JP2003313629A - Steel product superior in toughness of weld heat- affected zone - Google Patents

Steel product superior in toughness of weld heat- affected zone

Info

Publication number
JP2003313629A
JP2003313629A JP2002119527A JP2002119527A JP2003313629A JP 2003313629 A JP2003313629 A JP 2003313629A JP 2002119527 A JP2002119527 A JP 2002119527A JP 2002119527 A JP2002119527 A JP 2002119527A JP 2003313629 A JP2003313629 A JP 2003313629A
Authority
JP
Japan
Prior art keywords
toughness
steel
particles
haz
eni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002119527A
Other languages
Japanese (ja)
Other versions
JP3616609B2 (en
Inventor
Minoru Ito
実 伊藤
Toshihiko Koseki
敏彦 小関
Masanori Minagawa
昌紀 皆川
Toshinaga Hasegawa
俊永 長谷川
Koji Ishida
浩司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002119527A priority Critical patent/JP3616609B2/en
Publication of JP2003313629A publication Critical patent/JP2003313629A/en
Application granted granted Critical
Publication of JP3616609B2 publication Critical patent/JP3616609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel product having superior toughness in a HAZ (heat- affected zone). <P>SOLUTION: The steel product superior in toughness of a weld heat-affected zone comprises, by mass%, 0.03-0.18% C, 0.50% or less Si, 0.40-2.0% Mn, 0.02% or less P, 0.02% or less S, 0.6-4.0% Ni, 0.005-0.10% Nb, 0.005-0.070% Al, 0.005-0.030% Ti, 0.0005-0.0050% Ca, 0.0005-0.0070% N, 0.0005-0.0030% B, the balance Fe with unavoidable impurities, ENI which satisfies ENI≥0 in a chemical equivalent expression of ENI=(%Ni)-18(%C)-36(%Nb)+1, and EN which satisfies 0≤EN≤0.002 in the chemical equivalent expression of EN =(%N)-0.292(%Ti)-1.292(%B); and further particles in the number of 100-3,000 pieces/mm<SP>2</SP>, which have circle-equivalent particle sizes of 0.005-2.0 μm, and such a composition as to contain at least Ca, Al, O, and comprise 3% or more Ca and 1% or more Al on average mass% of elements except O, and the balance the other deoxidized elements and/or unavoidable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、海洋構造
物、中高層ビル、橋梁などに使用される溶接熱影響部
(以下HAZと称す)の靭性に優れた溶接構造用鋼材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structural steel material having excellent toughness in a weld heat affected zone (hereinafter referred to as HAZ) used in ships, offshore structures, middle and high-rise buildings, bridges and the like.

【0002】[0002]

【従来の技術】近年、船舶、海洋構造物、中高層ビル、
橋梁などの大型構造物に使用される溶接用鋼材の材質特
性に対する要望は厳しさを増している。さらに、そのよ
うな構造物を建造する際、溶接の効率化を促進するた
め、フラックス−バッキング溶接法、エレクトロガス溶
接法、エレクトロスラグ溶接法などに代表されるような
大入熱溶接法の適用が希望されており、鋼材自身の靭性
と同様に、HAZの靭性への要求も厳しさを増してい
る。
2. Description of the Related Art In recent years, ships, offshore structures, middle and high-rise buildings,
The demands on the material characteristics of steel for welding used in large-scale structures such as bridges are becoming more and more severe. Further, when constructing such a structure, in order to promote efficiency of welding, application of a large heat input welding method represented by a flux-backing welding method, an electrogas welding method, an electroslag welding method, or the like. The demand for HAZ toughness is increasing, as is the toughness of steel itself.

【0003】大入熱溶接時の鋼材のHAZ靭性に注目し
た提案は従来から数多くある。例えば、特公昭55−2
6164号公報等に開示されるように、微細なTi窒化
物を鋼中に確保することによって、HAZのオーステナ
イト粒を小さくし、靭性を向上させる方法がある。
There have been many proposals that have focused on the HAZ toughness of steel materials during high heat input welding. For example, Japanese Examined Japanese Patent Publication 55-2
As disclosed in Japanese Patent No. 6164 and the like, there is a method of reducing the austenite grains of the HAZ and improving the toughness by securing a fine Ti nitride in the steel.

【0004】また、特開平3−264614号公報で
は、Ti窒化物とMnSとの複合析出物をフェライトの
変態核として活用し、HAZの靭性を向上させる方法が
提案されている。さらに、特開平4−143246公報
では、Ti窒化物とBNとの複合析出物を粒界フェライ
トの析出核として活用し、HAZ靭性を向上させる方法
が提案されている。
Further, Japanese Patent Laid-Open No. 3-264614 proposes a method of utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite to improve the toughness of HAZ. Further, JP-A-4-143246 proposes a method of utilizing a composite precipitate of Ti nitride and BN as a precipitation nucleus of grain boundary ferrite to improve the HAZ toughness.

【0005】しかしながら、Ti窒化物は、HAZのう
ち最高到達温度が1400℃を超える溶接金属との境界
(溶接ボンド部と称する)近傍ではほとんど固溶してし
まうので、靭性向上効果が低下してしまうという問題が
あり、近年のHAZ靭性に対する厳しい要求や、超大入
熱溶接におけるHAZ靭性を達成することが困難であ
る。
However, since the Ti nitride almost forms a solid solution in the vicinity of the boundary (referred to as a weld bond portion) between the HAZ and the weld metal having the highest ultimate temperature exceeding 1400 ° C., the effect of improving the toughness is deteriorated. However, it is difficult to achieve the severe requirements for HAZ toughness in recent years and the HAZ toughness in ultra-high heat input welding.

【0006】この溶接ボンド部近傍の靭性を改善する方
法として、鋼にTi酸化物を含有せしめることが、厚
板、形鋼などの様々な分野で使用されている。例えば、
厚板分野では、特開昭61−79745号公報や特開昭
62−103344号公報に例示されているように、T
i酸化物の含有が大入熱溶接部の靭性向上に非常に有効
であり、Ti酸化物の高張力鋼への適用が有望である。
As a method of improving the toughness in the vicinity of the welded bond, the inclusion of Ti oxide in steel is used in various fields such as thick plate and shaped steel. For example,
In the field of thick plates, as illustrated in JP-A-61-79745 and JP-A-62-103344, T
The inclusion of i oxide is very effective in improving the toughness of the high heat input welded portion, and the application of Ti oxide to high strength steel is promising.

【0007】この原理は、鋼の融点においても安定なT
i酸化物をサイトとして、溶接後の温度低下途中に、T
i窒化物、MnS等が析出し、さらに、それらをサイト
として微細フェライトが生成し、その結果、靭性に有害
な粗大フェライトの生成が抑制され、靭性の劣化が防止
できるというものである。
This principle is based on the fact that T which is stable even at the melting point of steel.
With the i-oxide as the site, T
The i-nitride, MnS, etc. are precipitated, and fine ferrite is generated using them as sites. As a result, the generation of coarse ferrite harmful to the toughness is suppressed, and the deterioration of the toughness can be prevented.

【0008】しかしながら、このようなTi酸化物は、
鋼中へ分散する個数をあまり多くすることができない。
その原因は、Ti酸化物の粗大化や凝集合体化であり、
Ti酸化物の個数を増加させようとすれば、5μm以上
の粗大なTi酸化物、いわゆる介在物が増加してしま
う。
However, such a Ti oxide is
It is not possible to increase the number of particles dispersed in steel.
The cause is coarsening and aggregation of Ti oxide,
If an attempt is made to increase the number of Ti oxides, coarse Ti oxides of 5 μm or more, so-called inclusions will increase.

【0009】この5μm以上の介在物は、構造物の破壊
の起点となって有害であり、靭性の低下を引き起こす。
したがって、さらなるHAZ靭性の向上を達成するため
には、粗大化や凝集合体化が起こりにくく、Ti酸化物
よりも微細に分散する酸化物を活用する必要がある。
The inclusions having a size of 5 μm or more are harmful as a starting point of structural destruction and cause a decrease in toughness.
Therefore, in order to further improve the HAZ toughness, it is necessary to utilize an oxide that is less likely to coarsen or aggregate and is more finely dispersed than the Ti oxide.

【0010】また、このようなTi酸化物の鋼中への分
散方法として、Al等の強脱酸元素を実質的に含まない
溶鋼中へTiを添加する方法が多く用いられる。しかし
ながら、単に溶鋼中にTiを添加するだけでは、鋼中の
Ti酸化物の個数、分散度を制御することは困難であ
り、さらには、TiN、MnS等の析出物の個数、分散
度を制御することも困難である。
As a method of dispersing such Ti oxide in steel, a method of adding Ti to molten steel that does not substantially contain a strong deoxidizing element such as Al is often used. However, it is difficult to control the number and degree of dispersion of Ti oxide in the steel by simply adding Ti to the molten steel, and further control the number and degree of dispersion of precipitates such as TiN and MnS. It is also difficult to do.

【0011】その結果、Ti脱酸のみによってTi酸化
物を分散させた鋼においては、例えば、Ti酸化物の個
数が充分でなかったり、厚板の板厚方向における靭性の
変動が生じる等の問題点が認められる。
As a result, in the steel in which the Ti oxide is dispersed only by Ti deoxidation, for example, the number of Ti oxides is not sufficient, or the toughness of the thick plate varies in the plate thickness direction. Points are recognized.

【0012】さらに、上記特開昭61−79745号公
報などの方法では、Ti酸化物を生成しやすくするため
に、Al量の上限を、0.007%という非常に少ない
量で制限しているが、鋼材中のAl量が少ない場合、A
lN析出物量の不足などが原因となって、母材の靭性が
低下する場合がある。また、通常使用されている溶接材
料を用いてAl量の少ない鋼板を溶接した場合、溶接金
属の靭性が低下する場合がある。
Further, in the method disclosed in Japanese Patent Laid-Open No. 61-79745, the upper limit of the amount of Al is limited to a very small amount of 0.007% in order to easily form Ti oxide. However, when the amount of Al in the steel material is small, A
The toughness of the base material may decrease due to a lack of 1N precipitates. Further, when a steel plate having a small amount of Al is welded by using a commonly used welding material, the toughness of the weld metal may decrease.

【0013】このような課題に対して、特開平6−29
3937号公報においては、Ti添加直後にAlを添加
して、この添加で生成するTi−Al複合酸化物を活用
する技術が提案されている。この技術により、大入熱溶
接HAZ靭性を大幅に向上させることが可能であるが、
直近、造船業界、建設業界においては、200kJ/c
m以上、大きいものでは1000kJ/cmものさらな
る溶接入熱の増加が進められており、より一層のHAZ
靭性を有する鋼材が必要とされている。そして、この
際、特に、溶接融合部近傍における靭性の向上が必要と
なる。
To solve such a problem, Japanese Patent Laid-Open No. 6-29
Japanese Patent No. 3937 proposes a technique of adding Al immediately after the addition of Ti and utilizing the Ti-Al composite oxide generated by this addition. With this technology, it is possible to significantly improve the high heat input welding HAZ toughness,
Most recently, 200 kJ / c in the shipbuilding and construction industries
Welding heat input is being further increased by 1000 kJ / cm or more for large m or more HAZ.
A steel material having toughness is required. At this time, it is particularly necessary to improve the toughness in the vicinity of the weld fusion portion.

【0014】さらに、使用される鋼材においても、さら
に厚手高強度化が要求されている。例えば、海運業界に
おいては、物流の拡大に伴い船体の大型化が進んでお
り、施工や輸送効率の面から、鋼材の厚手高強度化が要
求されている。また、建築や橋梁、海洋構造物などの分
野においても、建造物の大型化が進むとともに、より広
く空間を確保するために、厚手高強度鋼が要求されてい
る。
Further, the steel materials used are required to be thicker and have higher strength. For example, in the shipping industry, the hull is becoming larger due to the expansion of logistics, and thicker and stronger steel materials are required from the viewpoint of construction and transportation efficiency. Further, in the fields of architecture, bridges, marine structures, etc., thick and high strength steel is required to secure a wider space as the size of buildings increases.

【0015】一般に、鋼材の高強度化は、添加元素を増
やし炭素当量(以下Ceqと称す)を高くすることで達
成されるが、溶接性が著しく阻害されるため、Ceqを
上昇しない強度向上が望まれる。その中で最も有望なの
はNbによる強度向上である。
In general, the strength of a steel material is increased by increasing the number of additional elements and increasing the carbon equivalent (hereinafter referred to as Ceq). However, since the weldability is significantly impaired, the strength improvement without increasing Ceq is achieved. desired. The most promising among them is the improvement of strength by Nb.

【0016】しかし、Nbの増量は、HAZ組織中の粒
界フェライトを硬化させたり、残留オーステナイト等の
脆化相を増加させたりして、HAZ靭性を大きく低下さ
せてしまうので、上述の従来技術だけでは十分なHAZ
靭性を得ることができない。
However, increasing the amount of Nb hardens the grain boundary ferrite in the HAZ structure and increases the embrittlement phase such as retained austenite, resulting in a large decrease in the HAZ toughness. HAZ is enough
It cannot obtain toughness.

【0017】そこで、低Ceq化で厚手化、高強度化す
るためにNbを添加する場合においても、高HAZ靭性
を有する鋼材が必要となる。
Therefore, a steel material having high HAZ toughness is required even when Nb is added in order to reduce the Ceq and increase the thickness and strength.

【0018】[0018]

【発明が解決しようとする課題】特開昭62−1033
44号公報、特開平6−293937号公報などに記載
されている上記の従来手法に比べて、飛躍的にHAZ特
性を向上させるために、高温に長時間加熱されたときの
オーステナイト粒の粗大化を一層抑制し、かつ、高強度
化のためにNbを添加した場合であっても、優れたHA
Z靭性を実現することを課題とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In order to dramatically improve the HAZ characteristic, coarsening of austenite grains when heated to a high temperature for a long time as compared with the above-mentioned conventional methods described in JP-A-44, JP-A-6-293937 and the like. Even if Nb is added to further suppress the heat and increase the strength, excellent HA
The challenge is to achieve Z toughness.

【0019】[0019]

【課題を解決するための手段】本発明者は、上記課題を
解決するため、鋭意研究した結果、当量式ENI=(%
Ni)−18(%C)−36(%Nb)+1、および、
EN=(%N)−0.292(%Ti)−1.292
(%B)において、ENIおよびENを、それぞれ、所
定の範囲に収め、かつ、分散する酸化物粒子の粒子径、
組成、および、分散個数を、それぞれ、所定の範囲に収
めると、溶接熱影響部の靭性が著しく向上することを知
見した。
Means for Solving the Problems As a result of intensive research to solve the above problems, the present inventor has found that the equivalent formula ENI = (%
Ni) -18 (% C) -36 (% Nb) +1, and
EN = (% N) -0.292 (% Ti) -1.292
In (% B), ENI and EN are respectively contained in a predetermined range, and the particle diameter of the dispersed oxide particles,
It was found that the toughness of the weld heat affected zone is remarkably improved when the composition and the number of dispersed particles are each within a predetermined range.

【0020】本発明は、上記知見に基づいてなされたも
ので、その要旨は、以下のとおりである。
The present invention was made based on the above findings, and the summary thereof is as follows.

【0021】(1)質量%で、 C :0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P :≦0.02% S :≦0.02% Ni:0.6〜4.0% Nb:0.005〜0.10% Al:0.005〜0.070% Ti:0.005〜0.030% Ca:0.0005〜0.0050% N :0.0005〜0.0070% B :0.0005〜0.0030% を含有し、残部はFeおよび不可避不純物からなり、 ENI=(%Ni)−18(%C)−36(%Nb)+
1 なる当量式において ENI≧0 を満足し、かつ、 EN=(%N)−0.292(%Ti)−1.292
(%B) なる当量式において 0≦EN≦0.002 を満足
し、さらに、円相当粒子径が0.005〜2.0μmで
あって、組成として少なくともCa、Al、Oを含み、
Oを除いた元素の平均質量%で、 Ca:3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
(1)% by mass, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: ≤ 0.02 % Ni: 0.6 to 4.0% Nb: 0.005 to 0.10% Al: 0.005 to 0.070% Ti: 0.005 to 0.030% Ca: 0.0005 to 0.0050 % N: 0.0005 to 0.0070% B: 0.0005 to 0.0030%, the balance Fe and inevitable impurities, ENI = (% Ni) -18 (% C) -36 (% Nb) +
In the equivalent formula of 1, ENI ≧ 0 is satisfied, and EN = (% N) −0.292 (% Ti) −1.292.
In the equivalent formula of (% B), 0 ≦ EN ≦ 0.002 is satisfied, the equivalent circle diameter is 0.005 to 2.0 μm, and the composition contains at least Ca, Al, and O.
Average mass% of elements excluding O, particles containing Ca: 3% or more and Al: 1% or more, and the balance consisting of other deoxidizing elements and / or unavoidable impurities, the number of particles is 100 to 3000 / mm.
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .

【0022】(2)質量%で、 C :0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P :≦0.02% S :≦0.02% Ni:0.6〜4.0% Nb:0.005〜0.10% Al:0.005〜0.070% Ti:0.005〜0.030% Ca:0.0005〜0.0050% N :0.0005〜0.0070% B :0.0005〜0.0030% を基本成分とし、さらに Cu:≦1.0% V :≦0.1% Cr:≦0.6% Mo:≦0.6% Mg:≦0.0050% REM:≦0.100% の1種または2種以上を含有し、残部はFeおよび不可
避不純物からなり、 ENI=(%Ni)−18(%C)−36(%Nb)+
1 なる当量式において ENI≧0 を満足し、かつ、 EN=(%N)−0.292(%Ti)−1.292
(%B) なる当量式において 0≦EN≦0.002 を満足
し、さらに、円相当粒子径が0.005〜2.0μmで
あって、組成として少なくともCa、Al、Oを含み、
Oを除いた元素の平均質量%で、 Ca:3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
(2) In mass%, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: ≤ 0.02 % Ni: 0.6 to 4.0% Nb: 0.005 to 0.10% Al: 0.005 to 0.070% Ti: 0.005 to 0.030% Ca: 0.0005 to 0.0050 % N: 0.0005 to 0.0070% B: 0.0005 to 0.0030% as a basic component, and further Cu: ≤ 1.0% V: ≤ 0.1% Cr: ≤ 0.6% Mo: ≦ 0.6% Mg: ≦ 0.0050% REM: ≦ 0.100% One or more kinds are contained, and the balance is Fe and inevitable impurities. ENI = (% Ni) -18 (% C ) -36 (% Nb) +
In the equivalent formula of 1, ENI ≧ 0 is satisfied, and EN = (% N) −0.292 (% Ti) −1.292.
In the equivalent formula of (% B), 0 ≦ EN ≦ 0.002 is satisfied, the equivalent circle diameter is 0.005 to 2.0 μm, and the composition contains at least Ca, Al, and O.
Average mass% of elements excluding O, particles containing Ca: 3% or more and Al: 1% or more, and the balance consisting of other deoxidizing elements and / or unavoidable impurities, the number of particles is 100 to 3000 / mm.
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .

【0023】(3)前記(1)または(2)に記載の溶
接熱影響部靭性の優れた鋼材において、円相当粒子径が
0.1〜2.0μmであって、組成として少なくともC
a、Al、Oを含み、Oを除いた元素の平均質量%で、 Ca:3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
(3) In the steel material having excellent weld heat affected zone toughness according to (1) or (2), the equivalent circle particle diameter is 0.1 to 2.0 μm and the composition is at least C.
a, Al, O in average mass% of elements excluding O, Ca: 3% or more, containing Al: 1% or more, the balance is particles of other deoxidizing element and / or unavoidable impurities, Number of particles 100-3000 / mm
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .

【0024】[0024]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らはHAZ靭性を向上させる金属組織要
因として、1400℃以上に加熱されるHAZ領域の再
加熱オーステナイト細粒化を、酸化物を利用して達成す
ることを検討した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. As a metallographic factor for improving the HAZ toughness, the present inventors have studied to achieve reheat austenite grain refinement in the HAZ region heated to 1400 ° C. or higher by using an oxide.

【0025】再加熱オーステナイト粒を細粒化するため
には、高温でのオーステナイト粒の成長を抑制すること
が必要である。その手段として最も有効な方法として、
分散粒子によりオーステナイトの粒界をピンニングし、
粒界の移動を止める方法が考えられる。そして、そのよ
うな作用をする分散粒子の一つとして、従来は、Ti窒
化物が有効であると考えられていた。
In order to refine the reheated austenite grains, it is necessary to suppress the growth of the austenite grains at high temperature. As the most effective method as that means,
Pinning the austenite grain boundaries with dispersed particles,
A method of stopping the movement of the grain boundaries can be considered. And, as one of the dispersed particles having such an action, it has been conventionally considered that Ti nitride is effective.

【0026】しかしながら、Ti窒化物は、1400℃
以上の高温では固溶する割合が大きくなるため、溶接入
熱の増加に伴いピンニング効果が小さくなることは先に
延べたとおりである。したがって、Ti窒化物より高温
で安定な酸化物をピンニング粒子として活用することが
必要である。
However, Ti nitride is 1400 ° C.
Since the proportion of solid solution increases at the above high temperatures, the pinning effect decreases as the welding heat input increases, as described above. Therefore, it is necessary to utilize an oxide stable as a pinning particle at a higher temperature than Ti nitride.

【0027】また、分散粒子による結晶粒界のピンニン
グ効果は、分散粒子の体積率が大きいほど、また、一個
の粒子径が大きいほど大きい。ただし、分散粒子の体積
率は鋼中に含まれる粒子を構成する元素の濃度によって
上限があるので、体積率を一定と仮定した場合には、粒
子径はある程度小さい方がピンニングには有効である。
Further, the pinning effect of the crystal grain boundaries by the dispersed particles becomes larger as the volume ratio of the dispersed particles becomes larger and the diameter of each particle becomes larger. However, since the volume ratio of dispersed particles has an upper limit depending on the concentration of the elements that make up the particles contained in the steel, if the volume ratio is assumed to be constant, a smaller particle size is more effective for pinning. .

【0028】このような観点から、本発明者らは酸化物
の体積分率を大きく、かつ、適正な粒子径となるよう、
種々の検討を行った。
From such a viewpoint, the present inventors have made it possible to increase the volume fraction of the oxide and to obtain an appropriate particle size.
Various studies were conducted.

【0029】酸化物の体積分率を大きくする手段の一つ
として、酸素量を増大させる方法があるが、酸素量の増
大は、材質に有害な粗大介在物をも多数生成する原因と
なるため、有効な手段ではない。
As one of means for increasing the volume fraction of oxide, there is a method of increasing the oxygen amount. However, since increasing the oxygen amount causes a large number of coarse inclusions harmful to the material. , Not an effective means.

【0030】そこで、本発明者らは、酸素を最大限に利
用するため、酸素との溶解度積が小さい元素を活用する
ことを検討した。酸素との溶解度積が小さい元素、すな
わち、強脱酸元素として、一般的にはAlが用いられ
る。しかしながら、Alだけでは酸素を充分利用するに
は不充分であり、さらに、Alよりも強い脱酸元素が必
要である。
Therefore, the present inventors examined the utilization of an element having a small solubility product with oxygen in order to maximize the utilization of oxygen. Al is generally used as an element having a small solubility product with oxygen, that is, a strong deoxidizing element. However, Al alone is not sufficient to make sufficient use of oxygen, and a deoxidizing element stronger than Al is necessary.

【0031】本発明者は、種々検討の結果、溶鋼中最強
の脱酸力を持つCaを活用することが有効との結論に至
った。そして、脱酸元素として主にCaを含んだ実験を
種々行った結果、鋼中に生成する酸化物粒子の組成とし
て、Caを3%以上、Alを1%以上含ませることで、
酸化物の体積分率、すなわち、酸化物量を大きくするこ
とが可能となることを知見した。
As a result of various studies, the present inventor has concluded that it is effective to utilize Ca, which has the strongest deoxidizing power in molten steel. Then, as a result of various experiments mainly including Ca as a deoxidizing element, as a composition of oxide particles generated in steel, Ca is contained by 3% or more and Al by 1% or more,
It was found that it is possible to increase the volume fraction of oxide, that is, the amount of oxide.

【0032】この結果を基に、鋼中に含まれる粒子の組
成を、少なくともCa、Al、Oを含み、Oを除いた元
素が質量%で、Ca:3%以上、Al:1%以上とし
た。
Based on these results, the composition of the particles contained in the steel is such that at least Ca, Al and O are contained, and the elements excluding O are mass% and Ca: 3% or more and Al: 1% or more. did.

【0033】この際、残部の酸化物構成元素として、脱
酸力がAlとCaの間にあるMgあるいは/およびRE
Mを含ませても、本発明の効果は有効であり、なおか
つ、不可避的に混入するSi、Mn、TiなどのAlよ
り弱い脱酸元素、および/または、Caなどと不可避的
に結びつくSなどの不純物元素を含んでいても、本発明
の効果に影響のないことを確認した。
At this time, Mg or / and RE having a deoxidizing power between Al and Ca are used as the remaining oxide constituent elements.
Even if M is included, the effect of the present invention is effective, and deoxidizing elements weaker than Al such as Si, Mn, and Ti inevitably mixed, and / or S inevitably bound to Ca or the like. It was confirmed that the effect of the present invention is not affected even if the impurity element of 1) is included.

【0034】次に、ピンニングに有効な粒子の大きさに
ついて述べる。分散粒子による結晶粒界のピンニング効
果は、分散粒子の体積率が大きいほど、また、一個の粒
子径が大きいほど大きいが、粒子の体積率が一定のと
き、一個の粒子の大きさが小さい方が粒子数が多くな
り、ピンニング効果が大きくなる。
Next, the particle size effective for pinning will be described. The pinning effect of the crystal grain boundaries by the dispersed particles is larger as the volume ratio of the dispersed particles is larger and the particle size of one particle is larger, but when the volume ratio of the particles is constant, the size of one particle is smaller. However, the number of particles increases and the pinning effect increases.

【0035】しかし、粒子の大きさがあまり小さくなる
と、粒界に存在する粒子の割合が小さくなるため、その
効果は低減すると考えた。粒子の大きさを種々変化させ
た試験片を用いて、高温に加熱したときのオーステナイ
ト粒径を詳細に調査した結果、ピンニングには、粒子の
大きさとして、0.005〜2.0μmのものが有効で
あることをつきとめ、さらにその中でも、0.1〜2.
0μmの粒子の大きさのものが、特に有効であることを
知見するに至った。また、0.005μmより小さい酸
化物粒子はほとんど観察されなかった。
However, if the size of the particles is too small, the ratio of the particles existing at the grain boundaries becomes small, and it is considered that the effect is reduced. As a result of detailed examination of the austenite grain size when heated to a high temperature using test pieces having various grain sizes, it was found that the pinning was 0.005 to 2.0 μm. Is effective, and among them, 0.1-2.
It has been found that particles having a particle size of 0 μm are particularly effective. In addition, almost no oxide particles smaller than 0.005 μm were observed.

【0036】この結果より、必要な粒子径を0.005
〜2.0μm、その中でも、特に、0.1〜2.0μm
とした。
From this result, the required particle size was 0.005.
To 2.0 μm, and in particular, 0.1 to 2.0 μm
And

【0037】次に、HAZ靭性に必要なピンニング粒子
の個数について検討した。粒子個数が多いほど組織単位
は微細になり、そのため、図1に示すように、粒子個数
が多いほどHAZ靭性が向上する。
Next, the number of pinning particles required for HAZ toughness was examined. The larger the number of particles, the finer the structural unit. Therefore, as shown in FIG. 1, the larger the number of particles, the higher the HAZ toughness.

【0038】鋼材に要求されるHAZ靭性は、その用
途、使用される溶接方法などによって複雑に異なるが、
特に要求特性が厳しいと考えられる高強度の造船用鋼に
おいて、大入熱溶接施工する場合に要求されるHAZ靭
性を満足するためには、粒子数は、少なくとも100個
/mm2以上必要であることを知見した。
The HAZ toughness required for steel material varies in a complicated manner depending on its application, the welding method used, etc.
In order to satisfy the HAZ toughness required for high heat input welding in high-strength steel for shipbuilding, which is considered to have particularly severe required characteristics, the number of particles must be at least 100 particles / mm 2 or more. I found out that.

【0039】一方、粒子数が3000個/mm2を越え
ると粒子間隔が小さくなり、加熱オーステナイト粒の微
細化には有効であるが、介在物を起点とする破壊の間隔
が小さくなるため、シャルピー衝撃吸収エネルギーに代
表される靭性にはむしろ有害であることが分かった。
On the other hand, when the number of particles exceeds 3000 particles / mm 2 , the particle spacing becomes small, which is effective for refining the heated austenite grains, but since the spacing between fractures originating from inclusions becomes small, Charpy It was found to be rather harmful to the toughness represented by shock absorption energy.

【0040】したがって、有効かつ必要な粒子個数を、
100〜3000個/mm2とした。
Therefore, the effective and required number of particles is
It was set to 100 to 3000 pieces / mm 2 .

【0041】上記酸化物粒子の大きさおよび個数の測定
は、例えば、以下の要領で行なう。母材となる鋼板から
抽出レプリカを作製し、それを電子顕微鏡にて1000
0倍で20視野以上、観察面積にして1000μm2
上を観察することで、酸化物粒子の大きさおよび個数を
測定する。このとき、酸化物粒子が適正に観察可能であ
れば、観察倍率を低くしてもかまわない。
The size and number of the above oxide particles are measured, for example, in the following manner. An extraction replica is made from the steel plate that is the base material, and it is made to 1000 by an electron microscope.
The size and the number of the oxide particles are measured by observing 20 fields of view at 0 times and an observation area of 1000 μm 2 or more. At this time, if the oxide particles can be properly observed, the observation magnification may be lowered.

【0042】酸化物粒子は、溶鋼を脱酸する際に生成す
る。これを一次酸化物と称する。さらには、鋳造、凝固
中に、溶鋼温度の低下とともにTi−Al−Ca酸化物
が生成する。これを二次酸化物と称する。本発明では、
一次酸化物と二次酸化物のどちらを用いてもかまわな
い。
Oxide particles are produced when deoxidizing molten steel. This is called a primary oxide. Furthermore, during casting and solidification, Ti-Al-Ca oxide is generated as the molten steel temperature decreases. This is called a secondary oxide. In the present invention,
Either a primary oxide or a secondary oxide may be used.

【0043】なお、鋼材を製造するプロセスとして、通
常圧延まま、制御圧延、さらに、これと制御冷却・焼も
どしの組合せ、および、焼入れ・焼もどしの組合せなど
を採用しても酸化物粒子の効果は影響を受けない。
As a process for producing a steel material, the effect of the oxide particles can be obtained even if normal rolling, controlled rolling, a combination of this and controlled cooling / tempering, a combination of quenching / tempering, etc. are adopted. Is not affected.

【0044】一方、このようにして鋼中に酸化物粒子を
分散させることにより、HAZの再加熱オーステナイト
粒は、酸化物粒子によるピンニングにより極めて有効に
細粒化し、HAZ靭性もそれに伴い向上するが、同時
に、オーステナイト粒が微細化するに伴い粒界面積が増
し、粒界からのフェライト生成能も増し、非常に厳しい
靭性要求においては、特に、粒界の角部(粒界三重点)
に生成する比較的粗大なフェライトが起点となって、靭
性の向上を律速することが新たな問題点として見出され
た。
On the other hand, by dispersing the oxide particles in the steel in this way, the reheated austenite particles of the HAZ are extremely effectively fined by the pinning by the oxide particles, and the HAZ toughness is also improved accordingly. At the same time, as the austenite grains become finer, the grain boundary area increases, and the ferrite forming ability from the grain boundaries also increases. Especially, in the extremely strict toughness requirement, especially at the corners of the grain boundaries (grain boundary triple points).
It has been found that a new problem is that the relatively coarse ferrite generated at the starting point acts as a starting point to control the improvement of toughness.

【0045】言い換えれば、このような粒界および粒界
三重点に生成する比較的粗大なフェライトを抑制・改善
することができれば、HAZ組織の微細化効果と重畳し
て、さらに、靭性を大幅に向上することが可能である。
In other words, if the relatively coarse ferrite generated at the grain boundaries and the triple points of the grain boundaries can be suppressed and improved, the effect of refining the HAZ structure can be superposed and the toughness can be greatly increased. It is possible to improve.

【0046】このような粒界および粒界三重点に生成す
る比較的粗大なフェライトの問題は、大入熱溶接のHA
Z組織を、酸化物粒子によるピンニングにより、従来に
なく微細化することで、初めて見出されたものである。
The problem of the relatively coarse ferrite formed at the grain boundaries and the triple points of the grain boundaries is that HA of high heat input welding.
It was discovered for the first time by making the Z structure finer than before by pinning with oxide particles.

【0047】本発明者は、HAZ組織の微細化による靭
性向上の効果を飛躍的に向上すべく、さらに検討を加え
た。その結果、微細な酸化物粒子を多数分散させて再加
熱オーステナイト粒を細粒化する場合、HAZ組織の形
成過程で粒界および粒界三重点でのフェライトの成長を
抑制するためには、Bの添加が極めて有効であることを
見出した。
The inventor of the present invention further studied in order to dramatically improve the effect of improving the toughness by making the HAZ structure finer. As a result, when a large number of fine oxide particles are dispersed to refine the reheated austenite grains, in order to suppress the growth of ferrite at the grain boundaries and the grain boundary triple points in the process of forming the HAZ structure, B It has been found that the addition of is extremely effective.

【0048】さらに、Bの添加効果の機構を詳細に調査
した結果、BとNのバランスが重要であり、Bとの原子
比で、当量以上の固溶Nがフェライト生成段階で残存し
ていることがBの添加効果を高め、細粒HAZの靭性を
大幅に向上させ、安定化させることが明らかとなった。
Further, as a result of detailed investigation of the mechanism of the effect of addition of B, the balance between B and N is important, and in terms of atomic ratio with B, more than the equivalent amount of solute N remains in the stage of ferrite formation. It has been clarified that the effect of adding B is enhanced, and the toughness of the fine-grained HAZ is significantly improved and stabilized.

【0049】Ti添加鋼では、TiとNの親和力が極め
て大きいため、Tiによって消費されるNを考慮した結
果、図2に示すごとく、HAZ靭性は、EN=(%N)
−0.292(%Ti)−1.292(%B)なる当量
式でよく整理でき、当量値が「0〜0.002」の範囲
にあれば、その添加効果が最も大きく、靭性が大幅に向
上することが分かった。
In the Ti-added steel, the affinity between Ti and N is extremely large. As a result of considering N consumed by Ti, the HAZ toughness is EN = (% N) as shown in FIG.
-0.292 (% Ti) -1.292 (% B) can be well organized by the equivalent formula, and if the equivalent value is in the range of "0 to 0.002", the addition effect is the largest and the toughness is significantly large. It was found to improve.

【0050】この当量値が0未満の場合は、Bの効果が
認められず、他方、0.002を越える場合は、フェラ
イトは微細化するものの、HAZ靭性は余剰のNによっ
て大きく低下した。
When the equivalent value is less than 0, the effect of B is not recognized, while when it exceeds 0.002, the ferrite is refined, but the HAZ toughness is greatly reduced by the excess N.

【0051】上記条件により、特に、Si−Mn鋼にお
いて、大幅なHAZ靭性の改善がみられるが、ここで、
さらに鋼材を高強度化する場合、上記条件では十分なH
AZ靭性が得られないという新たな問題が生じた。
Under the above conditions, particularly in the Si-Mn steel, the HAZ toughness is remarkably improved.
Further, when strengthening the steel material, sufficient H is obtained under the above conditions.
A new problem arose that the AZ toughness could not be obtained.

【0052】それは、鋼材を高強度化する場合、上述し
たように、溶接性の観点からCeqを低く抑えなければ
ならないため、Ceqに影響を及ぼさない強度元素であ
るNbを添加しなければならないが、Nbの添加または
増量は、HAZ靭性を大きく低下させるからである。
When increasing the strength of steel, it is necessary to suppress Ceq to a low level from the viewpoint of weldability as described above. Therefore, Nb, which is a strength element that does not affect Ceq, must be added. This is because the addition or increase of Nb, Nb greatly reduces the HAZ toughness.

【0053】そこで、本発明者は、さらに、Nb添加鋼
で高HAZ靭性が得られる条件を鋭意検討した。まず、
HAZ靭性の低下の原因について詳細調査した結果、H
AZ靭性の低下が、HAZ組織中の粒界フェライトがN
bの添加または増量によって硬化し、脆性破壊の起点に
なりやすくなるために生じることを見出した。
Therefore, the present inventor further diligently studied the conditions under which high HAZ toughness can be obtained with Nb-added steel. First,
As a result of detailed investigation on the cause of the decrease in HAZ toughness, H
The AZ toughness decreases, but the grain boundary ferrite in the HAZ structure is N
It has been found that it is caused by the fact that it is hardened by the addition or increase of the amount of b and becomes a starting point of brittle fracture.

【0054】そこで、次に、この脆性破壊の起点になり
やすい硬化した粒界フェライトの特性に注目し、種々調
査した結果、鋼中にNiを0.6%以上添加すると、こ
の硬化した粒界フェライトの限界破壊応力が向上して、
破壊起点になりにくくなり、HAZ靭性の低下が抑制さ
れることを見出した。
Then, attention was paid to the characteristics of the hardened grain boundary ferrite which is apt to be the origin of brittle fracture, and as a result of various investigations, as a result of adding Ni of 0.6% or more to the steel, the hardened grain boundary ferrite was found. The critical fracture stress of ferrite is improved,
It has been found that the fracture starting point is less likely to occur and the reduction in HAZ toughness is suppressed.

【0055】これは、従来から言われているNiによる
マトリクスの高靭化とは異なり、硬化フェライトの限界
破壊応力をNi添加により向上させることで、破壊に対
する抵抗を高めHAZ靭性を向上させるものであり、本
発明者がNb添加鋼にNiを0.6%以上添加したこと
により、初めて見出したものである。
This is different from the conventional toughening of the matrix by Ni, which improves the critical fracture stress of hardened ferrite by adding Ni, thereby increasing resistance to fracture and improving HAZ toughness. This is the first time that the present inventors have found out by adding 0.6% or more of Ni to Nb-added steel.

【0056】さらに、粒界フェライトの硬さはNbの添
加量に伴い増加することから、Niの添加量もNbの添
加量に伴い増加させなければ、高HAZ靭性を保つため
に必要な限界破壊応力を有することはできないことが分
かった。
Further, since the hardness of the grain boundary ferrite increases with the addition amount of Nb, unless the addition amount of Ni is also increased with the addition amount of Nb, the critical fracture required for maintaining high HAZ toughness is obtained. It has been found that it cannot have stress.

【0057】そして、その条件は、Nb増加量36に対
し1以上のNiを増加させることであり、それ以下では
粒界フェライトが破壊起点になり、HAZ靭性が低下す
る。
The condition is to increase Ni by 1 or more with respect to the Nb increase amount 36, and below that, the grain boundary ferrite becomes a fracture starting point, and the HAZ toughness decreases.

【0058】さらに、粒界フェライトが脆性破壊起点に
なりにくくなると、次に、脆化相が破壊の起点になりや
すくなり、HAZ靭性がC量の影響を受けやすくなる
が、本発明者は、さらに、Ni量を適量添加することに
より、この脆化相が微細分散化しHAZ靭性低下を抑制
することも見出した。
Further, when the grain boundary ferrite is less likely to become the starting point of brittle fracture, then the embrittlement phase is more likely to become the starting point of fracture, and the HAZ toughness is easily affected by the C content. Further, it was also found that by adding an appropriate amount of Ni, the embrittled phase is finely dispersed and suppresses the reduction in HAZ toughness.

【0059】そして、脆化相をNi添加により細分化さ
せるには、C増加量18に対して1以上のNi必要であ
ることを突き止めた。
Then, it was found out that in order to subdivide the embrittlement phase by adding Ni, 1 or more Ni is necessary for the amount of C increase 18.

【0060】以上の条件を、Ni量、C量、Nb量とH
AZ靭性との関係で整理した結果、図3に示すように、
Ni、C、Nbの各量が、当量式:ENI=(%Ni)
−18(%C)−36(%Nb)+1において ENI
≧0 を満足すると、HAZ靭性の低下が抑えられ、高
HAZ靭性が得られることが分かった。
Under the above conditions, the amounts of Ni, C, Nb and H
As a result of the relationship with AZ toughness, as shown in FIG.
Each amount of Ni, C, Nb is equivalent formula: ENI = (% Ni)
ENI at -18 (% C) -36 (% Nb) +1
It has been found that when ≧ 0 is satisfied, the reduction in HAZ toughness is suppressed and high HAZ toughness is obtained.

【0061】すなわち、この当量値が0未満であれば、
Niの効果が十分ではなく、Cによる脆化相の粗大化、
および/または、Nbにより硬化した粒界フェライトが
脆性破壊起点になりやすくなることにより、HAZ靭性
が低下する。
That is, if this equivalent value is less than 0,
The effect of Ni is not sufficient, and the embrittlement phase is coarsened by C,
And / or the grain boundary ferrite hardened by Nb easily becomes a starting point of brittle fracture, so that the HAZ toughness decreases.

【0062】次に、本発明の基本成分範囲の限定理由に
ついて述べる。なお、%は質量%を意味する。
Next, the reasons for limiting the range of the basic components of the present invention will be described. In addition,% means mass%.

【0063】Cは、鋼の強度を向上させる有効な成分と
して下限を0.03%とし、一方、過剰の添加は、鋼材
の溶接性やHAZ靭性などを著しく低下させるので、上
限を0.18%とした。
C has a lower limit of 0.03% as an effective component for improving the strength of steel. On the other hand, an excessive addition of C significantly lowers the weldability and HAZ toughness of the steel material, so the upper limit is 0.18. %.

【0064】Siは、母材の強度確保、脱酸などに必要
な成分であるが、HAZの硬化により靭性が低下するの
を防止するため、上限を0.50%とした。
Si is a component necessary for securing the strength of the base material, deoxidizing, etc., but the upper limit was made 0.50% in order to prevent deterioration of toughness due to hardening of the HAZ.

【0065】Mnは、母材の強度、靭性の確保に有効な
成分として0.40%以上の添加が必要であるが、溶接
部の靭性、割れ性などの許容できる範囲で上限を2.0
%とした。
Mn needs to be added in an amount of 0.40% or more as an effective component for ensuring the strength and toughness of the base metal, but the upper limit is 2.0 in the allowable range of the toughness and crackability of the welded portion.
%.

【0066】Pは、含有量が少ないほど望ましいが、こ
れを工業的に低減させるためには多大なコストがかかる
ことから、0.02%を上限とした。
The smaller the content of P is, the more desirable it is, but in order to reduce this industrially, it takes a lot of cost, so 0.02% was made the upper limit.

【0067】Sは、含有量が少ないほど望ましいが、こ
れを工業的に低減させるためには多大なコストがかかる
ことから、0.02%を上限とした。
The smaller the content of S is, the more desirable it is, but in order to reduce this industrially, a great deal of cost is required, so 0.02% was made the upper limit.

【0068】Niは、鋼材の強度および母材靭性を向上
させるために有効であり、特に、Nb、CによるHAZ
靭性低下の抑制に有効であるが、0.6%未満の添加で
は、HAZ靭性低下の抑制には充分ではなく、一方、
4.0%を越える添加は製造コストを上昇させるので、
Niの範囲は0.6%以上4.0%以下とした。
Ni is effective for improving the strength and toughness of the base material of the steel, and in particular, HAZ by Nb and C.
Although it is effective in suppressing deterioration of toughness, addition of less than 0.6% is not sufficient for suppressing deterioration of HAZ toughness.
Since the addition of more than 4.0% increases the manufacturing cost,
The range of Ni was 0.6% or more and 4.0% or less.

【0069】Nbは、焼き入れ性を向上させることによ
り母材の強度を向上させるため有効な元素であるが、低
Ceqにおいては、0.005%未満の添加では十分な
強度上昇が得られず、また、0.10%を越える過剰な
添加は母材の靭性をも著しく低下させることから、その
添加範囲を0.005〜0.10%とした。
Nb is an effective element for improving the strength of the base material by improving the hardenability, but at a low Ceq, addition of less than 0.005% cannot sufficiently increase the strength. Further, excessive addition exceeding 0.10% also significantly reduces the toughness of the base material, so the addition range was made 0.005 to 0.10%.

【0070】Alは、重要な脱酸元素であり、下限値を
0.005%とした。一方、Alが多量に存在すると、
鋳片の表面品位が劣化するため、上限を0.070%と
した。
Al is an important deoxidizing element, and the lower limit value is 0.005%. On the other hand, if Al is present in a large amount,
Since the surface quality of the slab deteriorates, the upper limit was made 0.070%.

【0071】Tiは、Nと結合してTi窒化物を形成さ
せるために、0.005%以上添加する。しかし、固溶
Ti量が増加するとHAZ靭性が低下するため、0.0
30%を上限とした。
Ti is added in an amount of 0.005% or more in order to combine with N to form a Ti nitride. However, as the amount of solid solution Ti increases, the HAZ toughness decreases, so 0.0
The upper limit was 30%.

【0072】Caは、Ca系酸化物を生成させるため
に、0.0005%以上の添加が必要である。しかしな
がら、過剰の添加は粗大介在物を生成させるため、0.
0050%を上限とした。
Ca is required to be added in an amount of 0.0005% or more in order to form a Ca-based oxide. However, since excessive addition produces coarse inclusions,
The upper limit was 0050%.

【0073】Nは、TiNとして析出することでHAZ
靭性の向上に効果があるため、下限を0.0005%と
した。しかし、固溶Nが増大するとHAZ靭性の低下を
招くことから0.0070%を上限とした。
N precipitates as TiN, so that HAZ
The lower limit was made 0.0005% because it is effective in improving toughness. However, if the amount of solute N increases, the HAZ toughness decreases, so 0.0070% was made the upper limit.

【0074】Bは、Nとの共存下で加熱オーステナイト
粒界に生成するフェライトの成長を抑制する上で有効な
元素であり、少なくとも0.0005%添加する。しか
し、多量に添加すると鋼材の靭性を劣化させるため、上
限を0.0030%とした。
B is an element effective in suppressing the growth of ferrite generated in the heated austenite grain boundaries in the coexistence with N, and is added at least 0.0005%. However, if added in a large amount, the toughness of the steel material deteriorates, so the upper limit was made 0.0030%.

【0075】Cuは、鋼材の強度を向上させるために有
効であるが、1.0%を越えるとHAZ靭性を低下させ
ることから、1.0%を上限とした。
Cu is effective for improving the strength of the steel material, but if it exceeds 1.0%, it lowers the HAZ toughness, so 1.0% was made the upper limit.

【0076】V、Cr、MoについてもNbと同様な効
果を有することから、それぞれ、0.1%、0.6%、
0.6%を上限とした。
Since V, Cr, and Mo also have the same effect as Nb, 0.1%, 0.6%, and
The upper limit was 0.6%.

【0077】Mg、REMは、いずれも、溶鋼中Caに
次ぐ脱酸力を有し、Caによる微細酸化物の形成を補助
する働きがあるが、過剰に入れると、Caと比較してコ
ストアップが大きいとともに、粗大介在物を作って、鋼
板およびHAZの靭性を阻害することから、上限を、そ
れぞれ、0.0050%、0.100%とした。
Both Mg and REM have the deoxidizing power next to Ca in molten steel and have the function of assisting the formation of fine oxides by Ca. However, if added in excess, the cost will be higher than that of Ca. Is large and coarse inclusions are formed to hinder the toughness of the steel plate and HAZ, so the upper limits were made 0.0050% and 0.100%, respectively.

【0078】[0078]

【実施例】(実施例)表1に示した化学成分の鋼で、5
0〜60キロ鋼を試作した。鋼種1〜8が本発明鋼、鋼
種9〜16が比較鋼である。試作鋼は、転炉で溶製し、
RH方式にて真空脱ガス処理する時に脱酸を行った。T
i投入前に溶鋼の溶存酸素をSiで調整し、その後、T
i、Al、Caを順に添加し脱酸を行い、連続鋳造によ
り280mmの厚の鋳片に鋳造した。その後、この鋳片
を加熱圧延して、板厚70mmの鋼板を製造した。得ら
れた鋼板を1パスのエレクトロガス溶接で溶接した。入
熱は約410kJ/cm2である。
(Example) (Example) With steel having the chemical composition shown in Table 1, 5
0-60 kg steel was trial-produced. Steel types 1 to 8 are steels of the present invention, and steel types 9 to 16 are comparative steels. Prototype steel is melted in a converter,
Deoxidation was performed when vacuum degassing was performed by the RH method. T
Before adding i, adjust the dissolved oxygen of molten steel with Si, then
i, Al, and Ca were sequentially added to perform deoxidation, and continuous casting was performed to cast a slab having a thickness of 280 mm. Then, this slab was heated and rolled to manufacture a steel plate having a plate thickness of 70 mm. The obtained steel sheets were welded by 1-pass electrogas welding. The heat input is about 410 kJ / cm 2 .

【0079】[0079]

【表1】 [Table 1]

【0080】[0080]

【表2】 [Table 2]

【0081】表2に、酸化物粒子の平均組成、電子顕微
鏡にて測定した粒子径0.005〜2.0μmの粒子数
と粒子径0.1〜2.0μmの粒子数、ENI=(%N
i)−18(%C)−36(%Nb)+1の値、EN=
(%N)−0.292(%Ti)−1.292(%B)
の値、100倍の光学顕微鏡写真20視野にて切断法で
測定したHAZ組織のオーステナイト粒の平均粒径、オ
ーステナイト粒界あるいは粒界三重点における最大フェ
ライトサイズ(幅)、および、HAZの靭性を示す。
Table 2 shows the average composition of oxide particles, the number of particles having a particle size of 0.005 to 2.0 μm and the number of particles having a particle size of 0.1 to 2.0 μm measured by an electron microscope, and ENI = (% N
i) -18 (% C) -36 (% Nb) +1 value, EN =
(% N) -0.292 (% Ti) -1.292 (% B)
Value, the average grain size of the austenite grains of the HAZ structure, the maximum ferrite size (width) at the austenite grain boundary or the grain boundary triple point, and the toughness of the HAZ measured by the cutting method in a field of view of an optical microscope photograph of 100 times. Show.

【0082】HAZ靭性評価のためのシャルピー試験は
−40℃にて行った。ボンドからHAZ1mmの部位で
9本の試験を行ない、その平均値を採った。
The Charpy test for evaluating the HAZ toughness was conducted at -40 ° C. Nine pieces of the test were conducted at a site of HAZ 1 mm from the bond, and the average value was taken.

【0083】表2から明らかなように、鋼種1〜8の本
発明鋼は、比較鋼と比べて、優れたHAZ靭性を有する
ことが判る。すなわち、粒子径が0.005〜2.0μ
mで、Ca、Alを所定の組成で含む酸化物の粒子数が
100〜3000個/mm2の範囲内にあることによっ
て、比較鋼と比較して、HAZ組織のオーステナイト粒
径も小さく、かつ、Bの効果によりオーステナイト粒界
あるいは粒界三重点におけるフェライトも小さくなって
いる。
As is clear from Table 2, the steels of the present invention of steel types 1 to 8 have excellent HAZ toughness as compared with the comparative steels. That is, the particle size is 0.005-2.0μ
m, the number of oxide particles containing Ca and Al in a predetermined composition is in the range of 100 to 3000 particles / mm 2 , so that the austenite grain size of the HAZ structure is smaller than that of the comparative steel, and , B also reduces the ferrite at the austenite grain boundaries or at the grain boundary triple points.

【0084】そして、その結果、−40℃のシャルピー
吸収エネルギー値は、鋼構造物の破壊力学的立場から一
般に要求される平均50Jを大きく上回っており、本発
明鋼は、HAZ靭性に極めて優れていることが明らかで
ある。
As a result, the Charpy absorbed energy value at −40 ° C. greatly exceeds the average of 50 J generally required from the viewpoint of the fracture mechanics of steel structures, and the steel of the present invention is extremely excellent in HAZ toughness. It is clear that

【0085】なお、鋼種1、2、4、5、7および8
は、粒子径0.1〜2.0μmの粒子数も100個/m
2以上あり、鋼種3および6と比較して、相対的にオ
ーステナイト粒径が小さく、かつ、シャルピー吸収エネ
ルギーも高い。
Steel types 1, 2, 4, 5, 7 and 8
Is 100 particles / m for particles having a particle diameter of 0.1 to 2.0 μm
m 2 or more, the austenite grain size is relatively small, and the Charpy absorbed energy is relatively high as compared with the steel types 3 and 6.

【0086】一方、比較鋼の鋼種9〜16は、いずれ
も、シャルピー試験−40℃で50J未満の低い靭性し
か示さなかった。
On the other hand, all of the comparative steel types 9 to 16 showed a low toughness of less than 50 J at the Charpy test of -40 ° C.

【0087】これらの原因は、鋼種9〜12では、化学
成分が本発明の範囲から外れ、酸化物が本発明の所定の
組成になっていないか、および/または、酸化物粒子数
が所定の個数より少なかったためであり、鋼種13で
は、酸化物組成および個数、は本発明の範囲内にある
が、ENI当量およびEN当量が本発明範囲から外れて
いるためであり、鋼種14では、酸化物組成、個数、E
N当量は本発明の範囲内にあるが、ENI当量が本発明
範囲から外れているためであり、鋼種15では、酸化物
組成、個数、ENI当量は本発明の範囲内にあるが、E
N当量が本発明範囲から外れているためである。また、
鋼種16は、他の鋼より鋼中酸素量が、高く酸化物粒子
数が所定の個数よりも多いため、本発明鋼よりも低い靭
性となった。
These causes are that, in steel types 9 to 12, the chemical composition is out of the range of the present invention, the oxide does not have the predetermined composition of the present invention, and / or the number of oxide particles is predetermined. This is because the number of oxides was less than the number, and in Steel Type 13, the oxide composition and number were within the scope of the present invention, but the ENI equivalent and the EN equivalent were outside the scope of the present invention, and in Steel Type 14, the oxides were Composition, number, E
The N equivalent is within the range of the present invention, but the ENI equivalent is out of the range of the present invention. In Steel Type 15, the oxide composition, the number, and the ENI equivalent are within the range of the present invention.
This is because the N equivalent is outside the range of the present invention. Also,
Steel type 16 had a higher oxygen content in the steel than the other steels and a larger number of oxide particles than the predetermined number, and thus had a lower toughness than the steel of the present invention.

【0088】[0088]

【発明の効果】本発明は、船舶、海洋構造物、中高層ビ
ル、橋梁などの破壊に対する厳しい靭性要求を満足する
鋼板を供給するものであり、この種の産業分野にもたら
す効果は極めて大きく、さらに、構造物の安全性の意味
から社会に対する貢献も非常に大きい。
INDUSTRIAL APPLICABILITY The present invention provides a steel sheet that satisfies severe toughness requirements for fracture of ships, offshore structures, middle- and high-rise buildings, bridges, etc., and has an extremely large effect on the industrial field of this type. In terms of the safety of structures, it makes a great contribution to society.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化物粒子数とHAZ靭性の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the number of oxide particles and HAZ toughness.

【図2】EN=(%N)−0.292(%Ti)−1.
292(%B)とHAZ靭性の関係を示す図である。
FIG. 2 shows EN = (% N) -0.292 (% Ti) -1.
It is a figure which shows the relationship between 292 (% B) and HAZ toughness.

【図3】ENI=(%Ni)−18(%Ti)−36
(%B)+1とHAZ靭性の関係を示す図である。
FIG. 3 ENI = (% Ni) -18 (% Ti) -36
It is a figure which shows the relationship between (% B) +1 and HAZ toughness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 皆川 昌紀 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 長谷川 俊永 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 石田 浩司 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masanori Minagawa             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd. (72) Inventor Toshinaga Hasegawa             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd. (72) Inventor Koji Ishida             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P :≦0.02% S :≦0.02% Ni:0.6〜4.0% Nb:0.005〜0.10% Al:0.005〜0.070% Ti:0.005〜0.030% Ca:0.0005〜0.0050% N :0.0005〜0.0070% B :0.0005〜0.0030% を含有し、残部はFeおよび不可避不純物からなり、 ENI=(%Ni)−18(%C)−36(%Nb)+
1 なる当量式において ENI≧0 を満足し、かつ、 EN=(%N)−0.292(%Ti)−1.292
(%B) なる当量式において 0≦EN≦0.002 を満足
し、さらに、円相当粒子径が0.005〜2.0μmで
あって、組成として少なくともCa、Al、Oを含み、
Oを除いた元素の平均質量%で、 Ca:3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
1. In mass%, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: ≤ 0.02% Ni: 0.6 to 4.0% Nb: 0.005 to 0.10% Al: 0.005 to 0.070% Ti: 0.005 to 0.030% Ca: 0.0005 to 0.0050% N: 0.0005 to 0.0070% B: 0.0005 to 0.0030%, the balance Fe and inevitable impurities, ENI = (% Ni) -18 (% C) -36 (% Nb ) +
In the equivalent formula of 1, ENI ≧ 0 is satisfied, and EN = (% N) −0.292 (% Ti) −1.292.
In the equivalent formula of (% B), 0 ≦ EN ≦ 0.002 is satisfied, the equivalent circle diameter is 0.005 to 2.0 μm, and the composition contains at least Ca, Al, and O.
Average mass% of elements excluding O, particles containing Ca: 3% or more and Al: 1% or more, and the balance consisting of other deoxidizing elements and / or unavoidable impurities, the number of particles is 100 to 3000 / mm.
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .
【請求項2】 質量%で、 C :0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P :≦0.02% S :≦0.02% Ni:0.6〜4.0% Nb:0.005〜0.10% Al:0.005〜0.070% Ti:0.005〜0.030% Ca:0.0005〜0.0050% N :0.0005〜0.0070% B :0.0005〜0.0030% を基本成分とし、さらに、 Cu:≦1.0% V :≦0.1% Cr:≦0.6% Mo:≦0.6% Mg:≦0.0050% REM:≦0.100% の1種または2種以上を含有し、残部はFeおよび不可
避不純物からなり、 ENI=(%Ni)−18(%C)−36(%Nb)+
1 なる当量式において ENI≧0 を満足し、かつ、 EN=(%N)−0.292(%Ti)−1.292
(%B) なる当量式において 0≦EN≦0.002 を満足
し、さらに、円相当粒子径が0.005〜2.0μmで
あって、組成として少なくともCa、Al、Oを含み、
Oを除いた元素の平均質量%で、 Ca:3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
2. In mass%, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: ≤ 0.02% Ni: 0.6 to 4.0% Nb: 0.005 to 0.10% Al: 0.005 to 0.070% Ti: 0.005 to 0.030% Ca: 0.0005 to 0.0050% N: 0.0005 to 0.0070% B: 0.0005 to 0.0030% as a basic component, and further Cu: ≤ 1.0% V: ≤ 0.1% Cr: ≤ 0.6% Mo: ≦ 0.6% Mg: ≦ 0.0050% REM: ≦ 0.100% One or more kinds are contained, and the balance is Fe and inevitable impurities. ENI = (% Ni) -18 (% C ) -36 (% Nb) +
In the equivalent formula of 1, ENI ≧ 0 is satisfied, and EN = (% N) −0.292 (% Ti) −1.292.
In the equivalent formula of (% B), 0 ≦ EN ≦ 0.002 is satisfied, the equivalent circle diameter is 0.005 to 2.0 μm, and the composition contains at least Ca, Al, and O.
Average mass% of elements excluding O, particles containing Ca: 3% or more and Al: 1% or more, and the balance consisting of other deoxidizing elements and / or unavoidable impurities, the number of particles is 100 to 3000 / mm.
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .
【請求項3】 請求項1または2に記載の溶接熱影響部
靭性の優れた鋼材において、円相当粒子径が0.1〜
2.0μmであって、組成として少なくともCa、A
l、Oを含み、Oを除いた元素の平均質量%で、Ca:
3%以上 Al:1%以上 を含有し、残部が他の脱酸元素および/または不可避不
純物からなる粒子を、粒子数100〜3000個/mm
2含有することを特徴とする溶接熱影響部靭性の優れた
鋼材。
3. The steel material having excellent weld heat affected zone toughness according to claim 1 or 2, having a circle-equivalent particle diameter of 0.1 to 0.1.
The composition is 2.0 μm, and the composition is at least Ca and A.
The average mass% of elements including 1, O and excluding O, Ca:
Particles containing 3% or more Al: 1% or more, with the balance being other deoxidizing elements and / or unavoidable impurities, the number of particles is 100 to 3000 / mm.
A steel material with excellent toughness in the weld heat affected zone, which is characterized by containing 2 .
JP2002119527A 2002-04-22 2002-04-22 Steel with excellent weld heat-affected zone toughness Expired - Fee Related JP3616609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002119527A JP3616609B2 (en) 2002-04-22 2002-04-22 Steel with excellent weld heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119527A JP3616609B2 (en) 2002-04-22 2002-04-22 Steel with excellent weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2003313629A true JP2003313629A (en) 2003-11-06
JP3616609B2 JP3616609B2 (en) 2005-02-02

Family

ID=29536058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119527A Expired - Fee Related JP3616609B2 (en) 2002-04-22 2002-04-22 Steel with excellent weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP3616609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128460A (en) * 2005-08-16 2012-07-05 Ohara Inc Structure and manufacturing method thereof
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128460A (en) * 2005-08-16 2012-07-05 Ohara Inc Structure and manufacturing method thereof
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet

Also Published As

Publication number Publication date
JP3616609B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP4660250B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP5397363B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
WO2010134220A1 (en) Steel material for high heat input welding
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JP2003313628A (en) Steel product superior in toughness of weld heat- affected zone
EP1520912B1 (en) Steel excellent in toughness of weld heat-affected zone
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP3434125B2 (en) Structural steel sheet with excellent toughness in the heat affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3616609B2 (en) Steel with excellent weld heat-affected zone toughness
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JPH093599A (en) Steel for welding structure excellent in toughness of weld heat affected zone and its production
JP4261968B2 (en) Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP3522564B2 (en) Steel plate with excellent toughness in weld heat affected zone
JP3502842B2 (en) 600MPa class steel with excellent low YR characteristics and super high heat input weld joint toughness
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP2000234139A (en) High tensile strength steel for welding excellent in toughness of welding heat affected zone and its production
JP3502851B2 (en) 600MPa class steel with excellent weldability and weld joint toughness
JP2001226739A (en) Steel excellent in heat-affected zone toughness
JPH093598A (en) Steel for low temperature use excellent in toughness of weld heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041105

R151 Written notification of patent or utility model registration

Ref document number: 3616609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees