JP2003305343A - Dechlorination treatment method and dechlorination treatment system - Google Patents

Dechlorination treatment method and dechlorination treatment system

Info

Publication number
JP2003305343A
JP2003305343A JP2002111806A JP2002111806A JP2003305343A JP 2003305343 A JP2003305343 A JP 2003305343A JP 2002111806 A JP2002111806 A JP 2002111806A JP 2002111806 A JP2002111806 A JP 2002111806A JP 2003305343 A JP2003305343 A JP 2003305343A
Authority
JP
Japan
Prior art keywords
reverse osmosis
raw water
salt concentration
treatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111806A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Kazuyuki Wakabayashi
和幸 若林
Toyoaki Ota
豊明 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002111806A priority Critical patent/JP2003305343A/en
Publication of JP2003305343A publication Critical patent/JP2003305343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently carry out dechlorination even when salt concentrations in raw water are varied. <P>SOLUTION: Flow rates of a reverse osmosis pump 114 and an electrodialyzer pump 118 are controlled by the measurement of salt concentrations in raw water by using an electro-conductivity meter 112. The ratio of the treatment capacity of a reverse osmosis device 116 to that of an electro-osmosis device 120 is controlled in a way that the treatment capacity of the reverse osmosis device 116 is increased when the salt concentrations are high and that the treatment capacity of the electro-osmosis device 120 is increased when the salt concentrations are low. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、逆浸透膜を介し圧
力を作用させて脱塩処理を行う逆浸透装置と、イオン交
換膜を介し電界を作用させて脱塩処理を行う電気透析装
置とを並列に備え、両方の装置を並行して運転し脱塩処
理を行う脱塩処理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis device for performing desalting treatment by applying pressure through a reverse osmosis membrane, and an electrodialysis device for performing desalting treatment by applying an electric field through an ion exchange membrane. Are provided in parallel, and both devices are operated in parallel to perform a desalination process.

【0002】[0002]

【従来の技術】従来より、かん水(地下水で塩分濃度が
海水よりも低いもの、例えば塩分濃度が1,700mg
−Cl/L以上の溶液)や汽水(地表水で海水よりも塩
濃度が低いもの)を原水として水道水を生成する場合が
ある。原水としてなるべくよい水質のものが得られれ
ば、それだけ処理がやりやすいが、地域的な制約により
かなり塩分濃度が高い原水を利用しなければならない場
合もある。
2. Description of the Related Art Conventionally, brine (groundwater having a lower salinity concentration than seawater, for example, a salinity concentration of 1,700 mg
-Cl / L or more solution) or brackish water (surface water having a lower salt concentration than seawater) may be used as raw water to generate tap water. If raw water with the best possible water quality is obtained, it will be easier to treat, but in some cases it may be necessary to use raw water with a considerably high salinity due to regional restrictions.

【0003】このようなかん水や汽水を脱塩処理する方
法として、逆浸透膜法(RO)、電気透析法(ED(El
ectroDialysis)またはEDR(ElectroDialysis Revers
al:極性転換方式電気透析法))などが知られている。
Reverse osmosis membrane method (RO) and electrodialysis method (ED (El
ectroDialysis) or EDR (ElectroDialysis Revers
al: polarity conversion type electrodialysis method)) and the like are known.

【0004】ROは、塩濃度が高い場合でも確実に脱塩
ができるというメリットがある。しかし、ROは、水中
の残留塩素などの酸化剤に弱く、また微粒子や有機物に
よる目詰まりが生じやすいという問題がある。さらに、
ROは、電力消費量が大きく、高圧運転となるため高圧
水の吹き出しに注意を要する等の欠点もある。
RO has an advantage that it can surely perform desalting even when the salt concentration is high. However, RO has a problem that it is vulnerable to an oxidizing agent such as residual chlorine in water, and is easily clogged with fine particles and organic substances. further,
RO has a drawback that power consumption is large and high-pressure operation is performed, so attention must be paid to blowing out high-pressure water.

【0005】一方、EDあるいはEDR(以下、まとめ
てEDという)は、目詰まりは起きにくく、消費電力も
あまり大きくはないというメリットがある。しかし、E
Dは、メンテナンス性が悪く、また塩濃度が高い場合、
処理水の塩濃度を充分に低くすることができない等の欠
点がある。
On the other hand, EDs or EDRs (hereinafter, collectively referred to as EDs) have advantages that clogging is less likely to occur and power consumption is not so large. But E
D is poor in maintainability and has a high salt concentration,
There is a drawback that the salt concentration of the treated water cannot be lowered sufficiently.

【0006】従って、一般的には、原水の水質、特に塩
濃度を事前に調査して、効率の良い方を選択している。
[0006] Therefore, generally, the water quality of raw water, especially the salt concentration is investigated in advance and the one with higher efficiency is selected.

【0007】[0007]

【発明が解決しようとする課題】しかし、原水の水質が
年間を通して激しく変化する場合に、その選定が難しく
なる。すなわち、期間が短くても塩濃度が高い原水を処
理する必要がある場合は、ROを選択しなければならな
い。しかし、多くの期間は塩濃度が低く、この期間にも
逆浸透装置を利用するため、電力消費が大きくなり、特
にコスト面で非効率的であるという問題がある。
However, when the water quality of raw water changes drastically throughout the year, it becomes difficult to select it. That is, if raw water with high salt concentration needs to be treated even for a short period, RO should be selected. However, the salt concentration is low for many periods, and since the reverse osmosis device is used also during this period, there is a problem that power consumption becomes large, and in particular, it is inefficient in terms of cost.

【0008】[0008]

【課題を解決するための手段】本発明は、逆浸透膜を介
し圧力を作用させて脱塩処理を行う逆浸透装置と、イオ
ン交換膜を介し電界を作用させて脱塩処理を行う電気透
析装置とを並列に備え、両方の装置を並行して運転し脱
塩処理を行う脱塩処理方法において、原水の塩濃度に応
じ、原水塩濃度が高い時に逆浸透装置の処理量比率を高
く、原水塩濃度が低いときに逆浸透装置の処理量比率を
低く、逆浸透装置と電気透析装置との処理量比率を変化
させることを特徴とする。
The present invention is directed to a reverse osmosis device for performing desalting treatment by applying pressure through a reverse osmosis membrane and an electrodialysis for performing desalting treatment by applying an electric field through an ion exchange membrane. In a desalination treatment method in which devices are provided in parallel and both devices are operated in parallel to perform desalination treatment, depending on the salt concentration of the raw water, the throughput ratio of the reverse osmosis device is high when the raw water salt concentration is high, It is characterized in that when the raw water salt concentration is low, the throughput ratio of the reverse osmosis device is lowered and the throughput ratio of the reverse osmosis device and the electrodialysis device is changed.

【0009】また、本発明は、逆浸透膜を介し圧力を作
用させて脱塩処理を行う逆浸透装置と、イオン交換膜を
介し電界を作用させて脱塩処理を行う電気透析装置とを
並列に備え、両方の装置を並行して運転し脱塩処理を行
う脱塩処理システムにおいて、原水の塩濃度を測定する
塩濃度測定手段を設け、この塩濃度測定手段によって測
定した原水塩濃度に応じ、原水塩濃度が高い時に逆浸透
装置の処理量比率を高く、原水塩濃度が低いときに逆浸
透装置の処理量比率を低く、逆浸透装置と電気透析装置
との処理量比率を変化させることを特徴とする。
Further, the present invention comprises a reverse osmosis device for performing desalting treatment by applying pressure through a reverse osmosis membrane and an electrodialysis device for performing desalting treatment by applying an electric field through an ion exchange membrane in parallel. In preparation for this, in a desalination treatment system in which both devices are operated in parallel to perform desalination treatment, salt concentration measuring means for measuring the salt concentration of the raw water is provided, and the salt concentration of the raw water measured by this salt concentration measuring means is adjusted. , When the raw water salt concentration is high, the throughput ratio of the reverse osmosis device is high, when the raw water salt concentration is low, the throughput ratio of the reverse osmosis device is low, and the throughput ratio of the reverse osmosis device and the electrodialysis device is changed. Is characterized by.

【0010】このように、本発明によれば、原水塩濃度
に応じて、逆浸透装置と電気透析装置の処理比率を変更
する。これによって、電気透析装置単独での設置面積に
比べ、脱塩設備全体の設置面積を縮小でき、原水の塩濃
度が高くなった場合においても処理水塩濃度を低濃度に
維持できる。また、原水塩濃度が低い場合に、消費電力
を節約できる。このように、本実施形態のシステムによ
り、処理水水質を良好なものに維持しながら、消費電力
を抑え、効率的な運転が行える。
As described above, according to the present invention, the treatment ratio of the reverse osmosis device and the electrodialysis device is changed according to the raw water salt concentration. As a result, the installation area of the entire desalination facility can be reduced as compared with the installation area of the electrodialysis device alone, and the salt concentration of the treated water can be maintained at a low concentration even when the salt concentration of the raw water becomes high. Moreover, when the raw water salt concentration is low, power consumption can be saved. As described above, the system of the present embodiment enables efficient operation while suppressing the power consumption while maintaining the quality of the treated water to be good.

【0011】また、逆浸透装置または電気透析装置のい
ずれかが故障した場合でも故障していない装置を利用し
てある程度の処理水を確保できる。
In addition, even if either the reverse osmosis device or the electrodialysis device fails, a certain amount of treated water can be secured by using the device that has not failed.

【0012】また、前記逆浸透装置および電気透析装置
は、それぞれ、計画最大処理量の60%以下の処理能力
を有するものであることを特徴とする。
Further, each of the reverse osmosis device and the electrodialysis device is characterized by having a processing capacity of 60% or less of a planned maximum throughput.

【0013】これにより、逆浸透装置または電気透析装
置のいずれかが故障した場合でも故障していない装置を
利用して計画水量の半量程度の処理水を確保できる。仮
に、どちらか片方の装置のみを設置する場合であって
も、通常はメンテナンスのために計画最大処理量に対し
て20%程度の余裕は確保するから、逆浸透装置と、電
気透析装置の処理能力の和を計画最大処理量の120%
程度(それぞれの装置は計画最大処理量の60%程度の
処理能力を有する)に設定しても、過剰設備とはならな
い。
As a result, even if either the reverse osmosis device or the electrodialysis device fails, it is possible to secure about half the planned amount of treated water by using the device that has not failed. Even if only one of the devices is installed, a margin of about 20% is normally secured for the planned maximum throughput for maintenance. Therefore, the treatment of the reverse osmosis device and the electrodialysis device is performed. 120% of planned maximum throughput
Even if it is set to a level (each device has a processing capacity of about 60% of the maximum planned throughput), it does not become an excess facility.

【0014】また、前記逆浸透装置および電気透析装置
は、計画最大処理量の40〜60%の範囲内で処理量を
変更することが好適である。この程度の変更とすること
で、両装置を利用して効率的な運転が行える。
Further, it is preferable that the reverse osmosis device and the electrodialysis device change the treatment amount within a range of 40 to 60% of the planned maximum treatment amount. By making such a change, efficient operation can be performed using both devices.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態につい
て、図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、実施形態に係る脱塩処理システム
の概略構成を示す図である。脱塩処理の被処理水が流れ
る原水配管110には、導電率計112が設けられてお
り、原水の導電率が計測される。導電率は、塩濃度とほ
ぼ一対一の関係があるため、この導電率計112によっ
て、塩濃度が計測される。
FIG. 1 is a diagram showing a schematic configuration of a desalination treatment system according to an embodiment. A conductivity meter 112 is provided in the raw water pipe 110 through which the water to be treated for desalination flows, and the conductivity of the raw water is measured. Since the conductivity has a nearly one-to-one relationship with the salt concentration, the conductivity meter 112 measures the salt concentration.

【0017】この原水配管110には、逆浸透ポンプ1
14が接続され、この逆浸透ポンプ114によって原水
が逆浸透装置116に供給される。逆浸透装置116
は、内部に逆浸透膜を有し、原水が供給される原水室1
16aと逆浸透膜を透過した透過水が得られる透過水室
116bに区画されている。そして、透過水室116b
に得られる透過水が処理水として排出される。また、原
水室116aには、塩分が濃縮された濃縮排水が得ら
れ、これが系外に排出される。なお、この例では、原水
室116aから排出される濃縮排水の一部は逆浸透ポン
プ114の吸い込み側に循環される。また、逆浸透装置
116に使用される逆浸透膜には、中空糸型、平膜型な
ど各種のものがあり、特に限定はされない。
In this raw water pipe 110, the reverse osmosis pump 1
The reverse osmosis pump 114 supplies raw water to the reverse osmosis device 116. Reverse osmosis device 116
Has a reverse osmosis membrane inside and is supplied with raw water.
It is divided into a permeated water chamber 116b in which permeated water that has passed through 16a and the reverse osmosis membrane is obtained. And the permeate chamber 116b
The permeated water obtained in step 1 is discharged as treated water. Further, concentrated wastewater in which salt is concentrated is obtained in the raw water chamber 116a and is discharged to the outside of the system. In this example, part of the concentrated waste water discharged from the raw water chamber 116a is circulated to the suction side of the reverse osmosis pump 114. The reverse osmosis membrane used in the reverse osmosis device 116 includes various types such as a hollow fiber type and a flat membrane type, and is not particularly limited.

【0018】また、原水配管110には、電気透析ポン
プ118も接続されており、これによって原水が電気透
析装置120に供給される。この電気透析装置120
は、基本的に、両側がイオン交換膜(片側が陽イオン交
換膜、反対側が陰イオン交換膜)で仕切られた脱塩室1
20aと、その両側の濃縮室120bを有し、これらの
外側に一対の電極120cが設けられている。そして、
一対の電極120cにより、全体に直流電界を印加する
ことで、原水中のイオンは、イオン交換膜を介し濃縮室
120bに抜ける。このため、脱塩された処理水が脱塩
室120aに得られ、濃縮室120bに塩分が濃縮され
た濃縮排水が得られる。
An electrodialysis pump 118 is also connected to the raw water pipe 110, by which raw water is supplied to the electrodialysis device 120. This electrodialysis device 120
Is basically a desalination chamber 1 which is partitioned on both sides by ion exchange membranes (one side is a cation exchange membrane and the other side is an anion exchange membrane).
20a and concentration chambers 120b on both sides thereof are provided, and a pair of electrodes 120c is provided outside these. And
By applying a DC electric field to the whole by the pair of electrodes 120c, the ions in the raw water escape to the concentrating chamber 120b through the ion exchange membrane. Therefore, the desalted treated water is obtained in the desalination chamber 120a, and the concentrated waste water in which the salt content is concentrated is obtained in the concentration chamber 120b.

【0019】なお、通常の場合、陽イオン交換膜と、陰
イオン交換膜を複数交互に配置して、脱塩室と濃縮室が
交互に仕切られ、これら複数の脱塩室120a、濃縮室
120bの両側に電極120cが配置されている。
In the usual case, a plurality of cation exchange membranes and a plurality of anion exchange membranes are alternately arranged to alternately partition the desalting chamber and the concentrating chamber, and the plurality of desalting chambers 120a and 120b are separated. The electrodes 120c are disposed on both sides of the.

【0020】また、電気透析装置には前述のごとくED
とEDRがあり、EDでは一対の電極120cに常に同
一極性の直流を印加するが、EDRでは一対の電極12
0cに対する直流の極性を所定の頻度で逆転する。ED
Rでは、電極(陰極)に対するスケールの発生が防止で
きるなどのメリットがあるが、本実施形態ではいずれの
形式も利用できる。
In addition, the electrodialysis device has an ED as described above.
In EDR, a direct current of the same polarity is always applied to the pair of electrodes 120c, but in EDR, the pair of electrodes 12c is used.
The polarity of direct current with respect to 0c is reversed at a predetermined frequency. ED
Although R has an advantage that scale can be prevented from being generated on the electrode (cathode), any form can be used in the present embodiment.

【0021】逆浸透装置116、電気透析装置120か
らの処理水は合流され、その後、消毒剤貯槽122から
の消毒剤(例えば次亜塩酸ナトリウム)が消毒剤ポンプ
124によって添加され、消毒済みの処理水が上水とし
て配水される。
The treated water from the reverse osmosis device 116 and the electrodialysis device 120 is combined, and then the disinfectant (for example, sodium hypochlorite) from the disinfectant storage tank 122 is added by the disinfectant pump 124, and the disinfected process is performed. Water is distributed as clean water.

【0022】そして、本実施形態においては、導電率計
112の出力は、制御部126に供給され、この制御部
126が逆浸透ポンプ114および電気透析ポンプ11
8の流量を制御し、逆浸透装置116と、電気透析装置
120の処理量の比率を制御する。すなわち、導電率計
112によって、計測した原水塩分濃度が高いときに
は、逆浸透ポンプ114の流量を大きく、電気透析ポン
プ118の流量を小さくして、逆浸透装置116の処理
量を大きく、電気透析装置120の処理量を小さくす
る。一方、原水塩分濃度が低いときには、逆浸透ポンプ
114の流量を小さく、電気透析ポンプ118の流量を
大きくして、逆浸透装置116の処理量を小さく、電気
透析装置120の処理量を大きくする。これは、逆浸透
装置116は原水塩濃度が高くても処理水質を良好に維
持できるが、運転経費が高い。一方、電気透析装置12
0は原水塩濃度が高いと処理水質を良好に維持できない
が、運転経費が安いからである。
In the present embodiment, the output of the conductivity meter 112 is supplied to the control unit 126, which controls the reverse osmosis pump 114 and the electrodialysis pump 11.
8 to control the ratio of the throughputs of the reverse osmosis device 116 and the electrodialysis device 120. That is, when the raw water salt concentration measured by the conductivity meter 112 is high, the flow rate of the reverse osmosis pump 114 is increased and the flow rate of the electrodialysis pump 118 is decreased to increase the throughput of the reverse osmosis apparatus 116 and the electrodialysis apparatus. The processing amount of 120 is reduced. On the other hand, when the raw water salt concentration is low, the flow rate of the reverse osmosis pump 114 is decreased and the flow rate of the electrodialysis pump 118 is increased to decrease the throughput of the reverse osmosis device 116 and increase the throughput of the electrodialysis device 120. This means that the reverse osmosis device 116 can maintain good treated water quality even if the raw water salt concentration is high, but the operating cost is high. On the other hand, the electrodialysis device 12
When the raw water salt concentration is 0, the treated water quality cannot be maintained well, but the operating cost is low.

【0023】例えば、逆浸透装置116と、電気透析装
置120の最大処理能力を、それぞれこのシステムに流
入してくる原水の計画最大処理水量の60%程度として
おく。そして、塩分濃度に応じて、それぞれの処理量を
前記計画最大処理水量の40%〜60%の範囲で変化さ
せるとよい。なお、どちらか片方の装置のみを設置する
場合であっても、通常メンテナンスのために20%程度
の余裕は確保するから、逆浸透装置116と、電気透析
装置120の処理能力の合計を計画最大処理水量の12
0%程度(それぞれの装置は60%)に設定しても、過
剰設備とはならない。
For example, the maximum treatment capacities of the reverse osmosis device 116 and the electrodialysis device 120 are set to about 60% of the planned maximum treated water amount of raw water flowing into this system, respectively. Then, it is advisable to change the treatment amount in the range of 40% to 60% of the planned maximum treated water amount according to the salt concentration. Even when only one of the devices is installed, a margin of about 20% is secured for normal maintenance. Therefore, the total processing capacity of the reverse osmosis device 116 and the electrodialysis device 120 is the maximum planned. 12 of treated water
Even if it is set to about 0% (60% for each device), it does not become an excess facility.

【0024】そして、原水の導電率が600〜8,00
0μS/cmの範囲で変化する場合において、導電率2
000μS/cm以下の場合に逆浸透装置40%、電気
透析装置60%、導電率2000〜2500μS/cm
の場合に逆浸透装置50%、電気透析装置50%、導電
率2500μS/cm以上の場合に逆浸透装置60%、
電気透析装置40%のように3段階で処理量比率を変更
する。
The conductivity of the raw water is 600 to 8,000.
Conductivity 2 when changing in the range of 0 μS / cm
Reverse osmosis device 40%, electrodialysis device 60%, conductivity 2000 to 2500 μS / cm when 000 μS / cm or less
Reverse osmosis device 50%, electrodialysis device 50%, conductivity 2,500 μS / cm or more reverse osmosis device 60%,
The treatment rate is changed in three steps like the electrodialyzer 40%.

【0025】このように、計画最大処理量の40%〜6
0%程度(個々の装置にとってみれば、66.7%〜1
00%)の変更であれば、それぞれの装置の運転につい
ては特に影響はなく、ポンプの水量の制御だけで対処で
きる。
In this way, 40% to 6% of the planned maximum throughput
0% (66.7% to 1 for each device)
(00%) has no particular effect on the operation of each device, and can be dealt with only by controlling the water amount of the pump.

【0026】すなわち、塩濃度が700mg−Cl/L
程度(電気導電率2500μS/cm)を超えると電気
透析装置120による処理水の塩濃度を安定して200
mg−Cl/L(電気導電率600μS/cm)以下に
維持するのが難しくなる。そこで、このような原水塩濃
度の場合には、逆浸透装置116の処理量を多くする。
That is, the salt concentration is 700 mg-Cl / L
When it exceeds the level (electrical conductivity 2500 μS / cm), the salt concentration of the treated water by the electrodialyzer 120 is stabilized to 200.
It becomes difficult to maintain the concentration below mg-Cl / L (electrical conductivity 600 μS / cm). Therefore, in the case of such a raw water salt concentration, the processing amount of the reverse osmosis device 116 is increased.

【0027】一方、塩濃度が600mg−Cl/L程度
(電気導電率2000μS/cm)以下であれば電気透
析装置120による処理水の塩濃度は安定して200m
g−Cl/L(電気導電率600μS/cm)以下に維
持することができる。そこで、このような場合に電気透
析装置120の処理量を多くする。
On the other hand, if the salt concentration is about 600 mg-Cl / L (electrical conductivity 2000 μS / cm) or less, the salt concentration of the treated water by the electrodialyzer 120 is stable at 200 m.
It can be maintained below g-Cl / L (electrical conductivity 600 μS / cm). Therefore, in such a case, the throughput of the electrodialysis device 120 is increased.

【0028】このように、本実施形態のシステムによれ
ば、原水塩濃度に応じて、逆浸透装置116と電気透析
装置120の処理比率を変更する。これによって、原水
の塩濃度が変化しても特に消費電力の面において効率よ
く脱塩処理が行える。さらに、ED単独での設置面積に
比べ、脱塩設備全体の設置面積を縮小でき、原水の塩濃
度が高くなった場合においても処理水塩濃度を低濃度に
維持できる。また、原水塩濃度が低い場合に、消費電力
を節約できる。このように、本実施形態のシステムによ
り、処理水水質を良好なものに維持しながら、消費電力
を抑え、効率的な運転が行える。また、脱塩前の原水に
酸化剤が残量した場合などに逆浸透装置116が故障す
る可能性があるが、この場合でも電気透析装置120に
より半量程度処理水を確保できる。
As described above, according to the system of this embodiment, the treatment ratios of the reverse osmosis device 116 and the electrodialysis device 120 are changed according to the raw water salt concentration. As a result, even if the salt concentration of the raw water changes, the desalination treatment can be efficiently performed especially in terms of power consumption. Further, the installation area of the entire desalination facility can be reduced as compared with the installation area of the ED alone, and the salt concentration of the treated water can be kept low even when the salt concentration of the raw water becomes high. Moreover, when the raw water salt concentration is low, power consumption can be saved. As described above, the system of the present embodiment enables efficient operation while suppressing the power consumption while maintaining the quality of the treated water to be good. Further, there is a possibility that the reverse osmosis device 116 will break down when the oxidizer remains in the raw water before desalting, but even in this case, the electrodialysis device 120 can secure about half the amount of treated water.

【0029】次に、本実施形態の脱塩システムを利用
し、塩分濃度が高い地下水等を原水として、水道水を得
る浄水施設の全体構成を図2に基づいて説明する。処理
対象となる原水(例えば地下水)を得るための取水井1
0には、原水ポンプ12が設けられ、ここから原水が取
水される。原水ポンプ12からの原水は、混和槽14に
供給されるが、この原水配管には、原水濁度計16が設
けられており、この原水濁度計16によって、被処理水
である原水の濁度が検出される。
Next, the overall construction of a water purification facility for obtaining tap water using the desalination system of this embodiment as raw water having a high salt concentration will be described with reference to FIG. Intake well 1 for obtaining raw water (eg groundwater) to be treated
At 0, a raw water pump 12 is provided, from which raw water is taken. The raw water from the raw water pump 12 is supplied to the mixing tank 14, and a raw water turbidity meter 16 is provided in the raw water pipe. The raw water turbidity meter 16 allows the raw water as the treated water to be turbid. The degree is detected.

【0030】混和槽14には、凝集剤貯槽18からの凝
集剤が凝集剤ポンプ20によって供給され、また酸化剤
貯槽22からの酸化剤が酸化剤ポンプ24によって供給
される。ここで、凝集剤としては、ポリ塩化アルミニウ
ム(PAC)が好適であるが、他のアルミ系や鉄系凝集
剤を利用することもでき、必要に応じてpH調整剤を添
加するとよい。さらに、凝集助剤として高分子凝集剤を
添加してもよい。また、酸化剤としては、一般的に次亜
塩素酸ナトリウムが利用されるが、塩素ガスでもよい。
これによって、前塩素処理が行われる。なお、塩素系の
酸化剤でなく、オゾンなど他の酸化剤でもよく、また酸
化剤の注入を省略してもよい。
The coagulant from the coagulant storage tank 18 is supplied to the mixing tank 14 by the coagulant pump 20, and the oxidant from the oxidant storage tank 22 is supplied by the oxidant pump 24. Here, polyaluminum chloride (PAC) is preferable as the aggregating agent, but other aluminum-based or iron-based aggregating agents can be used, and a pH adjusting agent may be added if necessary. Further, a polymer flocculant may be added as a flocculation aid. Although sodium hypochlorite is generally used as the oxidizing agent, chlorine gas may be used.
Thereby, the pre-chlorination process is performed. The chlorine-based oxidizing agent may be replaced by another oxidizing agent such as ozone, and the injection of the oxidizing agent may be omitted.

【0031】混和槽14には、撹拌機が配置されてお
り、ここで原水と凝集剤が撹拌混合され、原水中の固形
物が凝集される。
The mixing tank 14 is provided with a stirrer, in which the raw water and the aggregating agent are agitated and mixed, and the solid matter in the raw water is agglomerated.

【0032】混和槽14からの凝集処理水は、長繊維ろ
過装置26に供給される。この長繊維ろ過装置26は、
長繊維ろ過装置本体26a、長繊維ろ過材26b、浮上
性充填材26c等を有している。この浮上性充填材26
cは、通常のろ過時において、浮上する比重としておく
ことで、浮上性充填材26cの抑えは、浮上性充填材2
6の上方のみでよい。そして、このような浮上性充填材
26cを設けることで、単に長繊維ろ過材26bのみを
設けた場合に比べ、ろ過能力を高め、原水の水質が悪い
場合においても十分な処理が行える。なお、逆洗用の装
置などは図示を省略している。
The coagulated water from the mixing tank 14 is supplied to the long fiber filtration device 26. This long fiber filtration device 26 is
It has a long fiber filtering device body 26a, a long fiber filtering material 26b, a floating filler 26c and the like. This floating filler 26
c is a specific gravity that floats during normal filtration, so that the floating filler 26c is suppressed by the floating filler 2
Only above 6. Further, by providing such a floating filler 26c, the filtration capacity can be improved and sufficient treatment can be performed even when the quality of raw water is poor, as compared with the case where only the long fiber filter 26b is provided. The backwashing device and the like are not shown.

【0033】この長繊維ろ過装置26の処理水は、活性
炭吸着塔28に供給される。この活性炭吸着塔28は、
その内部に活性炭が充填されており、この活性炭によ
り、凝集ろ過で除去できなかった水中の有機物が吸着除
去される。そして、活性炭処理水は、活性炭処理水槽3
0に貯められる。活性炭処理水槽30には、活性炭処理
水ポンプ32が接続されており、これによって、活性炭
処理水が二層ろ過器34に供給される。この二層ろ過器
34は、例えばアンスラサイトと、砂の二層からなるろ
過器であり、上述の長繊維ろ過装置26より、精密なろ
過処理を行う。特に、本実施形態の場合には、長繊維ろ
過装置26によって、かなりの固形物が除去されている
ため、二層ろ過器34の固形物負荷は、非常に小さい。
そこでろ過継続時間を長くして非常に効率的なろ過処理
が行える。そして、この二層ろ過器34の処理水とし
て、十分に濁度の低い二層ろ過処理水が得られる。
The treated water of the long fiber filter 26 is supplied to the activated carbon adsorption tower 28. This activated carbon adsorption tower 28 is
The inside thereof is filled with activated carbon, and the activated carbon adsorbs and removes organic matter in water that could not be removed by coagulation filtration. The activated carbon-treated water is the activated carbon-treated water tank 3
It is saved to 0. An activated carbon treated water pump 32 is connected to the activated carbon treated water tank 30, whereby the activated carbon treated water is supplied to the two-layer filter 34. The two-layer filter 34 is, for example, a filter having two layers of anthracite and sand, and performs a precise filtration process by the long fiber filtration device 26 described above. In particular, in the case of the present embodiment, the solid load on the two-layer filter 34 is very small, because a considerable amount of solid matter has been removed by the long fiber filtration device 26.
Therefore, the filtration duration can be extended to perform a very efficient filtration process. Then, as the treated water of the two-layer filter 34, the two-layer filtered treated water having sufficiently low turbidity is obtained.

【0034】二層ろ過器34からのろ過処理水は、ろ過
処理水貯槽42に導入される。
The filtered water from the two-layer filter 34 is introduced into the filtered water storage tank 42.

【0035】そして、このろ過処理水貯槽42からのろ
過処理水が逆浸透ポンプ114によって逆浸透装置11
6に供給されるとともに、電気透析ポンプ118により
電気透析装置120に供給される。また、二層ろ過器3
4の処理水の電気導電率は導電率計112によって計測
され、この計測結果は制御部126に供給される。制御
部126は、供給される計測結果に応じて、逆浸透ポン
プ114および電気透析ポンプ118の流量を制御し、
逆浸透装置116と電気透析装置120の処理量の比率
を制御する。また、逆浸透装置116と電気透析装置1
20の処理水には、消毒剤貯槽122からの消毒剤(例
えば、次亜塩素酸ナトリウム)が添加される(後塩素処
理)。このようにして、後塩素処理され、適量の残留塩
素を含む処理水が配水タンクなどを介し、上水として配
水される。
The filtered and treated water from the filtered and treated water storage tank 42 is supplied to the reverse osmosis device 11 by the reverse osmosis pump 114.
6 and also to the electrodialysis device 120 by the electrodialysis pump 118. Also, the two-layer filter 3
The electrical conductivity of the treated water of No. 4 is measured by the conductivity meter 112, and the measurement result is supplied to the control unit 126. The control unit 126 controls the flow rates of the reverse osmosis pump 114 and the electrodialysis pump 118 according to the supplied measurement result,
The ratio of the throughput of the reverse osmosis device 116 and the electrodialysis device 120 is controlled. In addition, the reverse osmosis device 116 and the electrodialysis device 1
A disinfectant (for example, sodium hypochlorite) from the disinfectant storage tank 122 is added to the treated water of 20 (post-chlorination). In this way, the post-chlorination treatment is performed, and the treated water containing an appropriate amount of residual chlorine is distributed as clean water through a water distribution tank or the like.

【0036】[0036]

【実施例】以下に、逆浸透装置116と、電気透析装置
120を用いた処理の一例について説明する。
EXAMPLE An example of processing using the reverse osmosis device 116 and the electrodialysis device 120 will be described below.

【0037】<条件> (i)原水;かん水 塩濃度350〜2,200mg−Cl/L(電気導電率
1,300〜6,600μS/cm) (ii)計画最大処理水量;360m/d (iii)処理フロー;図2のシステム。混和槽(凝集
剤および前塩素添加)14→長繊維ろ過装置26(通水
速度480m/d)→活性炭吸着塔28(SV10h
−1)→二層ろ過器34(ろ過速度150m/d)→逆
浸透装置116及び電気透析装置120(EDR装置)
→(後塩素)→処理水配水 (iv)逆浸透装置116の仕様 エレメント:直径8インチ×長さ1m、架橋ポリアミド
系スパイラル膜、 システム:一段目 4エレメント×2系列,二段目 4
エレメント×1系列,計12エレメント、 性能:最大処理水量216m/日、水回収率80%、
脱塩率98%。 (v)電気透析装置(EDR)120の仕様 膜サイズ:80cm×70cm(膜面積0.56
)、膜対数:100セルペアー/槽(膜面積56m
/槽)、槽数:6槽、性能:最大処理水量216m
/日、水回収率85%、脱塩率95% (vi)目標水質;塩濃度200mg−Cl/L(電気
導電率600μS/cm)以下
<Condition> (I) Raw water; brine Salt concentration 350-2,200 mg-Cl / L (electrical conductivity
1,300-6,600 μS / cm) (Ii) Maximum planned treated water amount: 360 mThree/ D (Iii) Processing flow; system of FIG. Mixing tank (coagulation
Agent and pre-chlorine addition) 14 → long fiber filter 26 (water flow
Speed 480 m / d) → Activated carbon adsorption tower 28 (SV10h
-1) → two-layer filter 34 (filtration speed 150 m / d) → reverse
Penetration device 116 and electrodialysis device 120 (EDR device)
→ (Post-chlorine) → Distribution of treated water (Iv) Specifications of reverse osmosis device 116 Element: diameter 8 inches x length 1m, cross-linked polyamide
System spiral membrane, System: 1st stage 4 elements x 2 series, 2nd stage 4
Element x 1 series, total 12 elements, Performance: Maximum amount of treated water 216mThree/ Day, water recovery rate 80%,
Desalination rate 98%. (V) Specifications of electrodialysis device (EDR) 120 Membrane size: 80 cm x 70 cm (membrane area 0.56
mTwo), Number of membranes: 100 cell pairs / tank (membrane area 56m
Two/ Tank), number of tanks: 6 tanks, performance: maximum treated water amount of 216 m Three
/ Day, water recovery rate 85%, desalination rate 95% (Vi) Target water quality; salt concentration 200 mg-Cl / L (electricity
Conductivity 600 μS / cm) or less

【0038】また、混和槽14における凝集剤の添加
は、原水濁度計16により計測した原水濁度に対し比例
注入とした。
The coagulant was added to the mixing tank 14 in proportion to the raw water turbidity measured by the raw water turbidimeter 16.

【0039】また、混和槽14への前塩素処理(塩素注
入量)は、1.0mg/Lの一定注入とした。
The pre-chlorination (chlorine injection amount) in the mixing tank 14 was a constant injection of 1.0 mg / L.

【0040】そして、二層ろ過処理水の導電率を導電率
計112にて測定し、(i)電気導電率が2,500μ
S/cm以上の場合、逆浸透装置(RO)の処理水量を
216m/d、EDRの処理水量を144m/d
(水量比RO:EDR=6:4)とし、(ii)電気導
電率が2,000μS/cm以上、2,500μS/c
m未満の場合、ROの処理水量を180m/d、ED
Rの処理水量を180m/d(水量比RO:EDR=
5:5)とし、(iii)電気導電率が2,000μS
/cm未満の場合、ROの処理水量を144m/d、
EDRの処理水量を216m/d(水量比RO:ED
R=4:6)とする。
Then, the conductivity of the two-layer filtered treated water was measured by the conductivity meter 112, and (i) the electric conductivity was 2,500 μm.
In the case of S / cm or more, the amount of treated water of the reverse osmosis device (RO) is 216 m 3 / d, and the amount of treated water of EDR is 144 m 3 / d.
(Water ratio RO: EDR = 6: 4), and (ii) electric conductivity of 2,000 μS / cm or more, 2,500 μS / c
If less than m, the amount of RO treated water is 180 m 3 / d, ED
The treated water amount of R is 180 m 3 / d (water amount ratio RO: EDR =
5: 5), and (iii) electric conductivity is 2,000 μS.
If less than / cm, the treated water amount of RO is 144 m 3 / d,
The treated water volume of EDR is 216 m 3 / d (water volume ratio RO: ED
R = 4: 6).

【0041】これによって、逆浸透装置(RO)116
及び電気透析装置(EDR)120の処理水を合流させ
た水として塩濃度が180mg−Cl/L以下のものを
得、これに塩素を加え浄水とした。
As a result, the reverse osmosis device (RO) 116
And, water having a salt concentration of 180 mg-Cl / L or less was obtained as the water obtained by combining the treated water of the electrodialyzer (EDR) 120, and chlorine was added to this to obtain purified water.

【0042】ここで、本実施形態の脱塩システムにおけ
る消費電力量について説明する。塩濃度が700mg−
Cl/L(電気導電率が2,500μS/cm)前後の
場合を考える。
Here, the power consumption in the desalination system of this embodiment will be described. Salt concentration is 700 mg-
Consider the case of around Cl / L (electrical conductivity of 2,500 μS / cm).

【0043】ROの単位処理水量当たりの消費電力は、
9kWh/m、EDRの単位処理水量当たりの消費電
力は、5kWh/m程度である。
The power consumption per unit amount of treated water of RO is
The power consumption per unit treated water amount of 9 kWh / m 3 and EDR is about 5 kWh / m 3 .

【0044】このため、RO:EDR=6:4で処理し
た場合、消費電力は7.4kWh/mとなる。また、
RO:EDR=5:5の場合、消費電力は7kWh/m
となる。ROで全て処理した場合の消費電力9kWh
/mに比べ、一日当たりの消費電力量は、1.6〜
2.0kWh/m×360m=576〜720kW
hの節約が可能となる。従って、1kW=17円とする
と、9,792〜14,620円/日の節約になる。
Therefore, when the processing is performed with RO: EDR = 6: 4, the power consumption becomes 7.4 kWh / m 3 . Also,
When RO: EDR = 5: 5, the power consumption is 7 kWh / m
It becomes 3 . Power consumption 9kWh when processing all in RO
/ M compared to 3, power consumption per day is 1.6
2.0 kWh / m 3 × 360 m 3 = 576 to 720 kW
It is possible to save h. Therefore, if 1 kW = 17 yen, the savings will be 9,792 to 14,620 yen / day.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
原水塩濃度に応じて、逆浸透装置と電気透析装置の処理
比率を変更する。これによって、電気透析装置単独での
設置面積に比べ、脱塩設備全体の設置面積を縮小でき、
原水の塩濃度が高くなった場合においても処理水塩濃度
を低濃度に維持できる。また、原水塩濃度が低い場合
に、消費電力を節約できる。このように、本実施形態の
システムにより、処理水水質を良好なものに維持しなが
ら、消費電力を抑え、効率的な運転が行える。
As described above, according to the present invention,
The treatment ratio of the reverse osmosis device and the electrodialysis device is changed according to the raw water salt concentration. As a result, compared with the installation area of the electrodialysis machine alone, the installation area of the entire desalination equipment can be reduced,
Even if the salt concentration of the raw water becomes high, the salt concentration of the treated water can be kept low. Moreover, when the raw water salt concentration is low, power consumption can be saved. As described above, the system of the present embodiment enables efficient operation while suppressing the power consumption while maintaining the quality of the treated water to be good.

【0046】また、逆浸透装置または電気透析装置のい
ずれかが故障した場合でも故障していない装置を利用し
てある程度の処理水を確保できる。
In addition, even if either the reverse osmosis device or the electrodialysis device fails, a certain amount of treated water can be secured by using the device that has not failed.

【0047】また、前記逆浸透装置および電気透析装置
は、計画最大処理量の60%以下の処理能力とすること
より、逆浸透装置または電気透析装置のいずれかが故障
した場合でも故障していない装置を利用して半量程度の
処理水を確保できる。仮に、どちらか片方の装置のみを
設置する場合であっても、通常はメンテナンスのために
20%程度の余裕は確保するから、逆浸透装置と、電気
透析装置の処理能力の和を最大水量の120%程度に設
定しても、過剰設備とはならない。
Further, since the reverse osmosis device and the electrodialysis device have a processing capacity of 60% or less of the planned maximum throughput, even if either the reverse osmosis device or the electrodialysis device fails, it does not fail. About half of the treated water can be secured using the equipment. Even if only one of the devices is installed, a margin of about 20% is usually secured for maintenance. Therefore, the sum of the processing capacities of the reverse osmosis device and the electrodialysis device should be the maximum water amount. Even if it is set to about 120%, it will not cause excess equipment.

【0048】また、前記逆浸透ろ過装置および電気透析
装置を、計画最大処理量の40〜60%の範囲内で処理
量を変更することで、両装置を利用して効率的運転が行
える。
By changing the treatment amount of the reverse osmosis filtration device and the electrodialysis device within the range of 40 to 60% of the planned maximum treatment amount, both devices can be used for efficient operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施形態に係る脱塩処理システムの構成を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration of a desalination treatment system according to an embodiment.

【図2】 実施形態に係る脱塩処理システムを含む処理
システムの構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a processing system including a desalination processing system according to an embodiment.

【符号の説明】[Explanation of symbols]

112 導電率計、114 逆浸透ポンプ、116 逆
浸透装置、118 電気透析ポンプ、120 電気透析
装置、126 制御部。
112 conductivity meter, 114 reverse osmosis pump, 116 reverse osmosis device, 118 electrodialysis pump, 120 electrodialysis device, 126 control unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 豊明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D006 GA03 GA17 KA01 KA67 KB12 KB13 KB14 KD08 KD09 KD24 KE02Q KE12P MA01 MA03 MA13 MA14 PA01 PB04 PB05 4D061 DA02 DB13 EA09 EB13 EB17 EB19 EB37 EB39 FA06 FA10 FA11 FA13 FA14 GA06 GC02   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toyoaki Ohta             Olga 1-2-8 Shinsuna, Koto-ku, Tokyo             Within the corporation F-term (reference) 4D006 GA03 GA17 KA01 KA67 KB12                       KB13 KB14 KD08 KD09 KD24                       KE02Q KE12P MA01 MA03                       MA13 MA14 PA01 PB04 PB05                 4D061 DA02 DB13 EA09 EB13 EB17                       EB19 EB37 EB39 FA06 FA10                       FA11 FA13 FA14 GA06 GC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜を介し圧力を作用させて脱塩処
理を行う逆浸透装置と、イオン交換膜を介し電界を作用
させて脱塩処理を行う電気透析装置とを並列に備え、両
方の装置を並行して運転し脱塩処理を行う脱塩処理方法
において、 原水の塩濃度に応じ、原水塩濃度が高い時に逆浸透装置
の処理量比率を高く、原水塩濃度が低いときに逆浸透装
置の処理量比率を低く、逆浸透装置と電気透析装置との
処理量比率を変化させることを特徴とする脱塩処理方
法。
1. A reverse osmosis device for performing desalting treatment by applying pressure through a reverse osmosis membrane and an electrodialysis device for performing desalting treatment by applying an electric field through an ion exchange membrane, both of which are provided in parallel. In the desalination treatment method, in which the devices are operated in parallel to perform desalination treatment, the reverse osmosis unit treats a high treatment amount ratio when the raw water salt concentration is high and reverses it when the raw water salt concentration is low. A desalination treatment method characterized in that the throughput ratio of an osmosis device is low and the throughput ratio of a reverse osmosis device and an electrodialysis device is changed.
【請求項2】 逆浸透膜を介し圧力を作用させて脱塩処
理を行う逆浸透装置と、イオン交換膜を介し電界を作用
させて脱塩処理を行う電気透析装置とを並列に備え、両
方の装置を並行して運転し脱塩処理を行う脱塩処理シス
テムにおいて、 原水の塩濃度を測定する塩濃度測定手段を設け、 この塩濃度測定手段によって測定した原水塩濃度に応
じ、原水塩濃度が高い時に逆浸透装置の処理量比率を高
く、原水塩濃度が低いときに逆浸透装置の処理量比率を
低く、逆浸透装置と電気透析装置との処理量比率を変化
させることを特徴とする脱塩処理システム。
2. A reverse osmosis device for performing desalting treatment by applying pressure through a reverse osmosis membrane and an electrodialysis device for performing desalting treatment by applying an electric field through an ion exchange membrane, both of which are provided in parallel. In the desalination system that operates the above equipment in parallel to perform desalination treatment, a salt concentration measuring means for measuring the salt concentration of the raw water is provided, and the salt concentration of the raw water is measured according to the salt concentration of the raw water. When the water content is high, the reverse osmosis device has a high throughput ratio, when the raw water salt concentration is low, the reverse osmosis device has a low throughput ratio, and the throughput ratio of the reverse osmosis device and the electrodialysis device is changed. Desalination treatment system.
【請求項3】 請求項1または2に記載の脱塩処理方法
または脱塩処理システムにおいて、 前記逆浸透装置および電気透析装置は、それぞれ、計画
最大処理量の60%以下の処理能力を有するものである
ことを特徴とする脱塩処理方法または脱塩処理システ
ム。
3. The desalination treatment method or desalination treatment system according to claim 1, wherein the reverse osmosis device and the electrodialysis device each have a treatment capacity of 60% or less of a planned maximum treatment amount. The desalination treatment method or the desalination treatment system, wherein
【請求項4】 請求項1〜3のいずれか1つに記載の脱
塩処理方法または脱塩処理システムにおいて、 前記逆浸透装置および電気透析装置は、計画最大処理量
の40〜60%の範囲内で処理量を変更することを特徴
とする脱塩処理方法または脱塩処理システム。
4. The desalination treatment method or system according to any one of claims 1 to 3, wherein the reverse osmosis device and the electrodialysis device are in a range of 40 to 60% of a planned maximum treatment amount. A desalination treatment method or a desalination treatment system, characterized in that the treatment amount is changed within.
JP2002111806A 2002-04-15 2002-04-15 Dechlorination treatment method and dechlorination treatment system Pending JP2003305343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111806A JP2003305343A (en) 2002-04-15 2002-04-15 Dechlorination treatment method and dechlorination treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111806A JP2003305343A (en) 2002-04-15 2002-04-15 Dechlorination treatment method and dechlorination treatment system

Publications (1)

Publication Number Publication Date
JP2003305343A true JP2003305343A (en) 2003-10-28

Family

ID=29394499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111806A Pending JP2003305343A (en) 2002-04-15 2002-04-15 Dechlorination treatment method and dechlorination treatment system

Country Status (1)

Country Link
JP (1) JP2003305343A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
KR100758821B1 (en) * 2006-08-30 2007-10-08 서울산업대학교 산학협력단 Dechlorination method using a bio-electro-chemical system
JP2009220019A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and apparatus for treating wastewater
JP2012125726A (en) * 2010-12-17 2012-07-05 Kajima Corp Leachate treatment system
JP5565536B1 (en) * 2014-03-31 2014-08-06 株式会社フクハラ Brackish water desalination treatment equipment
CN105417795A (en) * 2015-12-15 2016-03-23 江苏肯创环境科技股份有限公司 Desulfurization waste water zero discharging treatment process for coal-fired power plant
CN105461144A (en) * 2016-02-01 2016-04-06 北京沃特尔水技术股份有限公司 Method and device for treating desulfurization waste water
CN106219820A (en) * 2016-08-31 2016-12-14 江苏宏标科技有限公司 A kind of for power plant's soft brush treatment desalinating process
WO2017064962A1 (en) * 2015-10-14 2017-04-20 栗田工業株式会社 Water treatment device for boiler feed water and method for operating boiler
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544970B2 (en) * 2004-11-09 2010-09-15 Jfeスチール株式会社 Processing method for pickling waste liquid and processing equipment for pickling waste liquid
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Treatment method for pickling waste solution and treatment device for pickling waste solution
KR100758821B1 (en) * 2006-08-30 2007-10-08 서울산업대학교 산학협력단 Dechlorination method using a bio-electro-chemical system
JP2009220019A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and apparatus for treating wastewater
JP2012125726A (en) * 2010-12-17 2012-07-05 Kajima Corp Leachate treatment system
JP5565536B1 (en) * 2014-03-31 2014-08-06 株式会社フクハラ Brackish water desalination treatment equipment
WO2017064962A1 (en) * 2015-10-14 2017-04-20 栗田工業株式会社 Water treatment device for boiler feed water and method for operating boiler
CN105417795A (en) * 2015-12-15 2016-03-23 江苏肯创环境科技股份有限公司 Desulfurization waste water zero discharging treatment process for coal-fired power plant
CN105461144A (en) * 2016-02-01 2016-04-06 北京沃特尔水技术股份有限公司 Method and device for treating desulfurization waste water
CN106219820A (en) * 2016-08-31 2016-12-14 江苏宏标科技有限公司 A kind of for power plant's soft brush treatment desalinating process
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Similar Documents

Publication Publication Date Title
AU2015242989B2 (en) Electrodesalination system and method
CN102167463B (en) Water disposal facility and method
US9162906B2 (en) Method for desalinating saltwater using concentration gradient energy
CA2850352C (en) Electrochemical desalination for oil recovery
US7862700B2 (en) Water treatment system and method
WO2000027756A1 (en) Water treating method
Shen et al. Development of a membrane capacitive deionization stack for domestic wastewater reclamation: A pilot-scale feasibility study
JP2002509802A (en) Water treatment system and water treatment method including pH control
US10308529B2 (en) Desalination apparatus and desalination method using same
GB2249307A (en) Process for purifying water by means of a combination of electrodialysis and reverse osmosis
JP2003305343A (en) Dechlorination treatment method and dechlorination treatment system
KR20170002047A (en) Purification system for potable water and ultra pure water
JPWO2018235366A1 (en) Control method and design method of electric deionization apparatus
US8518235B2 (en) All-electric coagulant generation system
KR101795694B1 (en) Ro plant treatment apparatus of gymnasium waste-water and method thereof
CN113493239A (en) Electrochemical treatment device, seawater desalination system and method
JP2012040560A (en) Water treatment system and water treatment method
KR20210070359A (en) High recovery electrodialysis method
JPH09323029A (en) Water desalting method and device therefor
JP4497387B2 (en) Secondary pure water production equipment
US11485658B2 (en) Water treatment apparatus including underwater plasma discharge module
JP2004267907A (en) Electric deionization apparatus and operating method therefor
JP2004275832A (en) Desalinization system
Hell Biological denitrification of ground water–8 years full scale experiences with the BIODEN-process
WO2016094611A1 (en) Systems and methods for treating wastewater