JP2003305303A - Precipitation control method in crystallization tank - Google Patents

Precipitation control method in crystallization tank

Info

Publication number
JP2003305303A
JP2003305303A JP2002115611A JP2002115611A JP2003305303A JP 2003305303 A JP2003305303 A JP 2003305303A JP 2002115611 A JP2002115611 A JP 2002115611A JP 2002115611 A JP2002115611 A JP 2002115611A JP 2003305303 A JP2003305303 A JP 2003305303A
Authority
JP
Japan
Prior art keywords
steam
calorific value
temperature
heater
mother liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002115611A
Other languages
Japanese (ja)
Inventor
Toshiyuki Komatsu
利幸 小松
Hiroyuki Furukawa
博行 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002115611A priority Critical patent/JP2003305303A/en
Publication of JP2003305303A publication Critical patent/JP2003305303A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the temperature and amount of a crystallization mother liquid is affected by fluctuations in the temperature and pressure of steam supplied to a heater in a method for making the particle size of crystals coarse by controlling the precipitation of crystals in a tank, and production quantity and fluctuations in the particle size of crystals are not avoided. <P>SOLUTION: In a method for precipitating crystals by heating a crystal precipitation mother liquid by a heater using steam as a heat source and introducing the heated mother liquid into a crystallization tank, the pressure, temperature and flow rate of steam supplied to the heater are measured and calory is operated from the measured pressure, temperature and flow rate of steam. The calorific difference between the operated calory of steam and precipitation standard calory preset in order to precipitate crystals with a target particle size in the crystallization tank is calculated and the amount of steam supplied to the heater is adjusted on the basis of the calorific difference. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は槽内の結晶析出を制
御することにより結晶粒度を粗粒化する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coarsening a crystal grain size by controlling crystal precipitation in a tank.

【0002】[0002]

【従来の技術】従前より、例えば、硫安、尿素、硝酸ア
ンモン、塩化アンモンなどの析出して結晶化する無機物
を製造する晶析装置において、晶析槽内で析出する結晶
粒度を制御することによって商品性の高い粒度で、かつ
粒のそろった結晶粒を得ることは重要なことであった。
2. Description of the Related Art Conventionally, for example, in a crystallizer for producing an inorganic substance such as ammonium sulfate, urea, ammonium nitrate, and ammonium chloride which precipitates and crystallizes, it is possible to control the grain size to be precipitated in a crystallization tank. It was important to obtain crystal grains with a grain size of high commercial value and with uniform grain size.

【0003】1例として、一貫製鉄プロセスにおいてコ
ークス炉で発生したコークス炉ガス(以下COGと記
す)中のアンモニア分を希硫酸と反応させ硫安を製造す
る工程を図1に示す。アンモニア飽和器1の下部より流
入したアンモニアを包含したCOGは、同飽和器1内で
ノズル2よりスプレーした結晶析出母液である硫安母液
(含む遊離硫酸)と向流接触しつつ上昇して上部より導
出する。このとき該COG中のアンモニアは硫安母液に
吸収され、飽和器1下部に流下する。流下した硫安母液
は配管4を通って循環槽5内に戻り、硫安濃度が所定値
であると、この硫安母液をポンプ8によって配管9を介
して循環槽5から抜き取り加熱器10、蒸発缶11、結
晶槽12よりなる晶析装置Aに供給する。
As an example, FIG. 1 shows a process for producing ammonium sulfate by reacting an ammonia component in a coke oven gas (hereinafter referred to as COG) generated in a coke oven in an integrated iron-making process with dilute sulfuric acid. The COG containing ammonia flowing in from the lower part of the ammonia saturator 1 rises while coming into countercurrent contact with the ammonium sulfate mother liquor (free sulfuric acid containing) which is the crystal precipitation mother liquor sprayed from the nozzle 2 in the same saturator 1 and rises from the upper part. Derive. At this time, ammonia in the COG is absorbed by the ammonium sulfate mother liquor and flows down to the lower part of the saturator 1. The ammonium sulphate mother liquor that has flowed down returns to the circulation tank 5 through the pipe 4, and when the concentration of ammonium sulfate is a predetermined value, this ammonium sulphate mother liquor is extracted from the circulation tank 5 by the pump 8 through the pipe 9 and the heater 10 and the evaporator 11 , To a crystallizer A comprising a crystallization tank 12.

【0004】一方、硫安濃度の低い硫安母液は更にポン
プ6により、配管7を通って再び飽和器1内に送られノ
ズル2からスプレーされる。このアンモニア吸収によっ
て減少した硫安母液中の硫酸分は、希硫酸補給管41か
ら循環槽5に補給する。前記の状態で晶析装置Aに送ら
れた硫安母液は、上記加熱器10で更に加熱され、更に
凝縮器11a,エゼクター11bで真空を保った蒸発缶
11で水分を蒸発し、硫安の過飽和状態の硫安母液は結
晶槽12に浸漬して設けた下向きラッパ状の下降管13
を流下し、同槽12内の底部に流出し同槽12内を上昇
する。
On the other hand, the ammonium sulphate mother liquor having a low ammonium sulphate concentration is further sent by the pump 6 through the pipe 7 into the saturator 1 again and sprayed from the nozzle 2. The sulfuric acid content in the ammonium sulphate mother liquor that has been reduced by this ammonia absorption is supplied to the circulation tank 5 from the dilute sulfuric acid supply pipe 41. The ammonium sulphate mother liquor sent to the crystallizer A in the above state is further heated by the above-mentioned heater 10, and further, the condenser 11a and the ejector 11b evaporate the water in the evaporator 11 which maintains a vacuum, and the ammonium sulfate supersaturated state. The ammonium sulphate mother liquor is a downward trumpet-shaped downcomer 13 provided by immersing it in the crystallization tank 12.
Flows down to the bottom of the tank 12 and rises in the tank 12.

【0005】この過飽和状態の硫安母液は不安定であ
り、結晶槽12内を上昇中に上方から沈降してくる成長
途中の結晶核にも析出付着して、該結晶をさらに成長さ
せ過飽和状態を失い、結晶槽12の液面下に設けた上澄
み回収樋16に流入し、ポンプ17により再び加熱器1
0に送られる。このようにして成長した結晶粒は、結晶
槽12の底部よりポンプ40により配管14を介してス
ラリー状態で抜き取られ、脱水,乾燥工程の脱水器1
8、乾燥器19を経て硫安となる。
This supersaturated ammonium sulphate mother liquor is unstable and is deposited and adheres to the growing crystal nuclei which are settling from above while rising in the crystal tank 12 to further grow the crystal and bring it into a supersaturated state. Lost, it flows into the supernatant collection gutter 16 provided below the liquid surface of the crystallization tank 12, and the heater 1 is again supplied by the pump 17.
Sent to 0. The crystal grains grown in this way are extracted from the bottom of the crystal tank 12 in a slurry state by the pump 40 via the pipe 14, and the dehydrator 1 in the dehydration / drying process.
8. After passing through the dryer 19, it becomes ammonium sulfate.

【0006】このようにして製造された製品硫安の粒度
は、肥料としての利用上、その粒度を10メッシュ以上
にすることが望ましく、結晶槽12の底部から抜き取る
際、この粒度範囲になるように常に硫安製造工程の結晶
槽12内の結晶量と、その成長を制御,調整することが
重要である。このため、従来は結晶槽内の底部から抜き
取った硫安の結晶粒度を定期的に測定し、且つ結晶槽内
の高さ方向の結晶懸濁液濃度分布を複数個設けた液圧測
定装置で、液圧を連続的に測定し液圧と濃度との関係か
ら加熱器への蒸気量を調整することで結晶蒸発量を制御
し、槽内での結晶粒度を調整していた。
The particle size of the product ammonium sulphate thus produced is preferably 10 mesh or more for use as a fertilizer, and when it is extracted from the bottom of the crystallization tank 12, the particle size should be within this range. It is important to always control and adjust the amount of crystals in the crystal tank 12 in the ammonium sulfate manufacturing process and the growth thereof. Therefore, conventionally, the crystal grain size of ammonium sulfate extracted from the bottom of the crystal tank is regularly measured, and a liquid pressure measuring device provided with a plurality of crystal suspension concentration distributions in the height direction in the crystal tank, The liquid pressure was continuously measured, and the amount of vapor to the heater was adjusted from the relationship between the liquid pressure and the concentration to control the amount of crystal evaporation, thereby adjusting the crystal grain size in the tank.

【0007】しかして、従来、加熱器への熱源として
は、蒸気が一般的に用いられていた。この蒸気はほぼ一
定の熱量を有する変動の少ない蒸気が用いられていたの
で、前記加熱器へ供給するに当っては流量制御のみで安
定した供給を確保することができていた。
However, conventionally, steam has been generally used as a heat source for the heater. Since this steam used is a steam that has a substantially constant amount of heat and does not fluctuate, a stable supply can be secured only by controlling the flow rate when supplying it to the heater.

【0008】[0008]

【発明が解決しようとする課題】上記したように硫安の
製造工程において、加熱器への熱源として用いていた蒸
気としては、通常、ボイラーで蒸気を作りその蒸気を用
いていたので、変動の少ない安定した熱量を加熱器へ供
給することができていた。しかし、一貫製鉄所では所内
の各種の工場で使用する熱源から使用済みの排熱が常時
発生するので、その熱を活用してボイラーで蒸気を作
り、その蒸気を各種の熱源に再利用することが行なわれ
ている。従って前記加熱器へもこの蒸気の利用が図られ
ている。
As described above, in the manufacturing process of ammonium sulfate, the steam used as the heat source to the heater is usually produced by a boiler, and the steam is used, so that there is little fluctuation. It was possible to supply a stable amount of heat to the heater. However, in the integrated steelworks, used exhaust heat is constantly generated from the heat sources used in various factories in the plant, so it is necessary to utilize that heat to make steam in the boiler and reuse that steam for various heat sources. Is being carried out. Therefore, the steam is also used for the heater.

【0009】しかして、各種のボイラーから発生する蒸
気は温度,流量,圧力等が常時均一ではなく発生時期に
よって大きな変動が起こることがある。例えば転炉から
排出される熱を回収するための排熱ボイラー(以下OG
Bと記す)からの蒸気は、転炉操業が間欠的であるため
それに応じてOGBから発生する蒸気も変動する。この
蒸気をそのまま流量制御だけで前記加熱器へ供給する
と、供給熱量がその時々によって変動しているため、こ
の熱量変動に伴い蒸発缶へ導入される硫安母液の温度も
変動する。
However, the steam, which is generated from various boilers, is not always uniform in temperature, flow rate, pressure, and the like, and large fluctuations may occur depending on the generation timing. For example, an exhaust heat boiler (hereinafter referred to as OG) for recovering heat emitted from the converter.
The steam from (B) is intermittent in the converter operation, and accordingly, the steam generated from the OGB also changes. When this steam is supplied to the heater as it is by controlling the flow rate as it is, the supplied heat amount fluctuates from time to time, and the temperature of the ammonium sulphate mother liquor introduced into the evaporator also fluctuates with the fluctuation of the heat amount.

【0010】このように、従来の方法では加熱器への供
給蒸気の温度,圧力の変動に伴い、硫安母液の温度,量
の変動に影響し、硫安の製造において不安定な操業を余
儀なくされ、生産量および硫安の粒度変動が避けられな
いと云う欠点があった。
As described above, in the conventional method, fluctuations in the temperature and pressure of the steam supplied to the heater affect the fluctuations in the temperature and amount of the ammonium sulphate mother liquor, forcing an unstable operation in the production of ammonium sulfate. There was a drawback that the production amount and the particle size variation of ammonium sulfate were unavoidable.

【0011】[0011]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨するところは、下記手段にある。 (1) 蒸気を熱源とする加熱器で結晶析出母液を加熱
し、この加熱した結晶析出母液を結晶槽内へ導入して結
晶物を析出させる方法において、前記加熱器に供給する
蒸気の圧力,温度,流量を測定し、この測定した蒸気の
圧力,温度,流量から熱量を演算し、この演算した蒸気
熱量と前記結晶槽内で目標粒度の結晶物を析出させるた
めに予め設定した析出基準熱量との熱量差を求め、この
熱量差に基づいて前記加熱器に供給する蒸気量を調整す
る結晶槽内での析出制御方法。 (2) 前記加熱器に供給する蒸気の温度からドレン発
生量を推定し、その推定した発生ドレン量が有する熱量
を前記演算蒸気熱量から差し引く(1)記載の結晶槽内
での析出制御方法。 (3) 前記加熱器で加熱する結晶析出母液の温度,流
量を測定し、この測定した温度,流量から結晶析出母液
が有する熱量を演算し、この演算熱量と予め設定した結
晶析出母液の基準熱量との熱量差を求め、この熱量差を
前記析出基準熱量に加算する(1)または(2)に記載
の結晶槽内での析出制御方法。
The present invention has been made in order to solve the problems in the above-mentioned conventional method, and the gist of the invention lies in the following means. (1) In a method of heating a crystal precipitation mother liquor with a heater using steam as a heat source and introducing the heated crystal precipitation mother liquor into a crystal tank to precipitate a crystal product, the pressure of steam supplied to the heater is The temperature and flow rate are measured, and the calorific value is calculated from the measured steam pressure, temperature and flow rate, and the calculated calorific value of the steam and the preset reference calorific value for precipitating a crystallized product of a target grain size in the crystal tank A method for controlling precipitation in a crystallizing tank, in which the difference in the amount of heat between the heating element and the heating element is calculated, and the amount of steam supplied to the heater is adjusted based on the difference in the amount of heating. (2) The precipitation control method in a crystal tank according to (1), wherein the amount of generated drain is estimated from the temperature of the steam supplied to the heater, and the calorific value of the estimated amount of generated drain is subtracted from the calculated calorific value of steam. (3) The temperature and flow rate of the crystal precipitation mother liquor heated by the heater are measured, the calorific value of the crystal precipitation mother liquor is calculated from the measured temperature and flow rate, and the calculated calorific value and the preset reference calorific value of the crystal precipitation mother liquor are calculated. The method for controlling precipitation in the crystallizing vessel according to (1) or (2), wherein the difference in the amount of heat from the above is calculated and the difference in the amount of heat is added to the amount of heat for precipitation.

【0012】[0012]

【発明の実施の形態】上記したように、硫安の製造工程
における加熱器に供給する蒸気の温度,圧力,流量が変
動する場合においては、硫安母液の量と温度に見合った
熱量の投入を図る必要が生じてきた。そこで本発明者ら
は、硫安の安定した生産、操業及び粒度を確保するため
に、加熱器に供給する有効熱量に着目し、連続的に加熱
器に流入する蒸気の圧力,温度,流量を検出し、この測
定した蒸気の圧力,温度,流量から有効熱量を算定し、
該算定した有効熱量を基に加熱器へ供給する蒸気を調整
制御することにより、上記目的を達成可能である事を見
出した。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, when the temperature, pressure and flow rate of steam supplied to the heater in the manufacturing process of ammonium sulfate fluctuate, an amount of heat corresponding to the amount of ammonium sulphate mother liquor and the temperature is input. The need has arisen. Therefore, in order to ensure stable production, operation and particle size of ammonium sulfate, the present inventors have focused on the effective heat amount supplied to the heater and continuously detected the pressure, temperature, and flow rate of steam flowing into the heater. Then, calculate the effective heat quantity from the measured steam pressure, temperature, and flow rate,
It has been found that the above object can be achieved by adjusting and controlling the steam supplied to the heater based on the calculated effective heat quantity.

【0013】しかし、更に、目標とする粒度(10メッ
シュ以上)の硫安を結晶槽12で析出させるために必要
な熱量を加熱器10に供給しても、上記目標粒度の硫安
が析出しない場合が有ることが判明した。これを防止す
るため、本発明者らは、更に実験,検討を行った結果、
加熱器10に供給する蒸気温度が低くなると、この傾向
が強くなることが判った。そして、これは加熱器10内
でドレンが発生し、これによって熱量が失われるのが大
半であるとの結論に到達した。
However, even if the amount of heat necessary for precipitating ammonium sulfate having a target particle size (10 mesh or more) in the crystallization tank 12 is supplied to the heater 10, the ammonium sulfate having the above target particle size may not be precipitated. It turned out to be. In order to prevent this, the present inventors further conducted experiments and studies, and as a result,
It has been found that this tendency becomes stronger as the steam temperature supplied to the heater 10 becomes lower. And it came to the conclusion that most of the heat was lost due to the generation of drainage in the heater 10.

【0014】このため、加熱器10に供給する蒸気の平
均温度を基準温度とし、この基準温度と供給する蒸気温
度を比較し、特に、供給する蒸気温度が基準温度より低
い場合にはその温度差を求め、その温度差に基づいて、
加熱器10に供給する蒸気量を増加すれば安定して、目
標粒径の硫安が得られることに気付いた。
Therefore, the average temperature of the steam supplied to the heater 10 is used as a reference temperature, and this reference temperature is compared with the supplied steam temperature. Especially, when the supplied steam temperature is lower than the reference temperature, the temperature difference is And based on the temperature difference,
It was found that ammonium sulfate having a target particle size can be stably obtained by increasing the amount of steam supplied to the heater 10.

【0015】図2は本発明での供給蒸気の制御につい
て、その主要部につき概略を図示したものである。本発
明においては、蒸気を加熱する加熱器10に供給する蒸
気の圧力、温度,流量等の情報を測定して、その各測定
値を制御器25へ入力し、該制御器25によって結晶槽
12で10メッシュ以上の硫安が析出するための温度に
硫安母液を加熱するに見合う蒸気量を演算し、その情報
(信号)によって加熱器10へ供給する蒸気量(全熱
量)を決め、蒸気制御弁21を調整し、この調整された
蒸気を加熱器10へ送るものである。
FIG. 2 is a schematic view of the main part of the control of the supply steam in the present invention. In the present invention, information such as the pressure, temperature, and flow rate of the steam supplied to the heater 10 for heating the steam is measured, and each measured value is input to the controller 25, and the controller 25 causes the crystal tank 12 to operate. The amount of steam commensurate with heating the ammonium sulphate mother liquor to a temperature for depositing ammonium sulfate of 10 mesh or more is calculated, and the amount of steam (total amount of heat) supplied to the heater 10 is determined by the information (signal), and the steam control valve 21 is adjusted, and the adjusted steam is sent to the heater 10.

【0016】更に、図3を参照して、制御器25につい
て詳細に説明する。図3中、26は結晶槽12で目標粒
度(10メッシュ以上)の硫安が析出するために必要な
熱量を有する硫安母液にするための析出基準熱量を設定
する基準熱量設定器、27は前記基準温度を設定する基
準温度設定器、28は加熱器10に供給するための蒸気
供給管24に設けた蒸気温度計、29は蒸気供給管24
に設けた蒸気圧力計、30は蒸気供給管24に設けた蒸
気流量計である。
Further, the controller 25 will be described in detail with reference to FIG. In FIG. 3, reference numeral 26 is a reference calorific value setting device for setting a precipitation reference calorific value for forming an ammonium sulfate mother liquor having a calorific value necessary for precipitation of ammonium sulfate having a target particle size (10 mesh or more) in the crystallization tank 12, and 27 is the reference value. Reference temperature setting device for setting the temperature, 28 is a steam thermometer provided in the steam supply pipe 24 for supplying to the heater 10, 29 is the steam supply pipe 24
Is a steam pressure gauge, and 30 is a steam flow meter provided in the steam supply pipe 24.

【0017】31は蒸気温度計28、蒸気圧力計29、
蒸気流量計30の各々で測定した蒸気温度、蒸気圧力、
蒸気流量を入力して蒸気が有する実績熱量を演算する蒸
気熱量演算部である。32は補正熱量演算部で、前記蒸
気温度計28で測定した蒸気温度と基準温度設定器27
から基準温度を入力して蒸気の補正係数を演算する。
Reference numeral 31 is a steam thermometer 28, a steam pressure gauge 29,
Steam temperature, steam pressure measured by each of the steam flow meters 30,
It is a steam calorific value calculation unit that inputs the steam flow rate and calculates the actual calorific value of the steam. Reference numeral 32 is a correction calorific value calculation unit, which is a steam temperature measured by the steam thermometer 28 and a reference temperature setter 27.
Input the reference temperature from to calculate the steam correction coefficient.

【0018】加熱器10に供給する蒸気の温度が低下す
ると加熱器10内でドレンとなり、硫安母液を加熱する
ための熱源として有効に働かなくなる。しかも、このド
レン量は蒸気温度の低下に従って多くなり、硫安母液を
加熱するための熱源として有効に働かなくなる無効蒸気
が多くなる。このため、基準温度と実測蒸気温度の差と
無効蒸気(熱ロス)となるため、これを補正する係数と
の関係を有するテーブルを前記補正熱量演算部32に予
め入力しておき、蒸気温度計28で測定した蒸気温度と
前記蒸気温度計28で測定した蒸気温度と基準温度設定
器27から基準温度を入力してその温度差を求め、この
温度差から前記テーブルを基にして蒸気の熱量補正係数
を演算する。
When the temperature of the steam supplied to the heater 10 decreases, it becomes drain in the heater 10 and does not work effectively as a heat source for heating the ammonium sulfate mother liquor. Moreover, the amount of this drain increases as the vapor temperature decreases, and the amount of ineffective vapor that does not work effectively as a heat source for heating the ammonium sulfate mother liquor increases. For this reason, the difference between the reference temperature and the actually measured steam temperature and the invalid steam (heat loss) result. Therefore, a table having a relationship with a coefficient for correcting this is input in advance to the correction calorie calculation unit 32, and the steam thermometer is input. The steam temperature measured by 28, the steam temperature measured by the steam thermometer 28, and the reference temperature from the reference temperature setting device 27 are input to find the temperature difference, and the calorific value of the steam is corrected from the temperature difference based on the table. Calculate the coefficient.

【0019】33は調整熱量演算部であり、基準熱量設
定器26に設定した析出基準熱量、蒸気熱量演算部31
で演算した蒸気が有する実績熱量、補正熱量演算部32
で演算した熱量補正係数を各々入力して、析出基準熱量
と熱量補正係数から必要熱量を算定し、この必要熱量と
実績熱量の熱量差を求め、この熱量差が無くなるように
調整熱量を演算する。34は蒸気制御弁調整指示部であ
り、調整熱量演算部33からの調整熱量、蒸気温度計2
8で測定した蒸気温度,蒸気圧力計29で測定した蒸気
圧力を各々入力して、蒸気制御弁21の開度調整量を演
算し、該蒸気制御弁21の開度を調整する弁制御部35
に開度調整指示を行う。
Reference numeral 33 denotes an adjusting calorific value calculating unit, which is a precipitation calorific value calculating unit 31 for the precipitation reference calorific value set in the standard calorific value setting unit 26.
Actual calorific value of the steam calculated in step 3, corrected calorific value calculation unit 32
Input the calorific value correction coefficient calculated in step 1, calculate the required calorific value from the precipitation reference calorific value and calorific value correction coefficient, calculate the calorific value difference between the calorific value and the actual calorific value, and calculate the adjusted calorific value so that this calorific value difference disappears. . Reference numeral 34 is a steam control valve adjustment instructing unit, which adjusts the amount of heat from the adjusting heat amount calculation unit 33, and the steam thermometer 2
The valve control unit 35 that inputs the steam temperature measured in 8 and the steam pressure measured by the steam pressure gauge 29, calculates the opening adjustment amount of the steam control valve 21, and adjusts the opening of the steam control valve 21.
The opening adjustment instruction is given to.

【0020】そして、弁制御部35は蒸気制御弁調整指
示部34の調整指示に従って蒸気制御弁21の調整を行
う。なお、ここで補正熱量演算部32に設定する熱量補
正係数は任意に設定可能としている。これは、季節、つ
まり、外気温度により熱ロスとなる蒸気量が異なること
から、結晶槽12で析出する硫安の粒度を定期的に測定
して、該熱量補正係数を調整する必要が生じるためであ
る。
Then, the valve control unit 35 adjusts the steam control valve 21 in accordance with the adjustment instruction of the steam control valve adjustment instruction unit 34. The calorific value correction coefficient set in the corrected calorific value calculation unit 32 can be arbitrarily set. This is because the amount of steam that causes heat loss varies depending on the season, that is, the outside air temperature, and therefore it is necessary to periodically measure the particle size of ammonium sulfate that precipitates in the crystal tank 12 and adjust the calorific value correction coefficient. is there.

【0021】また、加熱器10に流入する硫安母液の温
度、流量が変化する場合には、該加熱器10の入側に温
度計15および流量計20を設けて硫安母液の温度、流
量を測定する。そして、この測定した硫安母液の温度,
流量を硫安母液熱量演算部22に入力して、該硫安母液
が有する熱量を演算し、変動熱量演算部23に出力す
る。この変動熱量演算部23は予め設定した基準熱量と
入力した硫安母液熱量の差を演算して変動熱量として、
調整熱量演算部33に出力する。
When the temperature and flow rate of the ammonium sulfate mother liquor flowing into the heater 10 change, a thermometer 15 and a flow meter 20 are provided on the inlet side of the heater 10 to measure the temperature and flow rate of the ammonium sulfate mother liquor. To do. Then, the measured temperature of the ammonium sulfate mother liquor,
The flow rate is input to the ammonium sulphate mother liquor calorific value calculation unit 22, the calorific value of the ammonium sulphate mother liquor is calculated, and output to the fluctuating calorific value calculation unit 23. This fluctuating heat quantity calculation unit 23 calculates the difference between the preset reference heat quantity and the inputted ammonium sulfate mother liquor heat quantity as the fluctuating heat quantity,
It outputs to the adjustment calorie calculation part 33.

【0022】この調整熱量演算部33は、入力した変動
熱量がプラス、即ち、硫安母液の熱量が基準熱量より高
い場合には、その高い熱量分だけ前記基準熱量設定器2
6から入力した基準熱量より差し引いて、加熱器10に
供給する蒸気量を低減する。また、前記とは逆に、調整
熱量演算部33に入力した変動熱量がマイナス、即ち、
硫安母液の熱量が基準熱量より低い場合には、その低い
熱量分だけ前記基準熱量設定器26から入力した基準熱
量に加算して、加熱器10に供給する蒸気量を増加す
る。
When the input fluctuating calorific value is positive, that is, when the calorific value of the ammonium sulphate mother liquor is higher than the reference calorific value, the adjusted calorific value calculating section 33 corresponds to the standard calorific value setting unit 2 for the higher calorific value.
The amount of steam supplied to the heater 10 is reduced by subtracting from the reference heat amount input from 6. On the contrary to the above, the fluctuating heat quantity input to the adjusting heat quantity calculating unit 33 is negative, that is,
When the calorific value of the ammonium sulfate mother liquor is lower than the standard calorific value, the low calorific value is added to the standard calorific value input from the standard calorific value setting device 26 to increase the steam amount supplied to the heater 10.

【0023】また、蒸気量を調整しても結晶槽12での
硫安結晶化が何らの要因によって変動するような場合に
は、蒸発缶11へ供給する硫安母液の量を調整すること
が好ましいので、硫安母液の供給量の調整も行なえるよ
う硫安母液ラインにも調節制御弁3を設ている。図示し
なかったが硫安母液は硫安母液タンクを上流側に装備さ
れており、前述の結晶槽での硫安母液結晶化が遅れるよ
うな場合には、硫安母液供給量を減少する操作を行う。
その時には硫安母液は硫安母液タンクに一時的に貯留し
て置くことにより、設備的に稼働状況に応じたバッファ
ー的な役割を持たせている。以上、硫安を製造する場合
について説明したが、本発明はこれに限ることなく、前
記した尿素、硝酸アンモン、塩化アンモン等を製造する
場合においても同様の理屈で実施することが可能であ
る。
If the crystallization of ammonium sulfate in the crystallization tank 12 fluctuates due to any factor even if the amount of vapor is adjusted, it is preferable to adjust the amount of ammonium sulfate mother liquor supplied to the evaporator 11. An adjustment control valve 3 is also provided in the ammonium sulfate mother liquor line so that the supply amount of ammonium sulfate mother liquor can be adjusted. Although not shown, the ammonium sulphate mother liquor is equipped with an ammonium sulphate mother liquor tank on the upstream side, and in the case where the crystallization of the ammonium sulphate mother liquor in the above-mentioned crystallization tank is delayed, an operation to reduce the amount of ammonium sulphate mother liquor supply is performed.
At that time, the ammonium sulphate mother liquor is temporarily stored in the ammonium sulphate mother liquor tank and placed as a buffer in terms of equipment according to the operating conditions. Although the case of producing ammonium sulfate has been described above, the present invention is not limited to this, and the same reason can be applied to the case of producing the above-mentioned urea, ammonium nitrate, ammonium chloride or the like.

【0024】[0024]

【実施例】以下、本発明の実施例について従来例と共に
記述する。実施例で使用した硫安の製造設備は在来のも
のであり、その設備は 1)硫安製造能力:9t/h。 2)結晶槽の容量:高さ10m、胴部径6mφ、容量2
00m3 。 3)標準硫安母液:温度52℃、過飽和度(硫安製造量
/循環硫安母液容量)2.0〜2.5/m3 、循環硫安
母液容量3600〜4500Nm3 /h。である。表1
に操業条件と操業結果を示した。本発明例,従来例共に
20日間操業した期間での値である。
EXAMPLES Examples of the present invention will be described below together with conventional examples. The ammonium sulfate manufacturing equipment used in the examples is conventional, and the equipment is 1) ammonium sulfate manufacturing capacity: 9 t / h. 2) Capacity of crystal tank: height 10m, body diameter 6mφ, capacity 2
00 m 3 . 3) Standard ammonium sulfate mother liquor: temperature 52 ° C., supersaturation degree (ammonium sulfate production amount / circulating ammonium sulfate mother liquor volume) 2.0 to 2.5 / m 3 , circulating ammonium sulfate mother liquor volume 3600 to 4500 Nm 3 / h. Is. Table 1
The operating conditions and the operating results are shown in. Both the present invention example and the conventional example are values during a period of 20 days of operation.

【0025】[0025]

【表1】 [Table 1]

【0026】結晶槽内での硫安密度については、従来例
ではバラツキが大きかったが、本発明例ではバラツキが
少なくなっており、その結果、硫安の製品粒度として全
硫安に占める10メッシュ以上の割合の変動が少なく、
均一な生産量を得ることができ、本発明による効果が如
実に表れている。
Regarding the density of ammonium sulphate in the crystallizing tank, the variation was large in the conventional example, but the variation was small in the example of the present invention. As a result, the ratio of ammonium sulfate as the product particle size to the total ammonium sulfate was 10 mesh or more. Fluctuation of
It is possible to obtain a uniform production amount, and the effect of the present invention is clearly shown.

【0027】[0027]

【発明の効果】以上述べたように、本発明は加熱器へ供
給する蒸気を有効熱量を基にして供給するよう、適切な
制御系に改善したことにより、全く労力を要することな
く蒸気量を最適な状態に絶えず維持することができ、結
晶槽での結晶粒度のバラツキを抑制することができると
共に、蒸気の変動に起因する各種操業上の不都合を回避
することが可能となり、安定した操業が行える結果、製
造される製品の粒度も安定した粒度を維持することがで
きる。この加熱器への蒸気供給量の変動制御を全自動化
することも可能であり、産業上有益な効果を発揮する。
As described above, according to the present invention, by improving the appropriate control system so that the steam supplied to the heater is supplied based on the effective heat quantity, the steam quantity can be reduced without any labor. It is possible to constantly maintain the optimum state, to suppress the variation of the crystal grain size in the crystal tank, and to avoid various operational inconveniences caused by the fluctuation of the steam, which enables stable operation. As a result, the particle size of the manufactured product can be maintained at a stable particle size. It is also possible to fully automate the fluctuation control of the steam supply amount to the heater, which has a beneficial effect in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】硫安の製造工程の概要例を示した図。FIG. 1 is a diagram showing an example of an outline of a manufacturing process of ammonium sulfate.

【図2】本発明での供給蒸気,硫安母液の制御系につき
概略を示した図。
FIG. 2 is a diagram schematically showing a control system for supply steam and ammonium sulfate mother liquor in the present invention.

【図3】制御器での信号系統の詳細を示した図。FIG. 3 is a diagram showing details of a signal system in a controller.

【符号の説明】[Explanation of symbols]

1 アンモニア飽和器 2 ノズル 3 制御弁 5 循環槽 10 加熱器 11 蒸発缶 12 結晶槽 15 温度計 18 脱水器 20 流量計 21 制御弁 22 硫安母液熱量演算部 23 変動熱量演算部 24 蒸気供給管 25 制御器 26 基準熱量設定器 27 基準温度設定器 28 蒸気温度計 29 蒸気圧力計 30 蒸気流量計 31 蒸気熱量演算部 32 補正熱量演算部 33 調整熱量演算部 34 蒸気制御弁調整指令部 35 弁制御部 40 ポンプ 41 希硫酸補給管 A 晶析装置 1 Ammonia saturator 2 nozzles 3 control valve 5 circulation tanks 10 heater 11 evaporation cans 12 Crystal tank 15 Thermometer 18 dehydrator 20 Flowmeter 21 Control valve 22 Ammonium sulfate mother liquor calorific value calculation unit 23 Varying calorific value calculation unit 24 Steam supply pipe 25 controller 26 Reference calorie setting device 27 Reference temperature setting device 28 Steam thermometer 29 Steam pressure gauge 30 Steam flow meter 31 Steam calorific value calculation unit 32 Corrected calorie calculation unit 33 Controlled calorie calculator 34 Steam control valve adjustment command section 35 valve controller 40 pumps 41 Dilute sulfuric acid supply pipe A crystallizer

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 9/02 B01D 9/02 625D C01C 1/24 C01C 1/24 B Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 9/02 B01D 9/02 625D C01C 1/24 C01C 1/24 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸気を熱源とする加熱器で結晶析出母液
を加熱し、この加熱した結晶析出母液を結晶槽内へ導入
して結晶物を析出させる方法において、前記加熱器に供
給する蒸気の圧力,温度,流量を測定し、この測定した
蒸気の圧力,温度,流量から熱量を演算し、この演算し
た蒸気熱量と前記結晶槽内で目標粒度の結晶物を析出さ
せるために予め設定した析出基準熱量との熱量差を求
め、この熱量差に基づいて前記加熱器に供給する蒸気量
を調整することを特徴とする結晶槽内での析出制御方
法。
1. A method of heating a crystal precipitation mother liquor with a heater using steam as a heat source and introducing the heated crystal precipitation mother liquor into a crystal tank to precipitate a crystal, The pressure, temperature and flow rate are measured, and the calorific value is calculated from the measured vapor pressure, temperature and flow rate, and the calculated calorific value of steam and the preset deposition for precipitating a crystallized product of a target grain size in the crystallizing tank. A method for controlling precipitation in a crystallizing vessel, which comprises obtaining a difference in calorific value from a reference calorific value and adjusting the amount of steam supplied to the heater based on the calorific value difference.
【請求項2】 前記加熱器に供給する蒸気の温度からド
レン発生量を推定し、その推定した発生ドレン量が有す
る熱量を前記演算蒸気熱量から差し引くことを特徴とす
る請求項1記載の結晶槽内での析出制御方法。
2. The crystal tank according to claim 1, wherein a drain generation amount is estimated from a temperature of steam supplied to the heater, and a heat amount of the estimated generated drain amount is subtracted from the calculated steam heat amount. In-house precipitation control method.
【請求項3】 前記加熱器で加熱する結晶析出母液の温
度,流量を測定し、この測定した温度,流量から結晶析
出母液が有する熱量を演算し、この演算熱量と予め設定
した結晶析出母液の基準熱量との熱量差を求め、この熱
量差を前記析出基準熱量に加算することを特徴とする請
求項1または2に記載の結晶槽内での析出制御方法。
3. The temperature and flow rate of the crystal precipitation mother liquor heated by the heater are measured, the calorific value of the crystal precipitation mother liquor is calculated from the measured temperature and flow rate, and the calculated calorific value and the preset crystal precipitation mother liquor are calculated. The deposition control method in a crystallizing tank according to claim 1 or 2, wherein a difference in calorific value from a reference calorific value is obtained and the calorific value difference is added to the precipitation standard calorific value.
JP2002115611A 2002-04-18 2002-04-18 Precipitation control method in crystallization tank Withdrawn JP2003305303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115611A JP2003305303A (en) 2002-04-18 2002-04-18 Precipitation control method in crystallization tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115611A JP2003305303A (en) 2002-04-18 2002-04-18 Precipitation control method in crystallization tank

Publications (1)

Publication Number Publication Date
JP2003305303A true JP2003305303A (en) 2003-10-28

Family

ID=29396834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115611A Withdrawn JP2003305303A (en) 2002-04-18 2002-04-18 Precipitation control method in crystallization tank

Country Status (1)

Country Link
JP (1) JP2003305303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321892C (en) * 2005-01-19 2007-06-20 南京钢铁联合有限公司 Small flow pump acid adding equipment in ammonium sul hate production and equipment thereof
JP2010059107A (en) * 2008-09-04 2010-03-18 Mitsubishi Rayon Co Ltd Method for purifying crude crystal of raw material
CN104043264A (en) * 2014-06-18 2014-09-17 阚梦诗 Crystallization kettle for preventing crystals from flowing out from overflowing hole
CN104117225A (en) * 2014-06-24 2014-10-29 多氟多化工股份有限公司 Crystallization equipment capable of discharging conveniently

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321892C (en) * 2005-01-19 2007-06-20 南京钢铁联合有限公司 Small flow pump acid adding equipment in ammonium sul hate production and equipment thereof
JP2010059107A (en) * 2008-09-04 2010-03-18 Mitsubishi Rayon Co Ltd Method for purifying crude crystal of raw material
CN104043264A (en) * 2014-06-18 2014-09-17 阚梦诗 Crystallization kettle for preventing crystals from flowing out from overflowing hole
CN104117225A (en) * 2014-06-24 2014-10-29 多氟多化工股份有限公司 Crystallization equipment capable of discharging conveniently

Similar Documents

Publication Publication Date Title
JP2011524804A (en) Method and apparatus for continuously producing crystals having a stable particle size distribution
JP2003305303A (en) Precipitation control method in crystallization tank
CN108726578A (en) Ferrous sulfate continuous crystallisation technique in a kind of production of sulfate process titanium dioxide
JPH11123312A (en) Treatment method for flue gas desulfurization waste water
CN113173588B (en) Calcium aluminum sulfate method for removing chlorine from ammonium sulfate mother liquor
US2699985A (en) Apparatus for production of phosphoric acid
JPH0764553B2 (en) Manufacturing method of large ammonium sulfate
JP2002361038A (en) Method and apparatus for treating ammonia-containing gas
SU281410A1 (en) METHOD FOR AUTOMATIC REGULATION OF THE CRYSTALLIZATION PROCESS
CN213100907U (en) Magnesium sulfate, zinc sulfate flash distillation crystallization device
JPH0881215A (en) Production of granular ammonium sulfate
SU268375A1 (en) METHOD OF AUTOMATIC REGULATION OF THE PROCESS
CN216092253U (en) Control system for adjusting solid-liquid ratio of evaporation chamber during production of refined anhydrous sodium sulphate
CN116617684A (en) Automatic water-soluble fertilizer concentration device
SU1029979A1 (en) Method of automatic control of solution crystallization process
SU278631A1 (en) METHOD FOR AUTOMATIC REGULATION OF THE CRYSTALLIZATION PROCESS IN VACUUM-CRYSTALLIZED INSTALLATION
SU1428406A1 (en) Method of regulating the process of crystallization in circulating crystallizer
RU2058289C1 (en) Method for self-acting control of process of formalin production
JPH0711600Y2 (en) Crystal can control device
SU1763439A1 (en) Method for automatic control over the process of caprolactam synthesis
SU915869A1 (en) Method of regulating evaporation process
SU1214588A1 (en) Method of automatic controlling of distribution of load among n parallel towers of carbonization division of soda ash production process
JPH0462309B2 (en)
SU345930A1 (en) METHOD OF AUTOMATIC CONTROL OF THE PROCESS
SU993968A1 (en) Method of automatic control of evaporation process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705