度程度方
向転換し、拡径出口連絡管36Aを貫通して上向きに導
かれる。また、拡径出口連絡管36Aは、スリット37
の下流側で飽和蒸気管40とは逆向きに、水平方向から
90度程度下向きに方向転換している。
For this reason, the evaporator outlet communication pipe 36 used as the saturated steam pipe 40 is provided with a suitable straight pipe portion on the downstream side of the slit 37 so as not to disturb the flow, and then the direction is changed by about 90 degrees to expand the diameter. It is guided upward through the outlet communication pipe 36A. Further, the diameter expansion outlet communication pipe 36A is provided with the slit 37.
On the downstream side, the direction of the saturated steam pipe 40 is changed from the horizontal direction downward by about 90 degrees.

【0030】このように構成すれば、旋回ベーン50を
通過した二相流は旋回流となって遠心力が作用するの
で、外側の管壁側へ集まった比重の大きい水がスリット
37を通って拡径出口連絡管36Aへ流出し、管中心部
に集まった比重の小さい蒸気はそのまま直進して飽和蒸
気管40に流れ込む。従って、二相流の蒸気及び水は確
実に分離され、過熱器へは飽和蒸気管40を介してクオ
リティーの高い飽和蒸気を安定供給することができる。
According to this structure, the two-phase flow passing through the swirl vane 50 becomes a swirl flow and a centrifugal force acts, so that water having a large specific gravity gathered on the outer pipe wall side passes through the slit 37. The steam having a small specific gravity, which has flowed out to the diameter expansion outlet communication pipe 36A and has gathered in the center of the pipe, goes straight into the saturated steam pipe 40. Therefore, the two-phase steam and water are reliably separated, and the saturated steam of high quality can be stably supplied to the superheater through the saturated steam pipe 40.

【0031】さて、上述した実施形態及びその変形例で
は、蒸発器出口管寄せ35が水平に設置されている横置
き管寄せへの適用例を示して説明したが、垂直方向に設
置した縦置き管寄せや斜めに設置した傾斜管寄せへの適
用が可能なことはいうまでもない。このような縦置き管
寄せや傾斜管寄せの場合、飽和蒸気管40が蒸発器出口
管寄せ35の上端部側に開口する二重管構造とし、分離
した飽和蒸気を上向きに導くようにすればよい。また、
二相流から分離した水は、そのまま下向きに流れるよう
に蒸発器出口連絡管36または拡径出口連絡管36Aを
設ければよい。
In the above-described embodiment and its modified example, the application to the horizontal placement of the evaporator outlet header 35 is shown, but the vertical placement of the evaporator outlet pipe 35 is explained. Needless to say, it can be applied to a pipe head or a tilted pipe head installed at an angle. In the case of such a vertical pipe arrangement or an inclined pipe arrangement, the saturated vapor pipe 40 has a double pipe structure in which the saturated vapor pipe 40 opens to the upper end side of the evaporator outlet pipe 35, and the separated saturated vapor is guided upward. Good. Also,
The water separated from the two-phase flow may be provided with the evaporator outlet communication pipe 36 or the expanded diameter outlet communication pipe 36A so as to flow downward as it is.

【0032】<第2の実施形態>図4(a)及び(b)
は蒸発器出口管寄せ周辺を拡大した要部断面図であり、
(a)は正面図、(b)は平面図を示している。なお、
図中の符号34は蒸発器管、35は蒸発器出口管寄せ、
36は蒸発器出口連絡管、40は飽和蒸気管、45は横
断出口連絡管、60は傾斜面、61はブロックである。
<Second Embodiment> FIGS. 4A and 4B.
Is an enlarged cross-sectional view of an essential part of the vicinity of the evaporator outlet pipe,
(A) is a front view and (b) is a plan view. In addition,
In the figure, reference numeral 34 is an evaporator pipe, 35 is an evaporator outlet pipe,
36 is an evaporator outlet connecting pipe, 40 is a saturated steam connecting pipe, 45 is a transverse outlet connecting pipe, 60 is an inclined surface, and 61 is a block.

【0033】この実施形態では、蒸発器出口管寄せ35
が水平に設置された横置き管寄せの構成例が示されてお
り、図示の例では、蒸発器管34を同一円周上に4本接
続した4本取りとしてある。この実施形態の旋回流形成
手段は、蒸発器出口管寄せ35に連結された蒸発器出口
連絡管36内に形成されて出口方向の管内壁36a側へ
管内流路断面積を狭めていく傾斜面60と、蒸発器出口
連絡管36と交差して接続された横断出口連絡管45と
を具備して構成される。
In this embodiment, the evaporator outlet pipe header 35
Shows a configuration example of horizontal placement of a horizontal pipe. In the illustrated example, four evaporator pipes 34 are connected on the same circumference. The swirl flow forming means of this embodiment is formed in the evaporator outlet communication pipe 36 connected to the evaporator outlet pipe head 35, and is an inclined surface that narrows the cross-sectional area of the pipe flow passage toward the pipe inner wall 36a in the outlet direction. 60 and a transverse outlet communication pipe 45 connected to intersect with the evaporator outlet communication pipe 36.

【0034】図4の傾斜面60は、蒸発器出口連絡管3
6内に固定設置されたブロック61によって形成されて
いる。図示の横断出口連絡管45は、蒸発器出口連絡管
36の一端にT字状に接続された同径の配管であり、水
平方向の蒸発器出口連絡管36に対し垂直方向に設置さ
れている。この横断出口配管45の上端部側には飽和蒸
気管40が略同心に配置され、その開口部41が飽和蒸
気の入口として開口している。なお、横断出口連絡管4
5は、蒸発器出口連絡管36と必ずしも同径とする必要
はなく、適宜選択が可能である。
The inclined surface 60 in FIG. 4 is the evaporator outlet communication pipe 3
6 is formed by a block 61 fixedly installed. The illustrated transverse outlet communication pipe 45 is a pipe of the same diameter connected to one end of the evaporator outlet communication pipe 36 in a T shape, and is installed vertically to the horizontal evaporator outlet communication pipe 36. . A saturated steam pipe 40 is arranged substantially concentrically on the upper end side of the transverse outlet pipe 45, and an opening 41 thereof is opened as an inlet for saturated steam. In addition, crossing exit connection pipe 4
5 does not necessarily have the same diameter as the evaporator outlet communication pipe 36, and can be appropriately selected.

【0035】このような構成とすれば、蒸発器出口連絡
管36へ流入してきた蒸気及び水の二相流は、横断出口
配管45へ近づくにつれて傾斜面60に沿って管内壁3
6aの一方向(図示の例では平面視の紙面上側)へ集め
られる。この結果、二相流は横断出口連絡管45の管内
壁45aに沿って略接線方向から流れ込むようになるの
で、横断出口連絡管45内を流れる二相流は旋回流とな
って遠心力の作用を受ける。このため、比重差によって
蒸気と水とが管の内外に分離されるので、比重の小さい
蒸気が管中心側に集まって飽和蒸気管40から図示省略
の過熱器へ導かれ、比重の大きい水が横断出口連絡管4
5内を落下して下方へ導かれる。従って、二相流の蒸気
及び水は確実に分離され、過熱器へは飽和蒸気管40を
介してクオリティーの高い飽和蒸気を安定供給すること
ができる。
With such a structure, the two-phase flow of steam and water flowing into the evaporator outlet communication pipe 36 approaches the transverse outlet pipe 45 along the inclined surface 60 along the pipe inner wall 3
6a is collected in one direction (in the illustrated example, the upper side of the plane of the drawing). As a result, the two-phase flow comes to flow from the substantially tangential direction along the inner pipe wall 45a of the transverse outlet communication pipe 45, so that the two-phase flow in the transverse outlet communication pipe 45 becomes a swirl flow and acts by centrifugal force. Receive. For this reason, steam and water are separated into the inside and outside of the pipe due to the difference in specific gravity, so that steam with a small specific gravity gathers on the pipe center side and is guided from the saturated steam pipe 40 to a superheater (not shown), and water with a large specific gravity Crossing exit connecting pipe 4
It falls in 5 and is guided downward. Therefore, the two-phase steam and water are reliably separated, and the saturated steam of high quality can be stably supplied to the superheater through the saturated steam pipe 40.

【0036】図5に示す変形例では、ブロック60に代
えて傾斜板62を蒸発器出口連絡管36内に固定設置
し、傾斜面60を形成してある。このようにしても、上
述したブロック61による傾斜面60と同様の作用効果
が得られる。また、上述した図4及び図5の実施形態で
は、蒸発器出口管寄せ35及び蒸発器出口連絡管36を
水平に設置して横断出口連絡管45を垂直方向に接続し
た実施例を示してあるが、本発明はこれに限定されるこ
とはなく、たとえば横断出口配管36を傾斜させたり、
あるいは、蒸発器出口管寄せ35及び蒸発器出口連絡管
36を傾斜させるなど、傾斜面60を用いて横断出口連
絡管45内に二相流の旋回流を形成する種々の変形例が
可能である。
In the modification shown in FIG. 5, an inclined plate 62 is fixedly installed in the evaporator outlet communication pipe 36 instead of the block 60, and the inclined surface 60 is formed. Even in this case, the same effect as that of the inclined surface 60 by the block 61 described above can be obtained. Moreover, in the embodiment of FIGS. 4 and 5 described above, an example is shown in which the evaporator outlet pipe header 35 and the evaporator outlet communication pipe 36 are horizontally installed and the transverse outlet communication pipe 45 is connected in the vertical direction. However, the present invention is not limited to this. For example, the cross outlet pipe 36 may be inclined,
Alternatively, various modifications are possible in which a two-phase swirl flow is formed in the transverse outlet communication pipe 45 by using the inclined surface 60, such as inclining the evaporator outlet header 35 and the evaporator outlet communication pipe 36. .

【0037】以上説明したように、本発明の各実施形態
によれば、蒸発器出口連絡管36内に設置した旋回流形
成手段によって二相流の旋回流を形成し、この二相流か
ら蒸気を分離させて飽和蒸気を過熱器へ供給することが
できるので、汽水分離の目的で設置していた蒸気ドラム
が不要となる。なお、本発明の構成は上述した実施形態
に限定されるものではなく、本発明の要旨を逸脱しない
範囲内において適宜変更することができる。
As described above, according to each of the embodiments of the present invention, a swirl flow forming means installed in the evaporator outlet communication pipe 36 forms a swirl flow of a two-phase flow, and vapor is generated from this two-phase flow. Since saturated steam can be separated and supplied to the superheater, the steam drum installed for the purpose of brackish water separation becomes unnecessary. It should be noted that the configuration of the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of the present invention.

【0038】[0038]

【発明の効果】本発明の排熱回収ボイラによれば、以下
の効果を奏する。請求項1に記載の発明によれば、蒸発
器出口管寄せの出口側に連結された蒸発器出口連絡管内
に旋回流形成手段を設けたので、この旋回流形成手段を
通過した二相流は管内壁に沿った旋回流となる。この結
果、二相流の蒸気及び水は、比重が異なるため蒸気と水
とは遠心力によって分離され、比重の大きい水が外側に
集まり、比重の小さい蒸気が中心部に集まるので、蒸気
ドラムを廃止しても汽水分離を行うことができる。
The exhaust heat recovery boiler of the present invention has the following effects. According to the invention described in claim 1, since the swirl flow forming means is provided in the evaporator outlet communication pipe connected to the outlet side of the evaporator outlet pipe, the two-phase flow passing through the swirl flow forming means is It becomes a swirling flow along the inner wall of the pipe. As a result, the steam and water of the two-phase flow have different specific gravities, so the steam and water are separated by centrifugal force, the water with a large specific gravity gathers outside, and the steam with a small specific gravity gathers in the central part. Brackish water can be separated even if it is abolished.

【0039】このような排熱回収ボイラにおいて、旋回
流形成手段として旋回ベーンや旋回リボンを採用する
と、比較的小さなスペースで二相流を旋回流とし、蒸気
及び水に分離させることができる。また、蒸発器出口連
絡管内に形成されて出口方向の管内壁側へ管内流路断面
積を狭めていく傾斜面と、蒸発器出口連絡管と交差して
接続された横断出口連絡管とを具備して構成された旋回
流形成手段を採用すれば、横断出口連絡管の接線方向か
ら流入する二相流を旋回流にして蒸気及び水に分離させ
ることができる。
In such an exhaust heat recovery boiler, if a swirl vane or swirl ribbon is used as the swirl flow forming means, the two-phase flow can be made into a swirl flow and separated into steam and water in a relatively small space. In addition, an inclined surface that is formed in the evaporator outlet communication pipe and narrows the cross-sectional area of the pipe flow path toward the pipe inner wall in the outlet direction, and a transverse outlet communication pipe that is connected to intersect the evaporator outlet communication pipe If the swirl flow forming means configured as described above is adopted, the two-phase flow flowing in from the tangential direction of the transverse outlet communication pipe can be swirled and separated into steam and water.

【0040】請求項1から4のいずれかに記載の発明に
よれば、蒸発器出口連絡管または横断出口連絡管の内部
に飽和蒸気入口が略同心に開口する飽和蒸気管を配置し
た二重管構造を採用したので、管の中心部に集められた
蒸気が外側の水を含むことなく飽和蒸気管から流出する
ようになり、飽和蒸気を確実に回収して過熱器へ供給す
ることができる。
According to the invention described in any one of claims 1 to 4, a double pipe in which a saturated steam pipe having a saturated steam inlet opening substantially concentrically is arranged inside the evaporator outlet communication pipe or the transverse outlet communication pipe. Since the structure is adopted, the steam collected in the central portion of the pipe comes to flow out from the saturated steam pipe without containing water on the outside, and the saturated steam can be reliably recovered and supplied to the superheater.

【0041】請求項1から3のいずれかに記載の発明に
よれば、旋回流形成手段の下流側でかつ蒸発器出口連絡
管の外側に拡径出口連絡管を設けた二重管構造とし、蒸
発器出口連絡管と拡径出口連絡管との間を連通させるス
リットを設け、該スリットより下流側の蒸発器出口連絡
管を飽和蒸気管として用いるので、外側に分離された水
はスリットから拡径出口連絡管へ流出し、中心部に集め
られた蒸気は水を含むことなくそのまま飽和蒸気管とな
る蒸発器出口連絡管から確実に流出するようになり、飽
和蒸気を確実に回収して過熱器へ供給することができ
る。
According to the invention described in any one of claims 1 to 3, a double-pipe structure is provided in which a diameter-increasing outlet communication pipe is provided on the downstream side of the swirl flow forming means and outside the evaporator outlet communication pipe. Since a slit that connects the evaporator outlet communication pipe and the diameter expansion outlet communication pipe is provided, and the evaporator outlet communication pipe on the downstream side of the slit is used as a saturated steam pipe, the water separated outside expands from the slit. The steam that flows out to the diameter outlet communication pipe and collects in the center part will surely flow out from the evaporator outlet communication pipe that will become a saturated steam pipe as it is without containing water, and will surely recover saturated steam and superheat it. Can be supplied to the vessel.

【0042】請求項1から6のいずれかに記載の発明に
よれば、蒸発器出口管寄せまたは横断出口連絡管が水平
に設置されている時、飽和蒸気管が上向きに導かれ、蒸
発器出口管寄せが下向きに導かれるようにすれば、上向
きに導かれる比重の小さい蒸気に比重の大きな水が含ま
れて流れることを防止できるので、蒸気と水とを確実に
分離させることができる。また、請求項1から6のいず
れかに記載の発明によれば、蒸発器出口管寄せまたは横
断出口連絡管が鉛直または傾斜して設置されている時、
飽和蒸気管が蒸発器出口管寄せの上端部側に開口して上
向きに導かれるようにすれば、比重の大きい水が上端部
側の開口から上向きに流出するのは困難になるので、蒸
気と水とを確実に分離させることができる。
According to the invention described in any one of claims 1 to 6, when the evaporator outlet header or the transverse outlet connecting pipe is installed horizontally, the saturated steam pipe is guided upward, and the evaporator outlet is directed. If the header is guided downward, it is possible to prevent the steam having a small specific gravity guided upward and containing water having a large specific gravity from flowing, so that the steam and the water can be reliably separated. Further, according to the invention of any one of claims 1 to 6, when the evaporator outlet pipe header or the transverse outlet communication pipe is installed vertically or inclined,
If the saturated steam pipe is opened to the upper end side of the evaporator outlet pipe and guided upward, it will be difficult for water with a large specific gravity to flow upward from the upper end side opening. It can be reliably separated from water.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る排熱回収ボイラの第1の実施形
態を示す要部断面図であり、(a)は横置き管寄せ周辺
を拡大して示した正面図、(b)は(a)のA−A線に
沿う断面図である。
FIG. 1 is a cross-sectional view of an essential part showing a first embodiment of an exhaust heat recovery boiler according to the present invention, where (a) is a front view showing an enlarged side view of a horizontal pipe holder, and (b) is ( It is sectional drawing which follows the AA line of a).

【図2】 図1に示した第1の実施形態に係る第1変形
例を示す要部断面図であり、(a)は横置き管寄せ周辺
を拡大して示した正面図、(b)は(a)のB−B線に
沿う断面図である。
2A and 2B are cross-sectional views of a main part showing a first modified example according to the first embodiment shown in FIG. 1, where FIG. 2A is an enlarged front view of a horizontal placement pipe vicinity, and FIG. FIG. 7A is a sectional view taken along line BB of FIG.

【図3】 図1に示した第1の実施形態に係る第2変形
例を示す要部断面図であり、(a)は横置き管寄せ周辺
を拡大して示した正面図、(b)は(a)のC−C線に
沿う断面図である。
3A and 3B are cross-sectional views of a main part showing a second modified example according to the first embodiment shown in FIG. 1, where FIG. 3A is an enlarged front view showing the vicinity of a horizontal placement pipe holder, and FIG. FIG. 7A is a sectional view taken along line CC of FIG.

【図4】 本発明に係る排熱回収ボイラの第2の実施形
態を示す要部断面図であり、(a)は横置き管寄せ周辺
を拡大して示した正面図、(b)は(a)の平面図、
(c)は(a)のD−D線に沿う断面図である。
[Fig. 4] Fig. 4 is a cross-sectional view of an essential part showing a second embodiment of an exhaust heat recovery boiler according to the present invention, (a) is an enlarged front view of a horizontal placement pipe vicinity, and (b) is ( a) plan view,
(C) is sectional drawing which follows the DD line | wire of (a).

【図5】 図4に示した第2の実施形態に係る変形例の
要部断面図であり、横置き管寄せ周辺を拡大して示した
正面図である。
FIG. 5 is a cross-sectional view of main parts of a modified example according to the second embodiment shown in FIG. 4, and is a front view showing an enlarged periphery of a horizontal placement header.

【図6】 排熱回収ボイラ(HRSG)の一例として、
コンバインド用三圧再熱自然循環排熱回収ボイラの概略
構成を示す図である。
FIG. 6 shows an example of an exhaust heat recovery boiler (HRSG).
It is a figure which shows schematic structure of the triple pressure reheat natural circulation exhaust heat recovery boiler for combined use.

【図7】 排熱回収ボイラの蒸発器について、従来例を
示す標準的な系統模式図である。
FIG. 7 is a standard systematic diagram showing a conventional example of an evaporator of an exhaust heat recovery boiler.

【符号の説明】[Explanation of symbols]

30 蒸発器 31 蒸気ドラム 34 蒸発器管 35 蒸発器出口管寄せ 36 蒸発器出口連結管 36A 拡径出口連絡管 37 スリット 40 飽和蒸気管 41 開口部 45 横断出口連絡管 50 旋回ベーン(旋回流形成手段) 55 旋回リボン(旋回流形成手段) 60 傾斜面 61 ブロック 62 傾斜板 30 evaporator 31 steam drum 34 Evaporator tube 35 Evaporator outlet pipe 36 Evaporator outlet connection pipe 36A Expanding outlet connecting pipe 37 slits 40 Saturated steam pipe 41 opening 45 Crossing exit connecting pipe 50 swirl vanes (swirl flow forming means) 55 Swirling Ribbon (Swirl Flow Forming Means) 60 inclined surface 61 blocks 62 inclined plate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン等の排熱発生源から排出
される排熱で多数の蒸発器管内を流れる給水を加熱して
蒸気を発生させる蒸発器を備え、前記蒸発器管内で発生
させた蒸気及び水の二相流を蒸発器出口管寄せに集める
ように構成された排熱回収ボイラにおいて、 前記蒸発器出口管寄せの出口側に連結された蒸発器出口
連絡管内に旋回流形成手段を設けたことを特徴とする排
熱回収ボイラ。
1. An evaporator that heats feed water flowing in a large number of evaporator pipes with exhaust heat discharged from an exhaust heat generation source such as a gas turbine to generate steam, and the steam generated in the evaporator pipes And a waste heat recovery boiler configured to collect a two-phase flow of water into the evaporator outlet pipe, wherein a swirling flow forming means is provided in the evaporator outlet communication pipe connected to the outlet side of the evaporator outlet pipe. Exhaust heat recovery boiler characterized by
【請求項2】 前記旋回流形成手段が旋回ベーンであ
ることを特徴とする請求項1記載の排熱回収ボイラ。
2. The exhaust heat recovery boiler according to claim 1, wherein the swirl flow forming means is a swirl vane.
【請求項3】 前記旋回流形成手段が旋回リボンであ
ることを特徴とする請求項1記載の排熱回収ボイラ。
3. The exhaust heat recovery boiler according to claim 1, wherein the swirl flow forming means is a swirl ribbon.
【請求項4】 前記旋回流形成手段が、前記蒸発器出
口連絡管内に形成されて出口方向の管内壁側へ管内流路
断面積を狭めていく傾斜面と、前記蒸発器出口連絡管と
交差して接続された横断出口連絡管とを具備して構成さ
れていることを特徴とする請求項1記載の排熱回収ボイ
ラ。
4. The swirl flow forming means intersects with the evaporator outlet communication pipe, with an inclined surface formed in the evaporator outlet communication pipe to narrow the cross-sectional area of the pipe flow passage toward the pipe inner wall side in the outlet direction. The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is configured by including a transverse outlet communication pipe connected to each other.
【請求項5】 前記蒸発器出口連絡管または前記横断
出口連絡管の内部に飽和蒸気入口を略同心に開口させた
飽和蒸気管を配置して二重管構造としたことを特徴とす
る請求項1から4のいずれかに記載の排熱回収ボイラ。
5. A double-pipe structure is provided by arranging a saturated steam pipe having a saturated steam inlet opened substantially concentrically inside the evaporator outlet communication pipe or the transverse outlet communication pipe. The exhaust heat recovery boiler according to any one of 1 to 4.
【請求項6】 前記旋回流形成手段の下流側でかつ前
記蒸発器出口連絡管の外側に拡径出口連絡管を設けて二
重管構造とし、前記蒸発器出口連絡管と前記拡径出口連
絡管との間を連通させるスリットを設け、該スリットよ
り下流側の蒸発器出口連絡管を飽和蒸気管として用いる
ことを特徴とする請求項1から3のいずれかに記載の排
熱回収ボイラ。
6. A double-pipe structure is provided by providing a diameter expansion outlet communication pipe on the downstream side of the swirl flow forming means and outside the evaporator outlet communication pipe, and the evaporator outlet communication pipe and the diameter expansion outlet communication are connected. The exhaust heat recovery boiler according to any one of claims 1 to 3, wherein a slit for communicating with the pipe is provided, and the evaporator outlet communication pipe on the downstream side of the slit is used as a saturated steam pipe.
【請求項7】 前記蒸発器出口管寄せまたは前記横断
出口連絡管が水平に設置されている時、前記飽和蒸気管
が上向きに導かれ、前記蒸発器出口管寄せが下向きに導
かれることを特徴とする請求項1から6のいずれかに記
載の排熱回収ボイラ。
7. The saturated steam pipe is guided upward and the evaporator outlet pipe is guided downward when the evaporator outlet header or the transverse outlet connecting pipe is installed horizontally. The exhaust heat recovery boiler according to any one of claims 1 to 6.
【請求項8】 前記蒸発器出口管寄せまたは前記横断
出口連絡管が鉛直または傾斜して設置されている時、前
記飽和蒸気管が前記蒸発器出口管寄せの上端部側に開口
して上向きに導かれることを特徴とする請求項1から6
のいずれかに記載の排熱回収ボイラ。
8. When the evaporator outlet header or the transverse outlet connecting pipe is installed vertically or inclined, the saturated steam pipe opens upward to the upper end side of the evaporator outlet header. Guided by:
The exhaust heat recovery boiler according to any one of 1.
JP2002116482A 2002-04-18 2002-04-18 Waste heat recovery boiler Withdrawn JP2003314803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116482A JP2003314803A (en) 2002-04-18 2002-04-18 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116482A JP2003314803A (en) 2002-04-18 2002-04-18 Waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2003314803A true JP2003314803A (en) 2003-11-06

Family

ID=29534043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116482A Withdrawn JP2003314803A (en) 2002-04-18 2002-04-18 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2003314803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529320A (en) * 2012-08-13 2015-10-05 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Fast start type exhaust heat recovery steam boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529320A (en) * 2012-08-13 2015-10-05 バブコック・アンド・ウィルコックス・パワー・ジェネレイション・グループ・インコーポレイテッドBabcock & Wilcox Power Generation Group,Inc. Fast start type exhaust heat recovery steam boiler

Similar Documents

Publication Publication Date Title
AU743481B2 (en) Heat recovery steam generator
AU2012231106B2 (en) Method and configuration to reduce fatigue in steam drums
CN107002987B (en) Direct-current vertical tube type supercritical evaporator coil for HRSG
TW201040463A (en) Once through evaporator
JPH0861602A (en) Steam generator device
KR102028233B1 (en) Rapid startup heat recovery steam generator
JPS5836244B2 (en) Gas passing screen arrangement for steam generators
US20040069244A1 (en) Once-through evaporator for a steam generator
JP2003314803A (en) Waste heat recovery boiler
JP5584281B2 (en) Apparatus for phase-separating a multiphase fluid stream, steam turbine equipment equipped with such an apparatus, and corresponding operating method
JP2003314802A (en) Waste heat recovery boiler
JP3759029B2 (en) Steam drum and boiler
JPH10325501A (en) Heat exchanger-tube structure for exhaust heat recovery boiler
JPH10253001A (en) Waste heat recovery boiler
JPH09243002A (en) Exhaust heat recovery heat exchanger
TW202233517A (en) Thermal inverter
KR100230110B1 (en) Refrigerant steam generator
RU89666U1 (en) DIRECT THROUGH RECYCLING BOILER FOR STEAM AND GAS INSTALLATION
SU926416A1 (en) Waste heat recovery boiler
JP2010144996A (en) Piping structure of boiler device and boiler device
JPH10205701A (en) Steam generating device
JPH07127802A (en) Steam drum
JP2008076020A (en) Once-through exhaust heat recovery boiler
JP2002277587A (en) Nuclear power plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705