JP2003309031A - Rare-earth bonded magnet and its manufacturing method - Google Patents

Rare-earth bonded magnet and its manufacturing method

Info

Publication number
JP2003309031A
JP2003309031A JP2002112200A JP2002112200A JP2003309031A JP 2003309031 A JP2003309031 A JP 2003309031A JP 2002112200 A JP2002112200 A JP 2002112200A JP 2002112200 A JP2002112200 A JP 2002112200A JP 2003309031 A JP2003309031 A JP 2003309031A
Authority
JP
Japan
Prior art keywords
magnet
coating
bonded magnet
rare
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112200A
Other languages
Japanese (ja)
Inventor
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002112200A priority Critical patent/JP2003309031A/en
Publication of JP2003309031A publication Critical patent/JP2003309031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare-earth bonded magnet with excellent corrosion resistance and its manufacturing method. <P>SOLUTION: This magnet has a coat comprising a triazine dithiol compound on the surface of a rare-earth bonded magnet that is formed by kneading the powder of a rare-earth alloy with a resin and an oxidation-resistant resin layer on this coat. The coat on the surface of the magnet is formed by an electrolytic treatment in the solution of the triazine-base compound comprising a mercapto group. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性を改善し
た希土類ボンド磁石およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth bonded magnet having improved oxidation resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の電化製品の発展に伴い、軽量、小
型化が可能な高性能磁石として希土類ボンド磁石の需要
は増大し、更なる性能の向上が求められている。高特性
を有する希土類磁石の代表としては、Nd−Fe−B系
磁石がある。しかし、この磁石合金は、組織中に極めて
酸化しやすいNd−Fe合金相を含み、さらにNd
14B相も酸化しやすいため、Sm−Co系磁石に比
較して磁石の酸化による磁気特性の劣化やばらつきが大
きい。さらに、磁気回路等の装置に組み込んだ場合、磁
石から発生した酸化物の飛散による周辺部品への汚染を
引き起こすおそれがある。
2. Description of the Related Art With the development of electric appliances in recent years, the demand for rare earth bonded magnets as high-performance magnets that can be reduced in weight and size is increasing, and further improvement in performance is required. A typical rare earth magnet having high characteristics is an Nd-Fe-B magnet. However, this magnet alloy contains an Nd-Fe alloy phase that is extremely easily oxidized in the structure, and further, Nd 2 F
Since the e 14 B phase is also easily oxidized, the deterioration and variation of the magnetic characteristics due to the oxidation of the magnet are larger than that of the Sm—Co based magnet. Further, when incorporated in a device such as a magnetic circuit, there is a possibility that the oxides generated from the magnet may be scattered to contaminate peripheral parts.

【0003】[0003]

【発明が解決しようとする課題】この問題を解決する方
法として、特開昭60−54406号公報や特開昭60
−63903号公報が提案されている。しかしながら、
これらの公報に提案されている耐酸化性被膜は、被膜形
成工程中で多量の水を使用するため、処理工程中で磁石
材料が酸化したり、処理後であっても微量の水分の残留
が原因となって酸化する場合が多く、耐酸化性が十分と
は言い難い。
As a method for solving this problem, JP-A-60-54406 and JP-A-60-54406 are available.
No. 63903 has been proposed. However,
The oxidation-resistant coatings proposed in these publications use a large amount of water in the coating forming step, so that the magnet material is oxidized in the treatment step and a trace amount of water remains even after the treatment. In many cases, it is oxidized as a cause, and it cannot be said that the oxidation resistance is sufficient.

【0004】また、金属の防錆表面処理の一般的方法で
ある塗装法では、塗料の基材が有機高分子であるため金
属との親和性が不十分で、磁石の部品化工程や使用時に
おいて亀裂や剥離を生じやすいこと、また特に反応硬化
型の塗料の場合は痕跡程度の未反応の官能基の経時変化
が発錆の原因となることもあり、特に、このような合金
系では信頼性が不十分で、用途が限定されているのが現
状である。
In addition, in the coating method which is a general method of rust preventive surface treatment of metal, since the base material of the coating material is an organic polymer, the affinity with the metal is insufficient, and the magnet is used in the process of forming parts or during use. It is easy for cracks and peeling to occur, and in the case of reaction-curable coatings, the change over time in traces of unreacted functional groups may cause rusting. At present, the properties are insufficient and the applications are limited.

【0005】さらに、スパッター、イオン蒸着法を用い
た金属被膜形成による酸化防止法は、磁石全体への均一
な被覆が困難であること、また被覆層組織が下地面に垂
直方向に方向性を持つため、被覆層に微細な間隙を生
じ、十分な耐食性が期待できない等の問題がある。
Further, in the oxidation prevention method by forming a metal film using sputtering or ion vapor deposition, it is difficult to uniformly coat the entire magnet, and the coating layer structure has a directivity in the direction perpendicular to the underlying surface. Therefore, there is a problem that a fine gap is generated in the coating layer and sufficient corrosion resistance cannot be expected.

【0006】そこで、本発明の技術的課題は、上記欠点
に鑑み、より耐食性に優れた希土類ボンド磁石およびそ
の製造方法を提供することにある。
Therefore, in view of the above-mentioned drawbacks, a technical object of the present invention is to provide a rare earth bonded magnet having more excellent corrosion resistance and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、希土類合金の
粉末を樹脂と混練成形してなり、表面に化2で表される
少なくとも1種のメルカプト基を含むトリアジン系化合
物(但し、MおよびMはH、アルカリ金属またはア
ルカリ土類金属、RはNHR、NRまたはS
H、並びにRおよびRはH、アルキル基またはフェ
ニル基)からなる被膜と、該被膜の上に耐酸化樹脂層を
有することを特徴とする希土類ボンド磁石である。
According to the present invention, a powder of a rare earth alloy is kneaded and molded with a resin, and a triazine compound containing at least one mercapto group represented by Chemical formula 2 on the surface (provided that M 1 And M 2 is H, an alkali metal or an alkaline earth metal, R is NHR 1 , NR 1 R 2 or S
H and R 1 and R 2 are rare earth bonded magnets characterized by having a coating film made of H, an alkyl group or a phenyl group) and an oxidation resistant resin layer on the coating film.

【0008】[0008]

【化2】 [Chemical 2]

【0009】また、本発明は、前記トリアジン系化合物
の溶液中で電解処理することにより前記表面に被膜を形
成することを特徴とする上記の希土類ボンド磁石の製造
方法である。
The present invention is also the above-mentioned method for producing a rare earth bonded magnet, characterized in that a coating film is formed on the surface by electrolytic treatment in a solution of the triazine compound.

【0010】[0010]

【発明の実施の形態】本発明は、希土類ボンド磁石表面
に生成する酸化物を抑制するため、この表面にメルカプ
ト基を含むトリアジン系化合物(以下、トリアジン系化
合物と称する)からなる強固かつ安定な耐酸化性被膜を
設けた後、耐酸化樹脂層を積層形成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention suppresses oxides formed on the surface of a rare earth bonded magnet, so that a strong and stable triazine compound containing a mercapto group on the surface (hereinafter referred to as a triazine compound) is used. After providing the oxidation resistant coating, the oxidation resistant resin layer is laminated.

【0011】この耐酸化性被膜の被覆方法としては、ト
リアジン系化合物の有機溶媒液を電解液として用い、磁
石を陽極にして、液温0〜80℃、電圧20V以下、電
流密度10mA/dm〜10A/dmで0.1秒〜
10分間電解する。
As a method for coating the oxidation resistant coating, an organic solvent solution of a triazine compound is used as an electrolytic solution, a magnet is used as an anode, a liquid temperature is 0 to 80 ° C., a voltage is 20 V or less, and a current density is 10 mA / dm 2. 10 seconds at 0.1 A / dm 2
Electrolyze for 10 minutes.

【0012】上記電解液中では、トリアジン環がマイナ
スイオンに解離するので、メルカプト基を2個含むトリ
アジン系化合物を電解した場合、陽極の金属表面にトリ
アジンジチオール化合物が電着して被膜を形成する。
In the above-mentioned electrolytic solution, the triazine ring dissociates into negative ions, so when a triazine compound containing two mercapto groups is electrolyzed, the triazinedithiol compound is electrodeposited on the metal surface of the anode to form a film. .

【0013】トリアジン系化合物より磁石表面に生成さ
れた膜は、従来の化成被膜等と比べ、きわめて耐食性、
耐久性に優れ、金属表面との結合力が強い。さらに、撥
水性および潤滑性が付与されるので着水、着氷等を防止
できる。
The film formed from the triazine-based compound on the surface of the magnet has extremely high corrosion resistance as compared with conventional chemical conversion coatings.
It has excellent durability and has a strong bond with the metal surface. Furthermore, since water repellency and lubricity are imparted, it is possible to prevent water landing, ice landing and the like.

【0014】トリアジン系化合物としては、次の化3で
示される化合物である。
The triazine-based compound is a compound represented by the following chemical formula 3.

【0015】[0015]

【化3】 [Chemical 3]

【0016】また、バインダーとする樹脂としては、ポ
リエチレン、ポリプロピレン等のオレフィン系樹脂、ナ
イロン6、ナイロン12等のポリアミド樹脂、ポリエチ
レンテレフタレート、ポリブチレンテレフタレート等の
ポリエステル樹脂、エチレン−酢酸ビニル共重合体、エ
チレン−エチルアクリレート共重合体、ポリフェニレン
サルファイド、及びこれらの変性タイプの樹脂が用いら
れる。
As the binder resin, olefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 12, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, ethylene-vinyl acetate copolymer, Ethylene-ethyl acrylate copolymer, polyphenylene sulfide, and modified types of these resins are used.

【0017】電解液は、トリアジン系化合物を有機溶剤
に溶解させることにより調製できる。有機溶剤として
は、0〜80℃の温度範囲で低粘度であれば、ほとんど
のものを使用できる。例えば、メチルアルコール、エチ
ルアルコール、イソプロピルアルコール、エチルセロソ
ルブのようなアルコール、アセトン、メチルエチルケト
ンのようなケトン、ジメチルホルムアミドのようなアミ
ド、酢酸エチルエステルのようなエーテル、テトラヒド
ロフランのようなフラン、ベンゼン、トルエンのような
芳香族炭化水素等が使用できる。濃度はトリアジンジチ
オール化合物が1×10−1〜1×10−6モル/l、
好ましくは5×10−2〜5×10−4モル/lになる
ようにする。
The electrolytic solution can be prepared by dissolving a triazine compound in an organic solvent. As the organic solvent, almost any organic solvent can be used as long as it has a low viscosity in the temperature range of 0 to 80 ° C. For example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl cellosolve, acetone, ketones such as methyl ethyl ketone, amides such as dimethylformamide, ethers such as ethyl acetate, furan such as tetrahydrofuran, benzene, toluene. Aromatic hydrocarbons such as can be used. The concentration of the triazinedithiol compound is 1 × 10 −1 to 1 × 10 −6 mol / l,
It is preferably 5 × 10 −2 to 5 × 10 −4 mol / l.

【0018】陰極には、陰極からの溶出物が被膜中に混
入するのを避けるため不溶性材料を使用する。このよう
な材料としては、例えば、白金、チタン、ステンレス
鋼、カーボン、グラファイト等がある。電解は液温0〜
80℃に調整して、電圧20V以下、電流密度10mA
/dm〜10A/dmで0.1秒〜10分間行う。
液温を0℃より低くすると、被膜を形成するために長時
間を要し、80℃より高くすると、被膜の厚さをコント
ロールするのが困難となり、また、電圧を20Vより高
くすると、被膜が金属表面にむらとなって形成する。さ
らに、電流密度は10mA/dmより小さくすると、
被膜は形成されず、10A/dmより大きくすると、
被膜がむらとなって形成する。また、電解時間は0.1
秒未満であると、電流密度を10A/dmにしても、
金属表面全体に被膜を形成できず、10分を超えると、
被膜が絶縁体になり、電解が困難になる。
For the cathode, an insoluble material is used in order to prevent the eluate from the cathode from being mixed in the coating film. Examples of such a material include platinum, titanium, stainless steel, carbon, graphite and the like. Electrolysis for liquid temperature 0
Adjusted to 80 ℃, voltage 20V or less, current density 10mA
/ Dm 2 to 10 A / dm 2 for 0.1 seconds to 10 minutes.
When the liquid temperature is lower than 0 ° C, it takes a long time to form a coating film, and when the liquid temperature is higher than 80 ° C, it becomes difficult to control the thickness of the coating film. It forms unevenly on the metal surface. Furthermore, if the current density is less than 10 mA / dm 2 ,
No coating is formed, and if it is larger than 10 A / dm 2 ,
The coating film becomes uneven. The electrolysis time is 0.1
If it is less than a second , even if the current density is 10 A / dm 2 ,
If a coating cannot be formed on the entire metal surface and it exceeds 10 minutes,
The coating becomes an insulator, making electrolysis difficult.

【0019】この耐酸化性被膜の表面に積層する耐酸化
樹脂層としては、エポキシ樹脂、熱硬化型アクリル樹
脂、アルキド樹脂、メラミン樹脂、シリコーン樹脂等の
塗料用合成樹脂あるいはこれらの樹脂の複合樹脂であれ
ばよく、さらに防錆、塗膜補強改善の目的で、上記の樹
脂中に、酸化亜鉛、クロム酸亜鉛、鉛丹等の防錆用顔料
を含有していても良く、あるいはベンゾトリアゾールを
含有するものでもよい。
As the oxidation resistant resin layer laminated on the surface of the oxidation resistant coating, synthetic resin for paint such as epoxy resin, thermosetting acrylic resin, alkyd resin, melamine resin, silicone resin or a composite resin of these resins is used. The above resin may contain a rust-preventive pigment such as zinc oxide, zinc chromate, and red lead, or benzotriazole It may be contained.

【0020】また本発明において、永久磁石表面に耐酸
化性樹脂の被膜方法としては、はけ塗り法、スプレー
法、浸漬法、電着法等の一般的な塗装方法により塗布し
た後、焼き付けるものであるが、この樹脂層は5μm以
上であればよく、25μmを超えると製品の寸法精度を
得ることが困難となるため、25μm以下が好ましい。
Further, in the present invention, as a method for coating the surface of the permanent magnet with the oxidation resistant resin, a method of coating after applying it by a general coating method such as a brush coating method, a spray method, a dipping method, an electrodeposition method or the like is used. However, the resin layer may have a thickness of 5 μm or more, and if it exceeds 25 μm, it becomes difficult to obtain the dimensional accuracy of the product.

【0021】[0021]

【実施例】以下に、本発明について実施例を挙げ、説明
する。
EXAMPLES The present invention will be described below with reference to examples.

【0022】(実施例1)希土類合金粉末として、Nd
31wt%−B1.1wt%−残部Feの組成の粉末を
用意した。この粉末にナイロン12を混合し、プレス機
により圧縮成形を行い、10mm×10mm×10mm
の寸法のボンド磁石を作製した。
Example 1 Nd was used as a rare earth alloy powder.
A powder having a composition of 31 wt% -B1.1 wt% -the balance of Fe was prepared. Nylon 12 is mixed with this powder, and compression molding is performed by a press machine to obtain 10 mm x 10 mm x 10 mm.
A bonded magnet having the dimensions of was prepared.

【0023】次に、2−ジブチルアミノ−4,6−ジチ
オール−S−トリアジンおよびLiClO(支持電解
質)の濃度が、それぞれ5×10−2モル/lおよび5
×10−4モル/lであるエチルアルコール電解液を調
製した。この電解液を用いて、アセトンで洗浄した上記
のNd−Fe−Bボンド磁石試料片を陽極、ステンレス
鋼板(SUS304)を陰極にして、液温25〜30℃
にて電流密度1.0〜2.0A/dmで10〜240秒
間電解し、耐酸化性被膜を形成した。
Next, the concentrations of 2-dibutylamino-4,6-dithiol-S-triazine and LiClO 4 (supporting electrolyte) were 5 × 10 −2 mol / l and 5 respectively.
An ethyl alcohol electrolyte solution having a concentration of × 10 -4 mol / l was prepared. Using this electrolytic solution, the acetone-washed Nd-Fe-B bonded magnet sample piece was used as an anode and a stainless steel plate (SUS304) was used as a cathode, and the liquid temperature was 25 to 30 ° C.
At a current density of 1.0 to 2.0 A / dm 2 for 10 to 240 seconds to form an oxidation resistant film.

【0024】その後、この試料片に対し、ポリアミドイ
ミド樹脂およびアクリル樹脂の塗料をスプレー塗布し、
100〜200℃で20分間加熱し、試料片表面に透明
な樹脂層を有する希土類ボンド磁石を得た。
Thereafter, a paint of polyamideimide resin and acrylic resin was spray applied to this sample piece,
It heated at 100-200 degreeC for 20 minutes, and obtained the rare earth bond magnet which has a transparent resin layer on the sample piece surface.

【0025】この生成した膜厚は、最小で5μm、最大
で15μmであった。ただし、膜厚はスプレー回数によ
り任意に設定できる。
The generated film thickness was 5 μm at the minimum and 15 μm at the maximum. However, the film thickness can be arbitrarily set depending on the number of sprays.

【0026】(実施例2)実施例1と同様に調製した試
験片を用い、電解液として2−オレイルアミノ−4,6
−ジメルカプト−S−トリアジンモノナトリウムの濃度
が5×10−4モル/l、LiClO支持電解質の代
わりに用いたLiBFの濃度が5×10 −4モル/l
のものを用い、実施例1と同様の条件で電解し、耐酸化
性被膜を得た。
Example 2 A test prepared in the same manner as in Example 1.
Using a test piece, 2-oleylamino-4,6 as an electrolytic solution
-Concentration of dimercapto-S-triazine monosodium
Is 5 × 10-4Mol / l, LiClOFourCost of supporting electrolyte
LiBF used insteadFourConcentration of 5 × 10 -4Mol / l
Electrolyzed under the same conditions as in Example 1, using
A protective coating was obtained.

【0027】その後、この試料片に対し、ポリアミドイ
ミド樹脂およびアクリル樹脂の塗料をスプレー塗布し、
100〜200℃で20分間加熱し、試料片表面に透明
な樹脂層を有する希土類ボンド磁石を得た。
Thereafter, a paint of polyamideimide resin and acrylic resin was spray applied to this sample piece,
It heated at 100-200 degreeC for 20 minutes, and obtained the rare earth bond magnet which has a transparent resin layer on the sample piece surface.

【0028】以上のようにして得られた試験片、および
比較のための無処理試験片の72時間5%食塩水噴霧試
験結果およびゴバン目試験の結果を表1に示す。
Table 1 shows the results of the 72-hour 5% saline spray test and the goose eye test of the test pieces thus obtained and untreated test pieces for comparison.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より、実施例1、実施例2の表面に
は、錆の発生はなんら認められないが、耐酸化性被膜を
形成しなかった比較例では、錆の発生が認められ、実施
例1、実施例2とも食塩水噴霧試験結果およびゴバン目
試験において、良好な結果が得られていることがわか
る。
From Table 1, no rust was found on the surfaces of Examples 1 and 2, but rust was found in Comparative Examples in which no oxidation resistant film was formed. It can be seen that, in both Example 1 and Example 2, good results were obtained in the results of the salt spray test and the goose eye test.

【0031】[0031]

【発明の効果】以上述べたように、本発明による希土類
ボンド磁石は、表面に順次積層形成された耐酸化性被
膜、および耐酸化樹脂層を有するため、耐食性、耐久性
に優れ、特性の安定化および信頼性の向上にきわめて有
効である。
As described above, since the rare earth bonded magnet according to the present invention has the oxidation resistant coating and the oxidation resistant resin layer sequentially laminated on the surface, it has excellent corrosion resistance and durability and stable characteristics. It is extremely effective in improving reliability and reliability.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類合金の粉末を樹脂と混練成形して
なり、表面に化1で表される少なくとも1種のメルカプ
ト基を含むトリアジン系化合物(但し、MおよびM
はH、アルカリ金属またはアルカリ土類金属、RはNH
、NRまたはSH、並びにRおよびR
H、アルキル基またはフェニル基)からなる被膜と、該
被膜の上に耐酸化樹脂層を有することを特徴とする希土
類ボンド磁石。 【化1】
1. A triazine-based compound (provided that M 1 and M 2 are formed by kneading and molding a rare earth alloy powder with a resin and containing at least one mercapto group represented by Chemical formula 1 on the surface.
Is H, alkali metal or alkaline earth metal, R is NH
A rare earth bonded magnet, characterized in that it has a coating made of R 1 , NR 1 R 2 or SH, and R 1 and R 2 are H, an alkyl group or a phenyl group, and an oxidation resistant resin layer on the coating. [Chemical 1]
【請求項2】 前記トリアジン系化合物の溶液中で電解
処理することにより前記表面に被膜を形成することを特
徴とする請求項1記載の希土類ボンド磁石の製造方法。
2. The method for producing a rare earth bonded magnet according to claim 1, wherein a coating film is formed on the surface by performing an electrolytic treatment in a solution of the triazine-based compound.
JP2002112200A 2002-04-15 2002-04-15 Rare-earth bonded magnet and its manufacturing method Pending JP2003309031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112200A JP2003309031A (en) 2002-04-15 2002-04-15 Rare-earth bonded magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112200A JP2003309031A (en) 2002-04-15 2002-04-15 Rare-earth bonded magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003309031A true JP2003309031A (en) 2003-10-31

Family

ID=29394776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112200A Pending JP2003309031A (en) 2002-04-15 2002-04-15 Rare-earth bonded magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003309031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232777A (en) * 2013-05-28 2014-12-11 日本電産サンキョー株式会社 Rare-earth magnet, rotor, and manufacturing method of rare-earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232777A (en) * 2013-05-28 2014-12-11 日本電産サンキョー株式会社 Rare-earth magnet, rotor, and manufacturing method of rare-earth magnet

Similar Documents

Publication Publication Date Title
CN100588752C (en) Method for producing rare earth element based permanent magnet having copper plating film on surface thereof
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP2002327278A (en) Copper plating liquid and copper plating method
JPH053722B2 (en)
JP2003309031A (en) Rare-earth bonded magnet and its manufacturing method
CN106283159B (en) A kind of coating process and coating neodymium iron boron magnetic body of neodymium iron boron magnetic body electrocoating film
JP2003234228A (en) Rare-earth bonded magnet and its manufacturing method
JP2001257112A (en) Permanent magnet material
JP2719658B2 (en) Bond magnet plating method
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP2005032845A (en) Bond magnet and its producing method
JPH04288804A (en) Permanent magnet and manufacture thereof
JP2002115098A (en) Organic plating method and organic plated product
JP2002208508A (en) Rare earth permanent magnet excellent in oxidation resistance and its manufacturing method
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JP2001189214A (en) Bonded rare earth magnet and manufacturing method therefor
JPH0539596A (en) Rare earth alloy
JP2681797B2 (en) Organic electrolytic plating method for rare earth permanent magnet materials
JP2004200387A (en) Corrosion-resistant permanent magnet and its manufacturing method
JPH0311712A (en) Manufacture of plastic magnet
JPH02125405A (en) Rare earth element-iron permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307