JP2003311508A - Surface coated cemented carbide cutting tool having hard coating layer showing excellent wear resistance under high-speed heavy cutting condition - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer showing excellent wear resistance under high-speed heavy cutting condition

Info

Publication number
JP2003311508A
JP2003311508A JP2002125550A JP2002125550A JP2003311508A JP 2003311508 A JP2003311508 A JP 2003311508A JP 2002125550 A JP2002125550 A JP 2002125550A JP 2002125550 A JP2002125550 A JP 2002125550A JP 2003311508 A JP2003311508 A JP 2003311508A
Authority
JP
Japan
Prior art keywords
highest
content
hard coating
coating layer
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002125550A
Other languages
Japanese (ja)
Other versions
JP3972293B2 (en
Inventor
Natsuki Ichinomiya
夏樹 一宮
Takashi Fujisawa
隆史 藤澤
Kazuki Izumi
一樹 泉
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002125550A priority Critical patent/JP3972293B2/en
Publication of JP2003311508A publication Critical patent/JP2003311508A/en
Application granted granted Critical
Publication of JP3972293B2 publication Critical patent/JP3972293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer showing excellent wear resistance under a high-speed heavy cutting condition. <P>SOLUTION: The surface coated cemented carbide cutting tool consists of the hard coating layer composed of composite nitride of Al, Ti and Y, and physically vapor-deposited on a surface of a tangusten carbide based cemented carbide substrate or a titanium carbonitride system cermet substrate with an overall average layer thickness of 1 to 15 μm. The hard coating layer has a component concentration distribution structure wherein the highest Al content points and the highest Ti content point exist alternately and repeatedly in a layer thickness direction at specified intervals, and wherein the contents of Al and Ti are successively changed from the highest Al containing point to the highest Ti content point, and from the highest Ti content point to the highest Al content point, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた高温硬さと耐熱性、さらに高強度と高靭性を有
し、したがって各種の鋼や鋳鉄などの切削加工を、特に
高熱発生を伴う高速で、かつ高い機械的衝撃を伴う高切
り込みや高送りなどの重切削条件で行なった場合に、硬
質被覆層がチッピング(微小欠け)などの発生なく、す
ぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
(以下、被覆超硬工具という)に関するものである。 【0002】 【従来の技術】一般に、被覆超硬工具には、各種の鋼や
鋳鉄などの被削材の旋削加工や平削り加工にバイトの先
端部に着脱自在に取り付けて用いられるスローアウエイ
チップ、穴あけ切削加工などに用いられるドリルやミニ
チュアドリル、さらに切刃が断続切削加工形態をとる面
削加工や溝加工、肩加工などに用いられるソリッドタイ
プのエンドミルなどがあり、また前記スローアウエイチ
ップを着脱自在に取り付けて前記ソリッドタイプのエン
ドミルと同様に切削加工を行うスローアウエイエンドミ
ル工具などが知られている。 【0003】また、被覆超硬工具として、炭化タングス
テン(以下、WCで示す)基超硬合金または炭窒化チタ
ン(以下、TiCNで示す)基サーメットからなる基体
(以下、これらを総称して超硬基体と云う)の表面に、
組成式:(Ti1-(Z+X)AlZX)N(ただし、原子比
で、Zは0.40〜0.65、Xは0.005〜0.1
を示す)を満足するTiとAlとYの複合窒化物[以
下、(Ti,Al,Y)Nで示す]層からなる硬質被覆
層を1〜15μmの平均層厚で物理蒸着してなる被覆超
硬工具が提案され、かかる被覆超硬工具が、硬質被覆層
を構成する前記(Ti,Al,Y)N層が高温特性(高
温硬さおよび耐熱性)を有し、さらに強度と靭性を具備
することから、各種の鋼や鋳鉄などの連続切削や断続切
削加工に用いられることも知られている。 【0004】さらに、上記の被覆超硬工具が、例えば図
2に概略説明図で示される物理蒸着装置の1種であるア
ークイオンプレーティング装置に上記の超硬基体を装入
し、ヒータで装置内を、例えば500℃の温度に加熱し
た状態で、アノード電極と所定組成を有するTi−Al
−Y合金がセットされたカソード電極(蒸発源)との間
に、例えば電流:90Aの条件でアーク放電を発生さ
せ、同時に装置内に反応ガスとして窒素ガスを導入し
て、例えば2Paの反応雰囲気とし、一方上記超硬基体
には、例えば−100Vのバイアス電圧を印加した条件
で、前記超硬合金基体の表面に、上記(Ti,Al,
Y)N層からなる硬質被覆層を蒸着することにより製造
されることも知られている。 【0005】 【発明が解決しようとする課題】近年の切削加工装置の
高性能化はめざましく、一方で切削加工に対する省力化
および省エネ化、さらに低コスト化の要求も強く、これ
に伴い、切削加工は高速化の傾向を強め、かつ高切り込
みや高送りなどの重切削条件での切削加工を余儀なくさ
れる傾向にあるが、上記の従来被覆超硬工具において
は、これを通常の切削加工条件で用いた場合には問題は
ないが、切削加工を高速で、かつ高い機械的衝撃を伴う
高切り込みや高送りなどの重切削条件で行なった場合に
は、特に硬質被覆層の高温硬さおよび耐熱性が不足し、
さらに強度および靭性も不十分であるために、硬質被覆
層の摩耗進行が一段と促進し、かつチッピングも発生し
易くなることから、比較的短時間で使用寿命に至るのが
現状である。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特に高速重切削加工条件で硬質
被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開
発すべく、上記の従来被覆超硬工具を構成する硬質被覆
層に着目し、研究を行った結果、(a)上記の図2に示
されるアークイオンプレーティング装置を用いて形成さ
れた従来被覆超硬工具を構成する(Ti,Al,Y)N
層は、層厚全体に亘って実質的に均一な組成を有し、し
たがって均質な高温硬さと耐熱性、さらに強度と靭性を
有するが、例えば図1(a)に概略平面図で、同(b)
に概略正面図で示される構造のアークイオンプレーティ
ング装置、すなわち装置中央部に超硬基体装着用回転テ
ーブルを設け、前記回転テーブルを挟んで、一方側に相
対的にAl含有量の高い(Ti含有量の低い)Al−T
i−Y合金、他方側に相対的にTi含有量の高い(Al
含有量の低い)Ti−Al−Y合金をカソード電極(蒸
発源)として対向配置したアークイオンプレーティング
装置を用い、この装置の前記回転テーブルの外周部に沿
って複数の超硬基体をリング状に装着し、この状態で装
置内雰囲気を窒素雰囲気として前記回転テーブルを回転
させると共に、蒸着形成される硬質被覆層の層厚均一化
を図る目的で超硬基体自体も自転させながら、前記の両
側のカソード電極(蒸発源)とアノード電極との間にア
ーク放電を発生させて、前記超硬基体の表面にAlとT
iとYの複合窒化物[以下、(Al−Ti,Y)Nで示
す]層を形成すると、この結果の(Al−Ti,Y)N
層においては、回転テーブル上にリング状に配置された
前記超硬基体が上記の一方側の相対的にAl含有量の高
い(Ti含有量の低い)Al−Ti−Y合金のカソード
電極(蒸発源)に最も接近した時点で層中にAl最高含
有点が形成され、また前記超硬基体が上記の他方側の相
対的にTi含有量の高い(Al含有量の低い)Ti−A
l−Y合金のカソード電極に最も接近した時点で層中に
Ti最高含有点が形成され、上記回転テーブルの回転に
よって層中には層厚方向にそって前記Al最高含有点と
Ti最高含有点が所定間隔をもって交互に繰り返し現れ
ると共に、前記Al最高含有点から前記Ti最高含有
点、前記Ti最高含有点から前記Al最高含有点へAl
およびTi含有量がそれぞれ連続的に変化する成分濃度
分布構造をもつようになること。 【0007】(b)上記(a)の繰り返し連続変化成分
濃度分布構造の(Al−Ti,Y)N層の形成におい
て、対向配置の一方側のカソード電極(蒸発源)である
Al−Ti−Y合金におけるAl含有量を上記の従来T
i−Al−Y合金のAl含有量に比して相対的に高いも
のとし、かつ同他方側のカソード電極(蒸発源)である
Ti−Al−Y合金におけるAl含有量を上記の従来T
i−Al−Y合金のAl含有量に比して相対的に低いも
のとする共に、超硬基体が装着されている回転テーブル
の回転速度を制御して、上記Al最高含有点が、組成
式:(Al1-(M+X) TiMX)N(ただし、原子比で、
Mは0.05〜0.30、Xは0.005〜0.1を示
す)、上記Ti最高含有点が、組成式:(Ti1-(N+X)
AlNX)N(ただし、原子比で、Nは0.05〜0.
35、Xは0.005〜0.1を示す)、をそれぞれ満
足し、かつ隣り合う上記Al最高含有点とTi最高含有
点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、上記の従来(Al,T
i,Y)N層に比してAl含有量が相対的に高くなるこ
とから、より一段とすぐれた高温硬さと耐熱性(高温特
性)を示し、一方上記Ti最高含有点部分では、前記従
来(Al,Ti,Y)N層に比してTi含有量が相対的
に高くなることから、一段と高い強度と靭性を具備し、
かつこれらAl最高含有点とTi最高含有点の間隔をき
わめて小さくしたことから、層全体の特性として高強度
と高靭性を保持した状態ですぐれた高温特性を具備する
ようになり、したがって、硬質被覆層がかかる構成の
(Al,Ti,Y)N層からなる被覆超硬工具は、各種
の鋼や鋳鉄などの切削加工を、特に高熱発生および高い
機械的衝撃を伴う、高速重切削条件で行なった場合に
も、硬質被覆層にチッピングの発生なく、すぐれた耐摩
耗性を発揮するようになること。以上(a)および
(b)に示される研究結果を得たのである。 【0008】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、(Ti,A
l,Y)N層からなる硬質被覆層を1〜15μmの全体
平均層厚で物理蒸着してなる被覆超硬工具において、上
記硬質被覆層が、層厚方向にそって、Al最高含有点
(Ti最低含有点)とTi最高含有点(Al最低含有
点)とが所定間隔をおいて交互に繰り返し存在し、かつ
前記Al最高含有点から前記Ti最高含有点、前記Ti
最高含有点から前記Al最高含有点へAlおよびTi含
有量がそれぞれ連続的に変化する成分濃度分布構造を有
し、さらに、上記Al最高含有点が、組成式:(Al
1-(M+X) TiMX)N(ただし、原子比で、Mは0.0
5〜0.30、Xは0.005〜0.1を示す)、上記
Ti最高含有点が、組成式:(Ti1-(K+X)AlKX
N(ただし、原子比で、Kは0.05〜0.35、Xは
0.005〜0.1を示す)、を満足し、かつ隣り合う
上記Al最高含有点とTi最高含有点の間隔が、0.0
1〜0.1μmである、高速重切削条件で硬質被覆層が
すぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有す
るものである。 【0009】つぎに、この発明の被覆超硬工具におい
て、これを構成する硬質被覆層の構成を上記の通りに限
定した理由を説明する。 (a)Al最高含有点の組成 (Al−Ti,Y)N層のAl最高含有点のAl成分
は、高温硬さおよび耐熱性(高温特性)を向上させ、同
Ti成分は強度および靭性を向上させ、さらに同Y成分
は一段と高温硬さを向上させる作用があり、したがって
Al成分およびY成分の含有割合が高くなればなるほど
高温特性は向上し、高熱発生を伴う高速切削に適合した
ものになるが、Tiの割合を示すM値がAlとYの合量
に占める割合(原子比)で0.05未満になると、相対
的にAlの割合が多くなり過ぎて、高強度および高靭性
を有するTi最高含有点が隣接して存在しても層自体の
強度および靭性の低下は避けられず、この結果チッピン
グなどが発生し易くなり、一方Tiの割合を示すM値が
同0.30を越えると、相対的にAlの割合が少なくな
り過ぎて、所望のすぐれた高温特性を確保することがで
きなくなるものであり、またYの割合を示すX値がAl
とTiの合量に占める割合(原子比)で0.005未満
では所望の高温硬さ向上効果が得られず、さらに同X値
が0.1を超えると、強度および靭性が急激に低下する
ようになることから、M値を0.05〜0.30、X値
を0.005〜0.1とそれぞれ定めた。 【0010】(b)Ti最高含有点の組成 上記の通りAl最高含有点は高温特性のすぐれたもので
あるが、反面強度および靭性の劣るものであるため、こ
のAl最高含有点の強度および靭性不足を補う目的で、
Ti含有割合が高く、これによって高強度および高靭性
を有するようになるTi最高含有点を厚さ方向に交互に
介在させるものであり、したがってAlの割合を示すK
値がTiとYの合量に占める割合(原子比)で0.35
を越えると、相対的にAlの割合が多くなり過ぎて、所
望のすぐれた強度および靭性を確保することができず、
一方同K値が同じく0.05未満になると、相対的にT
iの割合が多くなり過ぎて、Ti最高含有点に所望の高
温特性を具備せしめることができなくなることから、K
値を0.05〜0.35と定めたものであり、またY成
分の割合を示すX値は上記のAl最高含有点におけると
同じ理由で0.005〜0.1と定めた。 【0011】(c)Al最高含有点とTi最高含有点間
の間隔 その間隔が0.01μm未満ではそれぞれの点を上記の
組成で明確に形成することが困難であり、この結果層に
所望の高強度および高靭性、さらにすぐれた高温特性を
確保することができなくなり、またその間隔が0.1μ
mを越えるとそれぞれの点がもつ欠点、すなわちAl最
高含有点であれば強度および靭性不足、Ti最高含有点
であれば高温特性不足が層内に局部的に現れ、これが原
因で切刃にチッピングが発生し易くなったり、摩耗進行
が促進されるようになることから、その間隔を0.01
〜0.1μmと定めた。 【0012】(d)硬質被覆層の全体平均層厚 その層厚が1μm未満では、所望の耐摩耗性を確保する
ことができず、一方その平均層厚が15μmを越える
と、チッピングが発生し易くなることから、その平均層
厚を1〜15μmと定めた。 【0013】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、VC粉末、Ta
C粉末、NbC粉末、Cr3 2 粉末、およびCo粉末
を用意し、これら原料粉末を、表1に示される配合組成
に配合し、ボールミルで72時間湿式混合し、乾燥した
後、100MPa の圧力で圧粉体にプレス成形し、こ
の圧粉体を6Paの真空中、温度:1400℃に1時間
保持の条件で焼結し、焼結後、切刃部分にR:0.03
のホーニング加工を施してISO規格・CNMG120
408のチップ形状をもったWC基超硬合金製の超硬基
体A1〜A10を形成した。 【0014】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0015】ついで、上記の超硬基体A1〜A10およ
びB1〜B6のそれぞれを、アセトン中で超音波洗浄
し、乾燥した状態で、図1に示されるアークイオンプレ
ーティング装置内の回転テーブル上に外周部にそって装
着し、一方側のカソード電極(蒸発源)として、種々の
成分組成をもったTi最高含有点形成用Ti−Al−Y
合金、他方側のカソード電極(蒸発源)として、種々の
成分組成をもったAl最高含有点形成用Al−Ti−Y
合金を前記回転テーブルを挟んで対向配置し、またボン
バート洗浄用金属Tiも装着し、まず、装置内を排気し
て0.5Pa以下の真空に保持しながら、ヒーターで装
置内を500℃に加熱した後、前記回転テーブル上で自
転しながら回転する超硬基体に−1000Vの直流バイ
アス電圧を印加し、かつカソード電極の前記金属Tiと
アノード電極との間に100Aの電流を流してアーク放
電を発生させ、もって超硬基体表面をTiボンバート洗
浄し、ついで装置内に反応ガスとして窒素ガスを導入し
て2Paの反応雰囲気とすると共に、前記回転テーブル
上で自転しながら回転する超硬基体に−100Vの直流
バイアス電圧を印加し、かつそれぞれのカソード電極
(前記Ti最高含有点形成用Ti−Al−Y合金および
Al最高含有点形成用Al−Ti−Y合金)とアノード
電極との間に100Aの電流を流してアーク放電を発生
させ、もって前記超硬基体の表面に、層厚方向に沿って
表3,4に示される目標組成のAl最高含有点とTi最
高含有点とが交互に同じく表3,4に示される目標間隔
で繰り返し存在し、かつ前記Al最高含有点から前記T
i最高含有点、前記Ti最高含有点から前記Al最高含
有点へAlおよびTi含有量がそれぞれ連続的に変化す
る成分濃度分布構造を有し、かつ同じく表3,4に示さ
れる目標全体層厚の硬質被覆層を蒸着することにより、
本発明被覆超硬工具としての本発明表面被覆超硬合金製
スローアウエイチップ(以下、本発明被覆超硬チップと
云う)1〜16をそれぞれ製造した。 【0016】また、比較の目的で、これら超硬基体A1
〜A10およびB1〜B6を、アセトン中で超音波洗浄
し、乾燥した状態で、それぞれ図2に示される通常のア
ークイオンプレーティング装置に装入し、カソード電極
(蒸発源)として種々の成分組成をもったTi−Al−
Y合金を装着し、さらにボンバート洗浄用金属Tiも装
着し、まず、装置内を排気して0.5Pa以下の真空に
保持しながら、ヒーターで装置内を500℃に加熱した
後、前記超硬基体に−1000Vの直流バイアス電圧を
印加し、かつカソード電極の前記金属Tiとアノード電
極との間に100Aの電流を流してアーク放電を発生さ
せ、もって超硬基体表面をTiボンバート洗浄し、つい
で装置内に反応ガスとして窒素ガスを導入して2Paの
反応雰囲気とすると共に、超硬基体に−100Vの直流
バイアス電圧を印加し、前記カソード電極のTi−Al
−Y合金とアノード電極との間に100Aの電流を流し
てアーク放電を発生させ、もって前記超硬基体A1〜A
10およびB1〜B6のそれぞれの表面に、表5,6に
示される目標組成および目標層厚を有し、かつ層厚方向
に沿って実質的に組成変化のない(Ti,Al,Y)N
層からなる硬質被覆層を蒸着することにより、従来被覆
超硬工具としての従来表面被覆超硬合金製スローアウエ
イチップ(以下、従来被覆超硬チップと云う)1〜16
をそれぞれ製造した。 【0017】つぎに、上記本発明被覆超硬チップ1〜1
6および従来被覆超硬チップ1〜16について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:350m/min.、 切り込み:4mm、 送り:0.3mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式連続高速高切り込み切削加工試
験、 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:350m/min.、 切り込み:2.5mm、 送り:0.5mm/rev.、 切削時間:10分、 の条件での炭素鋼の乾式断続高速高送り切削加工試験、
さらに、 被削材:JIS・FC300の丸棒、 切削速度:350m/min.、 切り込み:4mm、 送り:0.35mm/rev.、 切削時間:5分、 の条件での鋳鉄の乾式連続高速高切り込み切削加工試験
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅
を測定した。この測定結果を表7に示した。 【0018】 【表1】 【0019】 【表2】【0020】 【表3】 【0021】 【表4】 【0022】 【表5】【0023】 【表6】 【0024】 【表7】【0025】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表8に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表8に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法を有し、かついずれもねじれ角:30度の4枚
刃スクエア形状をもった超硬基体(エンドミル)C−1
〜C−8をそれぞれ製造した。 【0026】ついで、これらの超硬基体(エンドミル)
C−1〜C−8を、アセトン中で超音波洗浄し、乾燥し
た状態で、同じく図1に示されるアークイオンプレーテ
ィング装置に装入し、上記実施例1と同一の条件で、層
厚方向に沿って表9に示される目標組成のAl最高含有
点とTi最高含有点とが交互に同じく表9に示される目
標間隔で繰り返し存在し、かつ前記Al最高含有点から
前記Ti最高含有点、前記Ti最高含有点から前記Al
最高含有点へAlおよびTi含有量がそれぞれ連続的に
変化する成分濃度分布構造を有し、かつ同じく表9に示
される目標全体層厚の硬質被覆層を蒸着することによ
り、本発明被覆超硬工具としての本発明表面被覆超硬合
金製エンドミル(以下、本発明被覆超硬エンドミルと云
う)1〜8をそれぞれ製造した。 【0027】また、比較の目的で、上記の超硬基体(エ
ンドミル)C−1〜C−8を、アセトン中で超音波洗浄
し、乾燥した状態で、同じく図2に示される通常のアー
クイオンプレーティング装置に装入し、上記実施例1と
同一の条件で、表10に示される目標組成および目標層
厚を有し、かつ層厚方向に沿って実質的に組成変化のな
い(Ti,Al,Y)N層からなる硬質被覆層を蒸着す
ることにより、従来被覆超硬工具としての従来表面被覆
超硬合金製エンドミル(以下、従来被覆超硬エンドミル
と云う)1〜8をそれぞれ製造した。 【0028】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD11の板材、 切削速度:120m/min.、 溝深さ(切り込み):6mm、 テーブル送り:770mm/分、 の条件での工具鋼の乾式高速高送り溝切削加工試験、本
発明被覆超硬エンドミル4〜6および従来被覆超硬エン
ドミル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:120m/min.、 溝深さ(切り込み):15mm、 テーブル送り:460mm/分、 の条件でのステンレス鋼の乾式高速高切り込み溝切削加
工試験、本発明被覆超硬エンドミル7,8および従来被
覆超硬エンドミル7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SNCM439の板材、 切削速度:150m/min.、 溝深さ(切り込み):10mm、 テーブル送り:380mm/分、 の条件での合金鋼の乾式高速高送り溝切削加工試験をそ
れぞれ行い、いずれの溝切削加工試験でも切刃部の外周
刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mm
に至るまでの切削溝長を測定した。この測定結果を表
9、10にそれぞれ示した。 【0029】 【表8】 【0030】 【表9】【0031】 【表10】 【0032】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体C−1〜C−3形成用)、13m
m(超硬基体C−4〜C−6形成用)、および26mm
(超硬基体C−7、C−8形成用)の3種の丸棒焼結体
を用い、この3種の丸棒焼結体から、研削加工にて、溝
形成部の直径×長さがそれぞれ4mm×13mm(超硬
基体D−1〜D−3)、8mm×22mm(超硬基体D
−4〜D−6)、および16mm×45mm(超硬基体
D−7、D−8)の寸法を有し、かついずれもねじれ
角:30度の2枚刃形状をもった超硬基体(ドリル)D
−1〜D−8をそれぞれ製造した。 【0033】ついで、これらの超硬基体(ドリル)D−
1〜D−8の切刃に、ホーニングを施し、アセトン中で
超音波洗浄し、乾燥した状態で、同じく図1に示される
アークイオンプレーティング装置に装入し、上記実施例
1と同一の条件で、層厚方向に沿って表11に示される
目標組成のAl最高含有点とTi最高含有点とが交互に
同じく表11に示される目標間隔で繰り返し存在し、か
つ前記Al最高含有点から前記Ti最高含有点、前記T
i最高含有点から前記Al最高含有点へAlおよびTi
含有量がそれぞれ連続的に変化する成分濃度分布構造を
有し、かつ同じく表11に示される目標全体層厚の硬質
被覆層を蒸着することにより、本発明被覆超硬工具とし
ての本発明表面被覆超硬合金製ドリル(以下、本発明被
覆超硬ドリルと云う)1〜8をそれぞれ製造した。 【0034】また、比較の目的で、上記の超硬基体(ド
リル)D−1〜D−8の切刃に、ホーニングを施し、ア
セトン中で超音波洗浄し、乾燥した状態で、同じく図2
に示される通常のアークイオンプレーティング装置に装
入し、上記実施例1と同一の条件で、表12に示される
目標組成および目標層厚を有し、かつ層厚方向に沿って
実質的に組成変化のない(Ti,Al,Y)N層からな
る硬質被覆層を蒸着することにより、従来被覆超硬工具
としての従来表面被覆超硬合金製ドリル(以下、従来被
覆超硬ドリルと云う)1〜8をそれぞれ製造した。 【0035】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD61の板材、 切削速度:60m/min.、 送り:0.20mm/rev、 穴深さ:12mm の条件での工具鋼の湿式高速高送り穴あけ切削加工試
験、本発明被覆超硬ドリル4〜6および従来被覆超硬ド
リル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FCD400の板材、 切削速度:80m/min.、 送り:0.35mm/rev、 穴深さ:24mm の条件でのダクタイル鋳鉄の湿式高速高送り穴あけ切削
加工試験、本発明被覆超硬ドリル7,8および従来被覆
超硬ドリル7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC300の板材、 切削速度:90m/min.、 送り:0.40mm/rev、 穴深さ:50mm の条件での鋳鉄の湿式高速高送り穴あけ切削加工試験、
をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水
溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.
3mmに至るまでの穴あけ加工数を測定した。この測定
結果を表11、12にそれぞれ示した。 【0036】 【表11】 【0037】 【表12】【0038】この結果得られた本発明被覆超硬工具とし
ての本発明被覆超硬チップ1〜16、本発明被覆超硬エ
ンドミル1〜8、および本発明被覆超硬ドリル1〜8を
構成する硬質被覆層におけるAl最高含有点とTi最高
含有点の組成、並びに従来被覆超硬工具としての従来被
覆超硬チップ1〜16、従来被覆超硬エンドミル1〜
8、および従来被覆超硬ドリル1〜8の硬質被覆層の組
成をオージェ分光分析装置を用いて測定したところ、そ
れぞれ目標組成と実質的に同じ組成を示した。また、こ
れらの本発明被覆超硬工具の硬質被覆層におけるAl最
高含有点とTi最高含有点間の間隔、およびこれの全体
層厚、並びに従来被覆超硬工具の硬質被覆層の厚さを、
走査型電子顕微鏡を用いて断面測定したところ、いずれ
も目標値と実質的に同じ値を示した。 【0039】 【発明の効果】表3〜12に示される結果から、硬質被
覆層が層厚方向に、すぐれた高温硬さと耐熱性を有する
Al最高含有点と、高強度と高靭性を有するTi最高含
有点とが交互に所定間隔をおいて繰り返し存在し、かつ
前記Al最高含有点から前記Ti最高含有点、前記Ti
最高含有点から前記Al最高含有点へAlおよびTi含
有量がそれぞれ連続的に変化する成分濃度分布構造を有
する本発明被覆超硬工具は、いずれも各種の鋼や鋳鉄な
どの切削加工を、高温発生を伴う高速条件で、かつ高い
機械的衝撃を伴う高切り込みや高送りなどの重切削条件
で行なった場合にも、硬質被覆層にチッピングの発生な
く、すぐれた耐摩耗性を発揮するのに対して、硬質被覆
層が層厚方向に沿って実質的に組成変化のない(Ti,
Al,Y)N層からなる従来被覆超硬工具においては、
前記の高速重切削条件では、前記硬質被覆層の高温特性
不足、並びに強度および靭性不足が原因で、摩耗進行が
速く、かつチッピングも発生し易いことから、比較的短
時間で使用寿命に至ることが明らかである。上述のよう
に、この発明の被覆超硬工具は、通常の条件での切削加
工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工
を、高熱発生および高い機械的衝撃を伴う高速重切削条
件で行なった場合にも、チッピングの発生なく、すぐれ
た耐摩耗性を発揮するものであるから、切削加工の省力
化および省エネ化、さらに低コスト化に十分満足に対応
できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard coating layer having excellent high-temperature hardness and heat resistance, as well as high strength and high toughness. The hard coating layer is free from chipping (small chipping) when high-speed cutting with high heat generation and heavy cutting conditions such as high cutting and high feed with high mechanical impact are performed. The present invention relates to a surface-coated cemented carbide cutting tool exhibiting excellent wear resistance (hereinafter referred to as a coated cemented carbide tool). 2. Description of the Related Art In general, a coated carbide tool is a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing a work material such as steel or cast iron. Drills and miniature drills used for drilling cutting, etc., furthermore, there are solid-type end mills used for face milling and grooving where the cutting edge takes an intermittent cutting form, shoulder processing, etc. A throw-away end mill tool that is detachably attached and performs cutting in the same manner as the solid type end mill is known. [0003] Further, as a coated cemented carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter, collectively referred to as cemented carbide). On the surface of the substrate)
Formula: (Ti 1- (Z + X ) Al Z Y X) N ( provided that an atomic ratio, Z is from 0.40 to .65, X is 0.005 to 0.1
Is formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti, Al, and Y (hereinafter, referred to as (Ti, Al, Y) N) satisfying the following conditions: A cemented carbide tool has been proposed. Such a coated cemented carbide tool is characterized in that the (Ti, Al, Y) N layer constituting the hard coating layer has high-temperature characteristics (high-temperature hardness and heat resistance), and further has strength and toughness. It is also known that it is used for continuous cutting and intermittent cutting of various kinds of steel and cast iron. [0004] Further, the above coated super hard tool is prepared by charging the above super hard substrate into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. Is heated to a temperature of, for example, 500 ° C., and an anode electrode and Ti-Al having a predetermined composition are mixed.
An arc discharge is generated between the cathode electrode (evaporation source) on which the -Y alloy is set, for example, at a current of 90 A, and a nitrogen gas is introduced as a reaction gas into the apparatus at the same time. On the other hand, under the condition that a bias voltage of, for example, -100 V is applied to the cemented carbide substrate, the surface of the cemented carbide substrate is coated with (Ti, Al,
Y) It is also known to be manufactured by depositing a hard coating layer consisting of an N layer. [0005] In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction for cutting. Tends to increase the speed and tends to necessitate cutting under heavy cutting conditions such as high cutting and high feed.However, in the above-mentioned conventional coated carbide tools, this is done under normal cutting conditions. There is no problem when used, but when cutting is performed at high speed and under heavy cutting conditions such as high cutting and high feed with high mechanical impact, especially the high temperature hardness and heat resistance of the hard coating layer Lack of sex,
Furthermore, since the strength and toughness are insufficient, the progress of abrasion of the hard coating layer is further promoted and chipping is liable to occur, so that at present, the service life is reached in a relatively short time. Means for Solving the Problems Accordingly, the present inventors have proposed:
In view of the above, in order to develop a coated carbide tool in which the hard coating layer exhibits excellent wear resistance especially under high-speed heavy cutting conditions, attention is paid to the hard coating layer that constitutes the conventional coated carbide tool described above. As a result of the research, (a) (Ti, Al, Y) N constituting a conventional coated carbide tool formed using the arc ion plating apparatus shown in FIG.
The layer has a substantially uniform composition throughout the thickness of the layer, and thus has a uniform high-temperature hardness and heat resistance, as well as strength and toughness. For example, FIG. b)
An arc ion plating apparatus having a structure shown in a schematic front view, that is, a rotary table for mounting a carbide substrate is provided at the center of the apparatus, and a relatively high Al content (Ti Al-T (low content)
i-Y alloy, relatively high Ti content (Al
Using an arc ion plating apparatus in which Ti-Al-Y alloy (having a low content) is opposed to each other as a cathode electrode (evaporation source), a plurality of carbide substrates are formed in a ring shape along the outer periphery of the rotary table of the apparatus. In this state, the rotating table is rotated while the atmosphere in the apparatus is a nitrogen atmosphere, and the carbide substrate itself is also rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of Al and T on the surface of the cemented carbide substrate.
When a composite nitride layer of i and Y (hereinafter, referred to as (Al-Ti, Y) N) is formed, the resulting (Al-Ti, Y) N
In the layer, the cemented carbide substrate arranged in a ring shape on the turntable is a cathode electrode of an Al—Ti—Y alloy having a relatively high Al content (low Ti content) on one side. At the point of closest approach to the source), and the cemented carbide substrate has a relatively high Ti content (low Al content) Ti-A on the other side.
At the point closest to the 1-Y alloy cathode electrode, the highest Ti content point is formed in the layer, and the rotation of the rotary table causes the highest Al content point and the highest Ti content point in the layer along the layer thickness direction. Alternately and repeatedly appear at predetermined intervals, and from the highest Al content point to the highest Ti content point, and from the highest Ti content point to the highest Al content point,
And Ti content have a component concentration distribution structure that changes continuously. (B) In the formation of the (Al-Ti, Y) N layer having the repetitive and continuously changing component concentration distribution structure of (a), Al-Ti- as the cathode electrode (evaporation source) on one side of the opposed arrangement. The Al content in the Y alloy is determined by the conventional T
The Al content in the Ti-Al-Y alloy, which is the cathode electrode (evaporation source) on the other side, is relatively higher than the Al content in the i-Al-Y alloy, and the Al content in the conventional T
The Al content of the i-Al-Y alloy is set to be relatively lower than that of the i-Al-Y alloy, and the rotation speed of the rotary table on which the carbide substrate is mounted is controlled so that the Al maximum content point is determined by the composition formula. : (Al 1- (M + X ) Ti M Y X) N ( provided that an atomic ratio,
M represents 0.05 to 0.30, X represents 0.005 to 0.1), and the above-mentioned Ti maximum content point is represented by a composition formula: (Ti 1- (N + X)
In Al N Y X) N (provided that the atomic ratio, N is the 0.05 to 0.
35, X represents 0.005 to 0.1), and the interval between the adjacent Al maximum content point and Ti maximum content point in the thickness direction is 0.01 to 0.1 μm.
In the above Al maximum content portion, the above conventional (Al, T
i, Y) Since the Al content is relatively higher than that of the N layer, the Al content shows much higher high-temperature hardness and heat resistance (high-temperature characteristics). Al, Ti, Y) Since the Ti content is relatively higher than that of the N layer, it has higher strength and toughness,
In addition, since the interval between the highest Al content point and the highest Ti content point is extremely small, the layer as a whole has excellent high-temperature properties while maintaining high strength and high toughness. The coated cemented carbide tool composed of the (Al, Ti, Y) N layer having such a layer performs cutting of various steels and cast irons, particularly under high-speed heavy cutting conditions involving high heat generation and high mechanical impact. In such a case, the hard coating layer exhibits excellent wear resistance without chipping. The research results shown in (a) and (b) above were obtained. The present invention has been made based on the results of the above-mentioned research, and it has been proposed that (Ti, A
(1) In a coated cemented carbide tool obtained by physical vapor deposition of a hard coating layer composed of an N layer with an overall average layer thickness of 1 to 15 μm, the hard coating layer has an Al highest content point along the thickness direction. The Ti minimum content point) and the Ti maximum content point (Al minimum content point) are alternately and repeatedly present at predetermined intervals, and the Ti maximum content point and the Ti
It has a component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the highest Al content point, and the highest Al content point has a composition formula: (Al
1- (M + X) Ti M Y X) N ( provided that an atomic ratio, M 0.0
5 to .30, X represents a 0.005), the Ti maximum content point, composition formula: (Ti 1- (K + X ) Al K Y X)
N (however, in terms of atomic ratio, K is 0.05 to 0.35 and X is 0.005 to 0.1), and the interval between the adjacent highest Al content points and highest Ti content points is adjacent. Is 0.0
The present invention is characterized by a coated carbide tool in which the hard coating layer exhibits excellent wear resistance under high-speed heavy cutting conditions of 1 to 0.1 μm. Next, the reason why the configuration of the hard coating layer constituting the coated carbide tool of the present invention is limited as described above will be described. (A) Composition of Al maximum content point The Al component of the Al maximum content point of the (Al-Ti, Y) N layer improves high-temperature hardness and heat resistance (high-temperature characteristics), and the Ti component improves strength and toughness. The Y component has the effect of further improving the high-temperature hardness, so that the higher the content ratio of the Al component and the Y component, the higher the high-temperature characteristics, the more suitable for high-speed cutting with high heat generation. However, when the M value indicating the ratio of Ti is less than 0.05 in the ratio (atomic ratio) to the total amount of Al and Y, the ratio of Al becomes relatively too large, and high strength and high toughness are reduced. Even if the highest Ti content points exist adjacent to each other, a decrease in the strength and toughness of the layer itself is unavoidable. As a result, chipping and the like are likely to occur, while the M value indicating the ratio of Ti is 0.30. When it exceeds, the ratio of Al relatively Too eliminated, is intended becomes impossible to ensure a desired excellent high-temperature characteristics, and X value indicating a ratio of Y is Al
If the ratio (atomic ratio) to the total amount of Ti and Ti is less than 0.005, the desired high-temperature hardness improvement effect cannot be obtained, and if the X value exceeds 0.1, the strength and toughness rapidly decrease. Therefore, the M value was set to 0.05 to 0.30, and the X value was set to 0.005 to 0.1. (B) Composition of the highest Ti content point As described above, the highest Al content point has excellent high-temperature characteristics, but is inferior in strength and toughness. To make up for the shortage,
The Ti content is high, so that the highest Ti content points, which have high strength and high toughness, are alternately interposed in the thickness direction.
0.35 in the ratio (atomic ratio) of the value to the total amount of Ti and Y
Exceeds, the proportion of Al becomes relatively too large, and it is not possible to secure desired excellent strength and toughness,
On the other hand, when the K value is also less than 0.05, the relative T
Since the ratio of i becomes too large, it becomes impossible to provide a desired high-temperature characteristic to the highest Ti content point.
The value was determined to be 0.05 to 0.35, and the X value indicating the ratio of the Y component was determined to be 0.005 to 0.1 for the same reason as in the above Al maximum content point. (C) Interval between the highest Al content point and the highest Ti content point If the interval is less than 0.01 μm, it is difficult to clearly form each point with the above composition, and as a result, the desired High strength and high toughness, and excellent high-temperature properties cannot be secured, and the interval is 0.1 μm.
If it exceeds m, the disadvantages of the respective points, that is, insufficient strength and toughness at the highest Al content point, and insufficient high-temperature characteristics at the highest Ti content point appear locally in the layer, which causes chipping on the cutting edge. Is more likely to occur and the progress of wear is promoted.
0.10.1 μm. (D) Overall average thickness of the hard coating layer If the thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average thickness exceeds 15 μm, chipping occurs. The average layer thickness was determined to be 1 to 15 μm because it was easier. Next, the coated carbide tool of the present invention will be described in detail with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, VC powder, and Ta each having an average particle size of 1 to 3 µm
C powder, NbC powder, Cr 3 C 2 powder, and Co powder were prepared, and these raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried under a pressure of 100 MPa. Is pressed into a green compact, and this green compact is sintered in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour, and after sintering, R: 0.03
Honing process, ISO standard, CNMG120
WC-based cemented carbide substrates A1 to A10 having a chip shape of 408 were formed. Further, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to obtain a TiC having a chip shape conforming to ISO standard, CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed. Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 is ultrasonically washed in acetone and dried, and placed on a rotary table in an arc ion plating apparatus shown in FIG. Attached along the outer periphery, one side cathode electrode (evaporation source) Ti-Al-Y for forming the highest Ti content point having various component compositions
Alloy, Al-Ti-Y for forming the highest Al content point having various component compositions as the cathode electrode (evaporation source) on the other side
The alloy was placed facing the rotary table, and metal Ti for bombarding was also installed. First, the inside of the apparatus was evacuated and heated to 500 ° C. with a heater while maintaining the vacuum at 0.5 Pa or less. After that, a DC bias voltage of -1000 V is applied to the super-hard substrate rotating while rotating on the rotary table, and a current of 100 A flows between the metal Ti of the cathode electrode and the anode electrode to cause arc discharge. Then, the surface of the cemented carbide substrate is cleaned by Ti bombarding. Then, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the cemented carbide substrate rotating while rotating on the rotary table. 100V DC bias voltage is applied and each cathode electrode
A current of 100 A is passed between the (Ti-Al-Y alloy for forming the highest Ti content point and the Al-Ti-Y alloy for forming the highest Al content point) and the anode electrode to generate an arc discharge. On the surface of the hard substrate, Al maximum content points and Ti maximum content points of the target compositions shown in Tables 3 and 4 are alternately and repeatedly present at the target intervals shown in Tables 3 and 4 along the layer thickness direction, And from the highest Al content, the T
i has a component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the highest Ti content point to the highest Al content point, and the target total layer thickness also shown in Tables 3 and 4. By depositing a hard coating layer of
Inventive surface-coated cemented carbide throw-away tips (hereinafter referred to as the present invention-coated cemented carbide tips) 1 to 16 as inventive-coated cemented carbide tools were produced, respectively. For the purpose of comparison, these super-hard substrates A1
A10 and B1 to B6 were ultrasonically cleaned in acetone, dried, and charged into a usual arc ion plating apparatus shown in FIG. 2 to obtain various component compositions as cathode electrodes (evaporation sources). Ti-Al- with
After mounting the Y alloy and further mounting the Ti metal for bombarding, first heating the inside of the apparatus to 500 ° C. with a heater while evacuating the inside of the apparatus to maintain a vacuum of 0.5 Pa or less, A DC bias voltage of -1000 V is applied to the substrate, and a current of 100 A flows between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the super hard substrate by Ti bombarding. Nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of -100 V was applied to the cemented carbide substrate.
A current of 100 A is caused to flow between the Y alloy and the anode electrode to generate an arc discharge, whereby the cemented carbide substrates A1 to A
(Ti, Al, Y) N having the target composition and the target layer thickness shown in Tables 5 and 6 and having substantially no composition change along the layer thickness direction on each surface of B10 and B1 to B6.
By depositing a hard coating layer composed of layers, a conventional surface coated cemented carbide throw-away tip as a conventionally coated cemented carbide tool (hereinafter referred to as a conventionally coated cemented carbide tip) 1 to 16
Was manufactured respectively. Next, the coated carbide tips 1 to 1 according to the present invention will be described.
No. 6 and conventional coated carbide tips 1 to 16 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 350 m / min . Infeed: 4 mm Feed: 0.3 mm / rev. , Cutting time: 5 minutes, Dry continuous high-speed, high-cut cutting test of alloy steel under the following conditions: Work material: JIS S45C, longitudinally spaced round bar with four longitudinal grooves, Cutting speed: 350 m / min . Infeed: 2.5 mm Feed: 0.5 mm / rev. , Cutting time: 10 minutes, Dry intermittent high-speed high-feed cutting test of carbon steel under the following conditions:
Work material: JIS FC300 round bar, Cutting speed: 350 m / min. Infeed: 4 mm Feed: 0.35 mm / rev. A dry continuous high-speed high-cut cutting test of cast iron was performed under the following conditions: cutting time: 5 minutes, and the flank wear width of the cutting edge was measured in each cutting test. Table 7 shows the measurement results. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] (Example 2) As raw material powder, average particle size:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm
μm of (Ti, W) C powder and 1.8 μm of Co
Powders were prepared, and each of these raw material powders was blended into the blending composition shown in Table 8, further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
It is press-molded into various compacts of a predetermined shape at a pressure of 0 MPa, and these compacts are compacted in a vacuum atmosphere of 6 Pa at 7 ° C. /
The temperature is raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, held at this temperature for 1 hour, and then sintered under the condition of furnace cooling to obtain a 3 mm diameter of 8 mm, 13 mm, and 26 mm. Kinds of round bar sintered bodies for forming a cemented carbide substrate are formed, and the above three kinds of round bar sintered bodies are subjected to grinding processing in a combination shown in Table 8 to obtain a diameter x length of a cutting edge portion. Is 6mm × 1 each
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrate (end mill) C-1 having a dimension of m and having a four-flute square shape with a twist angle of 30 degrees.
To C-8 were each manufactured. Next, these super-hard substrates (end mills)
C-1 to C-8 were ultrasonically cleaned in acetone, dried, and charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions as in Example 1 above. Along the direction, the highest Al content point and the highest Ti content point of the target composition shown in Table 9 are alternately repeated at the same target intervals as shown in Table 9, and from the highest Al content point to the highest Ti content point. From the highest Ti content point to the Al
By depositing a hard coating layer having a target total layer thickness as shown in Table 9 having a component concentration distribution structure in which the Al and Ti contents continuously change to the highest content point, End mills made of the surface-coated cemented carbide of the present invention as tools (hereinafter, referred to as the coated carbide end mills of the present invention) 1 to 8 were produced. For the purpose of comparison, the above-mentioned ultra-hard substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone, dried, and then dried in a usual arc ion ion shown in FIG. It was charged into a plating apparatus, and had the target composition and the target layer thickness shown in Table 10 under the same conditions as in Example 1, and had substantially no composition change along the layer thickness direction (Ti, By depositing a hard coating layer consisting of an Al, Y) N layer, end mills made of conventional surface-coated cemented carbide as conventional coated carbide tools (hereinafter, referred to as conventional coated carbide end mills) 1 to 8 were manufactured, respectively. . Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SKD11 plate material, Cutting speed: 120 m / min. , Groove depth (cut): 6 mm, Table feed: 770 mm / min, Dry high-speed high feed groove cutting test of tool steel, coated carbide end mills 4 to 6 of the present invention and coated coated carbide end mills 4 to About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SUS304 plate, Cutting speed: 120 m / min. , Groove depth (cut): 15 mm, Table feed: 460 mm / min, Dry high-speed high-cut groove cutting test of stainless steel under the following conditions: coated carbide end mills 7, 8 according to the present invention and conventional coated carbide end mills 7, For No. 8, Work material: Plane dimensions: 100 mm × 250 mm, thickness: 5
0 mm JIS SNCM439 plate material, Cutting speed: 150 m / min. , Groove depth (cut): 10 mm, Table feed: 380 mm / min, Dry high-speed high-feed groove cutting test of alloy steel was performed under the following conditions. 0.1mm where flank wear width is used as a guide to service life
The cutting groove length up to was measured. The measurement results are shown in Tables 9 and 10, respectively. [Table 8] [Table 9] [Table 10] Example 3 The diameter produced in Example 2 was 8 mm (for forming the cemented carbide substrates C-1 to C-3) and 13 m.
m (for forming the carbide substrate C-4 to C-6), and 26 mm
Using three types of round bar sintered bodies (for forming the cemented carbide substrates C-7 and C-8), the three types of round bar sintered bodies were subjected to grinding to obtain a diameter x length of a groove forming portion. Are 4 mm x 13 mm (carbide substrate D-1 to D-3) and 8 mm x 22 mm (carbide substrate D
-4 to D-6), and a carbide substrate having dimensions of 16 mm × 45 mm (carbide substrates D-7 and D-8) and having a two-blade shape with a twist angle of 30 degrees ( Drill) D
-1 to D-8 were produced respectively. Next, these carbide substrates (drills) D-
The cutting blades Nos. 1 to D-8 were honed, ultrasonically cleaned in acetone, dried, and charged in an arc ion plating apparatus also shown in FIG. Under the conditions, the Al maximum content point and the Ti maximum content point of the target composition shown in Table 11 alternately and repeatedly along the layer thickness direction at the target interval shown in Table 11, and from the Al maximum content point. The highest Ti content point, the T
from the highest content point to the highest content point of Al
The surface coating of the present invention as a coated carbide tool according to the present invention is obtained by depositing a hard coating layer having a component concentration distribution structure in which the content continuously changes and having the target total layer thickness also shown in Table 11. Drills made of cemented carbide (hereinafter referred to as coated carbide drills of the present invention) 1 to 8 were produced, respectively. For the purpose of comparison, the cutting edges of the above-mentioned carbide substrates (drills) D-1 to D-8 were honed, ultrasonically washed in acetone, and dried, and then, as shown in FIG.
And having the target composition and the target layer thickness shown in Table 12 under the same conditions as in Example 1 above, and substantially along the layer thickness direction. By depositing a hard coating layer composed of a (Ti, Al, Y) N layer having no change in composition, a drill made of a conventional surface-coated cemented carbide as a conventionally coated carbide tool (hereinafter referred to as a conventional coated carbide drill) 1 to 8 were manufactured respectively. Next, the coated carbide drills of the present invention 1 to 8
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 of the present invention and the coated carbide drills 1 to 3 of the present invention are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SKD61 plate material, Cutting speed: 60 m / min. , Feed: 0.20 mm / rev, Hole Depth: 12 mm Wet high-speed high feed drilling cutting test of tool steel, coated carbide drills 4 to 6 according to the present invention and conventional coated carbide drills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS FCD400 plate, Cutting speed: 80 m / min. , Feed: 0.35mm / rev, Hole Depth: 24mm Wet high-speed high-feed drilling test of ductile cast iron, coated carbide drills 7, 8 of the present invention and conventional coated carbide drills 7, 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
JIS FC300 plate material of 0 mm, Cutting speed: 90 m / min. , Feed: 0.40 mm / rev, Hole depth: 50 mm Wet high-speed high-feed drilling test of cast iron under the following conditions:
The flank wear width of the cutting edge of the tip was 0.1 mm in all wet drilling tests (using water-soluble cutting oil).
The number of drilling processes up to 3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively. [Table 11] [Table 12] The hard steels constituting the coated carbide tips 1-16, coated carbide end mills 1-8, and coated drills 1-8 of the present invention as the coated carbide tools of the present invention obtained as a result. The composition of the highest Al content point and highest Ti content point in the coating layer, as well as the conventional coated carbide tips 1 to 16 as conventional coated carbide tools and the conventional coated carbide end mills 1 to
8 and the hard coating layers of the conventional coated carbide drills 1 to 8 were measured using an Auger spectroscopic analyzer, and each showed substantially the same composition as the target composition. Further, the interval between the highest Al content point and the highest Ti content point in the hard coating layer of these coated carbide tools of the present invention, and the total layer thickness thereof, and the thickness of the hard coating layer of the conventional coated carbide tool,
When the cross section was measured using a scanning electron microscope, all the values showed substantially the same value as the target value. From the results shown in Tables 3 to 12, it can be seen from the results shown in Tables 3 to 12 that the hard coating layer has, in the thickness direction, the highest Al content point having excellent high-temperature hardness and heat resistance, and Ti having high strength and high toughness. And the highest content point alternately and repeatedly at predetermined intervals, and the highest Al content point and the highest Ti content point,
The coated carbide tool of the present invention having a component concentration distribution structure in which the Al and Ti contents continuously change from the highest content point to the highest Al content point, respectively, is capable of cutting various kinds of steel and cast iron at a high temperature. Even when performed under high cutting conditions and high cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer exhibits excellent wear resistance without chipping. On the other hand, the hard coating layer has substantially no composition change along the layer thickness direction (Ti,
In a conventional coated carbide tool comprising an Al, Y) N layer,
Under the high-speed heavy cutting conditions, the hard coating layer has insufficient high-temperature properties, and insufficient strength and toughness. Is evident. As described above, the coated cemented carbide tool of the present invention can be used not only for cutting under ordinary conditions, but also for cutting various kinds of steel and cast iron, etc., at high speed heavy cutting accompanied by high heat generation and high mechanical impact. Even when performed under the conditions, since excellent abrasion resistance is exhibited without occurrence of chipping, labor saving and energy saving of cutting work, and further, cost reduction can be sufficiently satisfied.

【図面の簡単な説明】 【図1】この発明の被覆超硬工具を構成する硬質被覆層
を形成するのに用いたアークイオンプレーティング装置
を示し、(a)は概略平面図、(b)は概略正面図であ
る。 【図2】従来被覆超硬工具を構成する硬質被覆層を形成
するのに用いた通常のアークイオンプレーティング装置
の概略説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an arc ion plating apparatus used to form a hard coating layer constituting a coated carbide tool of the present invention, (a) is a schematic plan view, (b) Is a schematic front view. FIG. 2 is a schematic explanatory view of a conventional arc ion plating apparatus used for forming a hard coating layer constituting a conventional coated carbide tool.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤澤 隆史 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 泉 一樹 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 高岡 秀充 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 Fターム(参考) 3C037 CC01 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF19 FF25 4K029 AA02 BA58 BC02 BD05 CA03   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takashi Fujisawa             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works (72) Inventor Kazuki Izumi             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works (72) Inventor Hidemitsu Takaoka             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki             Terial Co., Ltd.             Inside F-term (reference) 3C037 CC01 CC04 CC09 CC11                 3C046 FF03 FF05 FF10 FF19 FF25                 4K029 AA02 BA58 BC02 BD05 CA03

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、AlとTiと
Yの複合窒化物層からなる硬質被覆層を1〜15μmの
全体平均層厚で物理蒸着してなる表面被覆超硬合金製切
削工具において、 上記硬質被覆層が、層厚方向にそって、Al最高含有点
とTi最高含有点とが所定間隔をおいて交互に繰り返し
存在し、かつ前記Al最高含有点から前記Ti最高含有
点、前記Ti最高含有点から前記Al最高含有点へAl
およびTi含有量がそれぞれ連続的に変化する成分濃度
分布構造を有し、 さらに、上記Al最高含有点が、組成式:(Al
1-(M+X) TiMX)N(ただし、原子比で、Mは0.0
5〜0.30、Xは0.005〜0.1を示す)、 上記Ti最高含有点が、組成式:(Ti1-(K+X)AlK
X)N(ただし、原子比で、Kは0.05〜0.35、
Xは0.005〜0.1を示す)、を満足し、かつ隣り
合う上記Al最高含有点とTi最高含有点の間隔が、
0.01〜0.1μmであること、を特徴とする高速重
切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表
面被覆超硬合金製切削工具。
Claims: 1. A hard coating layer made of a composite nitride layer of Al, Ti and Y on a surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate having a total thickness of 1 to 15 μm. In a surface-coated cemented carbide cutting tool formed by physical vapor deposition with an average layer thickness, the hard coating layer alternates at a predetermined interval between the highest Al content point and the highest Ti content point along the thickness direction. From the highest Al content to the highest Ti content, from the highest Ti content to the highest Al content,
And the content of Ti has a component concentration distribution structure in which each of the components continuously changes.
1- (M + X) Ti M Y X) N ( provided that an atomic ratio, M 0.0
5 to .30, X represents a 0.005), the Ti maximum content point, composition formula: (Ti 1- (K + X ) Al K Y
X ) N (where K is 0.05 to 0.35 in atomic ratio,
X represents 0.005 to 0.1), and the interval between the adjacent Al maximum content points and adjacent Ti maximum content points is
A surface-coated cemented carbide cutting tool in which the hard coating layer exhibits excellent wear resistance under high-speed heavy cutting conditions, characterized in that the cutting tool has a thickness of 0.01 to 0.1 µm.
JP2002125550A 2002-04-26 2002-04-26 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions. Expired - Fee Related JP3972293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125550A JP3972293B2 (en) 2002-04-26 2002-04-26 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125550A JP3972293B2 (en) 2002-04-26 2002-04-26 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Publications (2)

Publication Number Publication Date
JP2003311508A true JP2003311508A (en) 2003-11-05
JP3972293B2 JP3972293B2 (en) 2007-09-05

Family

ID=29540234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125550A Expired - Fee Related JP3972293B2 (en) 2002-04-26 2002-04-26 Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Country Status (1)

Country Link
JP (1) JP3972293B2 (en)

Also Published As

Publication number Publication date
JP3972293B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP4725773B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2004042170A (en) Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2003334704A (en) Surface-coated hard metal cutting tool having hard coated layer of excellent abrasion resistance in high- speed cutting processing
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2003300103A (en) Cutting tool made of coated cemented carbide in which hard coating layer exhibits excellent abrasion resistant property at high speed deep cutting condition
JP3962910B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP2003311507A (en) Cutting tool made of surface coated sintered having hard coating layer with excellent chipping resistance under high speed heavy cutting conditions
JP2003275906A (en) Surface coat cemented carbide made cutting tool with hard coat layer displaying excellent chipping resistance in heavy cutting work condition
JP2004223619A (en) Surface coated cemented carbide-made cutting tool exhibiting excellent wear resistance of hard coating layer under high speed heavy cutting
JP2003311508A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent wear resistance under high-speed heavy cutting condition
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP2003225807A (en) Surface coated cement carbide cutting tool with hard coating layer superior in wear resistance in high speed cutting work
JP2004009162A (en) Cutting tool made of surface coated cemented carbide exerting excellent wear resistance of hard coat layer in high speed cutting
JP2003231004A (en) Cutting tool made of surface covered cemented carbide providing excellent resistance to chipping by hard covered layer in high speed intermittent heavy cutting machining
JP2004050309A (en) Surface covered cemented carbide cutting tool having hard covering layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP2003340609A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent chipping resistance in heavy cutting condition
JP2003334703A (en) Surface-coated hard metal cutting tool having hard coated layer of excellent chipping resistance in heavy cutting processing
JP2004230498A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2004025339A (en) Surface-coated cemented carbide cutting tool with hard coat layer exhibiting excellent wear resistance in high-speed cutting work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees