JP2003304796A - Method of preventing barnacles from sticking - Google Patents

Method of preventing barnacles from sticking

Info

Publication number
JP2003304796A
JP2003304796A JP2002300587A JP2002300587A JP2003304796A JP 2003304796 A JP2003304796 A JP 2003304796A JP 2002300587 A JP2002300587 A JP 2002300587A JP 2002300587 A JP2002300587 A JP 2002300587A JP 2003304796 A JP2003304796 A JP 2003304796A
Authority
JP
Japan
Prior art keywords
barnacles
species
larvae
barnacle
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300587A
Other languages
Japanese (ja)
Other versions
JP3607904B2 (en
Inventor
Toyoki Kawabata
豊喜 川端
Yosuke Oka
洋祐 岡
Toshiharu Yanagawa
敏治 柳川
Keiji Yamashita
桂司 山下
Kiyotaka Matsumura
清隆 松村
Michiko Kamiya
享子 神谷
Yoshiko Okada
佳子 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIMEJI KISHO KK
Chugoku Electric Power Co Inc
Original Assignee
HIMEJI KISHO KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIMEJI KISHO KK, Chugoku Electric Power Co Inc filed Critical HIMEJI KISHO KK
Priority to JP2002300587A priority Critical patent/JP3607904B2/en
Publication of JP2003304796A publication Critical patent/JP2003304796A/en
Application granted granted Critical
Publication of JP3607904B2 publication Critical patent/JP3607904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To immediately detect whether the development of larvae of barnacles of specific kinds occurs or not in the marine water to be used and inhibits the cypris-form larvae of barnacles from sticking by taking a widely known means suitably. <P>SOLUTION: The larvae in the sticking period of barnacles including Balanus amohitrite, Balanus eburneus, Megabalanus volcano, Balanus reticulates, rock barnacle, Balanus albicostatus, Balanus imorovisus, collected from a prescribed volume of sea water are irradiated with exciting light of 400-440 nm wavelength and the fluorescent distribution pattern of the light emitting in ≥475 nm wavelength are input to a computer as digital image information. The information is compared with the body fluorescent light distribution patterns that is intrinsic to individual species of barnacles that are registered to the computer in advance. On the basis of the species of pattern-matched barnacle, the number of the larva bodies in a unit volume of sea water and the species to be controlled are decided. Then, a barnacle attachment-controlling treatment is carried out suitably against the target species for a needed period. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、フジツボ類が海
中構築物に対して付着することによる被害を防除する方
法に関し、特にフジツボ類の付着を種別に防除できるフ
ジツボ類の付着防除方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling damage caused by adhesion of barnacles to an undersea structure, and more particularly to a method for controlling adhesion of barnacles, which can control the adhesion of barnacles by type.

【0002】[0002]

【従来の技術】水中の岩やコンクリート壁などの基盤に
固着または付着している生物は、付着生物(汚損生物と
呼ばれる場合もある。)と呼ばれるが、甲殻綱、まん脚
亜綱に属する節足動物であるフジツボ類は代表的な海産
付着生物である。
2. Description of the Related Art Organisms that adhere to or adhere to the foundations of underwater rocks or concrete walls are called adhering organisms (sometimes called fouling organisms), but they belong to the crustacea and the amphipoda. Barnacles, which are pods, are typical marine adherent organisms.

【0003】フジツボ類は、内湾性の種から外洋性の種
まで多くの種からなり、海域の環境条件や基盤によって
種特有の生息場所を持つことが知られている。
It is known that barnacles are composed of many species from inner bay species to pelagic species and have a habitat peculiar to species depending on the environmental conditions and foundation of the sea area.

【0004】フジツボ類の生活史のうち、繁殖に関わる
ステージの概略は、以下のとおりである。すなわち、付
着成体間で交尾し受精後、浮遊期であるノープリウス幼
生を孵出し、このノープリウス幼生が脱皮を繰り返した
後、付着期であるキプリス幼生となり、さらにキプリス
幼生が基盤に付着し、幼フジツボへと変態する。この繁
殖時期は、各種に特有のものである。
The outline of the stages involved in reproduction in the life history of barnacles is as follows. That is, after mating and mating between adherent adults, a floating phase of Nauplius larvae is hatched, and after this Nauplius larvae repeatedly molts, it becomes a cypris larvae in an adhering phase, and further cypris larvae adhere to the base, It transforms into a young barnacle. This breeding season is unique to each species.

【0005】因みにキプリス幼生は、図1に示すよう
に、左右に側扁した紡錘形の透明の甲皮(殻)1をもっ
た幼生であり、腹面前方には一対の第1触角2、腹面後
半部には6対の胸肢3が甲皮1の内部から伸びている。
By the way, as shown in FIG. 1, the cypris larva is a larva having a transparent spindle-shaped transparent upper (shell) 1 which is laterally compressed, and has a pair of first antennas 2 in front of the abdomen and a second half of the abdomen. Six pairs of chest limbs 3 extend from the inside of the upper 1 to the inside.

【0006】第1触角2は、付着のために先端が吸盤状
となった器官であり、セメント腺4からセメント管5を
経て分泌される接着物質(キノン架橋結合蛋白質)は付
着器官の表面に分泌されて基盤と固着する。なお、キプ
リス幼生は、基盤への接近と離脱を繰り返しながら基盤
との適性を調べ、その間、離脱可能な一時付着をした
後、最終的に決定された定着地点に永久固着する。な
お、図中の符号6は油細胞、7は複眼、8は胸部を示し
ている。
The first antenna 2 is an organ having a sucker-shaped tip for attachment, and an adhesive substance (quinone cross-linking protein) secreted from the cement gland 4 through the cement tube 5 is attached to the surface of the attached organ. It is secreted and adheres to the base. In addition, the cypris larvae repeat their approach to and detachment from the substrate to check the suitability for the substrate, and during that time, detachable temporary attachment is made, and then permanently fixed to the finally determined fixing point. In the figure, reference numeral 6 is an oil cell, 7 is a compound eye, and 8 is a chest.

【0007】このようなフジツボ類が、様々な海洋構造
物や船底、発電所などの海水取水施設の熱交換器や復水
器などの配水管内に大量に付着することにより、流体抵
抗増加、船速低下・燃費増大、取水ポンプ負荷の増大、
冷却効率低下、細管閉塞等の様々な被害を及ぼす場合が
ある。
[0007] A large amount of such barnacles adhere to various offshore structures, ship bottoms, and water distribution pipes such as heat exchangers and condensers of seawater intake facilities such as power plants. Speed decrease, fuel consumption increase, intake pump load increase,
It may cause various damages such as cooling efficiency deterioration and narrow tube blockage.

【0008】その場合、フジツボ種毎の出現状況を把握
し、対象海域で被害の大きいフジツボ種に絞って駆除す
れば、すなわち、その特定のフジツボ種の繁殖時期のみ
に付着防除対策を集中させることができれば、より効率
よく被害を回避できると考えられる。
[0008] In that case, if the appearance situation of each barnacle species is grasped and the barnacle species that are the most damaged in the target sea area are eradicated, that is, the adhesion control measures are concentrated only on the breeding period of the specific barnacle species. If it is possible, the damage can be avoided more efficiently.

【0009】[0009]

【発明が解決しようとする課題】しかし、フジツボ類の
付着期幼生であるキプリス幼生の種の判別は、種間の形
態が酷似しているために、形態分類学の手法に基づいて
顕微鏡下で丹念にその外部形状や特徴部分の形態を観察
することによる種判別に困難性があり、熟練を要しない
簡単な手段が無かった。
However, because the morphology of the cypris larvae, which are the adhering stage larvae of barnacles, is very similar to each other, the morphology between species is very similar. There was a difficulty in species discrimination by carefully observing the external shape and the morphology of the characteristic part, and there was no simple means that did not require skill.

【0010】このような長時間を要する顕微鏡観察によ
る種の判別では、効果的な防除対策を行なうための判断
をサンプル採取とほぼ同時に行なうことはできない。
In such discrimination of species by microscope observation that requires a long time, it is impossible to make a determination for taking effective control measures almost at the same time as sampling.

【0011】したがって、海水利用プラント等の施設で
は、被害の大きな特定種のフジツボ類の付着期を限定せ
ずに通年連続して海水に薬品を注入するか、または定期
的に熱交換器の細管内面清掃用のスポンジ状ボールを細
管に投入するという所謂「ボール洗浄対策」および運転
停止状態でのブラシ洗浄などの清掃作業を実施してお
り、このようなメンテナンスには多大な費用を要すると
共に設備運休のための稼動効率の低下を招いていた。
Therefore, in facilities such as seawater utilization plants, chemicals are continuously injected into seawater for a whole year without limiting the period of adhesion of barnacles of a particular species that causes large damage, or a thin tube of a heat exchanger is regularly used. We carry out so-called "ball cleaning measures" in which sponge-like balls for cleaning the inner surface are put into a thin tube, and cleaning work such as brush cleaning in an out of service state. This caused a drop in operating efficiency due to suspension of operation.

【0012】そこで、この発明の課題は、上記した問題
点を解決し、利用する海水中に特定種の幼生の出現があ
るか否かを、検査が必要な時に速やかに検出し、さらに
周知の防除手段を適用してフジツボ類キプリス幼生の付
着を防除することであり、すなわち特定の被害の大きな
フジツボを随時に特定し、そのフジツボ類キプリス幼生
に対して効果的な付着前の防除対策を集中的かつ効率的
に行なうことである。
Therefore, an object of the present invention is to solve the above-mentioned problems, to promptly detect whether or not the larvae of a specific species appear in the seawater to be used, when the inspection is necessary, and further Controlling the attachment of barnacle Cyprus larvae by applying control means, that is, identifying barnacles with significant damage at any time, and concentrating effective pre-attachment control measures on the barnacle Cyprus larvae. Is to do so efficiently and efficiently.

【0013】[0013]

【課題を解決するための手段】本願の発明者らは、人工
飼育によって得られる各種フジツボ類のキプリス幼生に
対し、各波長域の励起光照射下での幼生の蛍光自家発光
性、発光形状、及び幼生の蛍光染色処理による検出等の
検討を行なった結果、フジツボ類キプリス幼生を即時に
検出し、かつその種類を判定できる方法を開発し、この
発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present application, for the cypris larvae of various barnacles obtained by artificial rearing, the fluorescence self-luminous property of the larvae under the irradiation of excitation light in each wavelength range, the emission shape, As a result of studies on the detection of larvae by fluorescent staining and the like, a method for immediately detecting barnacle Cyprus larvae and determining the type thereof was developed, and the present invention was completed.

【0014】すなわち、上記の課題を解決するため、本
願の発明では、所定量の海水から採集されたフジツボ類
の付着期幼生に対して励起光を照射し、発光した各個体
の蛍光分布パターンをデジタル画像情報としてコンピュ
ータに入力し、この情報を前記コンピュータに予め登録
しておいた種に固有の体内蛍光分布パターン認識情報と
比較し、これらの蛍光分布パターンがマッチングしたフ
ジツボ類の種とその種の前記海水の単位容積当りの個体
数から防除対象種を決定し、この防除対象種に対して所
要期間の付着防除処理を行なうことからなるフジツボ類
の付着防除方法としたのである。
That is, in order to solve the above-mentioned problems, in the invention of the present application, the adhering stage larvae of barnacles collected from a predetermined amount of seawater are irradiated with excitation light, and the fluorescence distribution pattern of each light-emitting individual is determined. It is input to a computer as digital image information, and this information is compared with in-vivo fluorescence distribution pattern recognition information unique to the species registered in advance in the computer, and the species of barnacles and their species in which these fluorescence distribution patterns are matched. The method for controlling the adhesion of barnacles comprises determining the species to be controlled from the number of individuals per unit volume of the seawater and subjecting the species to be controlled to the adhesion controlling treatment for a required period.

【0015】上記方法において、励起光を照射する工程
の前処理として、蛍光標識化レクチンによるフジツボ類
の付着期幼生の糖鎖蛍光標識染色工程を有する方法を採
用することもできる。
In the above method, as a pretreatment for the step of irradiating with excitation light, there can be adopted a method having a step of fluorescent labeling of sugar chain fluorescent labeling of larvae of the barnacles with fluorescent labeled lectin.

【0016】この発明のフジツボ類の付着防除方法は、
各種フジツボ類キプリス幼生に対して励起光を照射し、
その際に幼生の特異的蛍光発光部位及び発光形状を新た
に発見した分類学的特徴として用い、幼生の即時検出及
びその種類の判定を簡便かつ確実に行なうことができ
る。
The method for controlling the adhesion of barnacles according to the present invention comprises:
Irradiating excitation light to various barnacle Cyprus larvae,
At that time, the specific fluorescence emission site and emission shape of the larva can be used as a newly-discovered taxonomic feature, so that the immediate detection of the larva and the determination of its type can be performed easily and reliably.

【0017】すなわち、各種フジツボ類キプリス幼生に
対して励起光を照射すると、種固有の体内蛍光分布パタ
ーンをもって発光することが判明した。
That is, it was found that when various barnacle Cyprus larvae are irradiated with excitation light, they emit light with a fluorescence distribution pattern peculiar to the species.

【0018】通常、プランクトン類においては体内で自
家蛍光のあるものは多いが、種の判別に役立つ場合は少
ない。しかし、フジツボ類キプリス幼生は、明確に種を
識別可能なパターンを有する特異的な蛍光を発し、しか
もそのような蛍光部位や発光形状のパターンに個体差が
少なく、識別標識として充分に活用できる。
Usually, many plankton species have autofluorescence in the body, but few are useful for discrimination of species. However, the barnacle Cyprus larvae emit specific fluorescence having a pattern capable of clearly discriminating species, and there is little individual difference in the pattern of such fluorescent site and luminescent shape, and it can be sufficiently utilized as an identification marker.

【0019】また、励起光を照射する前に、予め、幼生
の体表面の糖鎖を蛍光標識化レクチンで染色し蛍光標識
をつけることもできる。
Further, before irradiation with excitation light, the sugar chains on the body surface of the larvae can be dyed with a fluorescently labeled lectin to be fluorescently labeled.

【0020】具体的には、フジツボ類の付着期幼生に対
して照射される励起光の波長の好ましい範囲は400〜
440nmであり、かつ発光する蛍光の受容波長が47
5nm以上であることが好ましい。
Specifically, the preferable range of the wavelength of the excitation light applied to the adhering stage larvae of barnacles is 400 to
440 nm and the emission wavelength of the emitted fluorescence is 47
It is preferably 5 nm or more.

【0021】このようにすると、フジツボ類以外の殆ど
の生物に蛍光発光が発生しないか、極微弱に過ぎなくな
るので、他のプランクトンの発するノイズ的な蛍光を排
除して、フジツボ類の種の区別を確実に行なえる。ま
た、発光の強弱の区別、発光部位としてキプリス幼生の
頭部、後部または体全体の区別、また発光単位として斑
点状またはそれより小さな細粒状、粒のない体全体の発
光などのパターンに区別でき、これらの特徴の組み合わ
せによって種の識別ができる。
In this way, most living organisms other than barnacles do not emit fluorescent light or become only extremely weak. Therefore, noise-like fluorescence emitted by other plankton is eliminated to distinguish the species of barnacles. Can be done reliably. In addition, it is possible to distinguish the intensity of light emission, the head of cypris larva as a light emitting site, the rear part or the whole body, and the light emitting unit such as speckles or smaller fine particles, and light emission of the whole body without particles. The species can be identified by the combination of these characteristics.

【0022】特に、フジツボ類が、タテジマフジツボ、
アメリカフジツボ、アカフジツボ、サンカクフジツボ、
オオアカフジツボ、サラサフジツボ、イワフジツボ、シ
ロスジフジツボおよびヨーロッパフジツボを含むフジツ
ボ類から選ばれる2種以上のフジツボ類である場合に
は、より確実に種を識別することができる。
In particular, the barnacles are Tatemima barnacles,
American Barnacle, Red Barnacle, Sankaku Barnacle,
In the case of two or more barnacles selected from barnacles, which include barnacles, barnacles, barnacles, barnacles, and barnacles in Europe, the species can be more reliably identified.

【0023】客観的に評価される基準によって主観的な
誤差なく種類判定を行なうには、コンピュータを用いて
画像解析し、これを自動的に識別する必要がある。その
際には、蛍光分布パターンをデジタル画像情報としてコ
ンピュータに取り込み、この情報を前記コンピュータに
予め登録していた種に固有の蛍光分布パターン認識情報
と比較する。その際、汎用の画像解析ソフトウェアを利
用できる。例えば、米国立衛生研究所製 NIH Imag
e、三谷商事社製 Mac ScopeまたはWin ROOFなどであ
る。
In order to perform type determination without subjective error based on objectively evaluated criteria, it is necessary to perform image analysis using a computer and automatically identify this. At that time, the fluorescence distribution pattern is taken into the computer as digital image information, and this information is compared with the fluorescence distribution pattern recognition information unique to the species which has been registered in the computer in advance. At that time, general-purpose image analysis software can be used. For example, NIH Imag manufactured by National Institutes of Health
e, Mac Scope or Win ROOF manufactured by Mitani Corporation.

【0024】蛍光分布パターンの比較は、コンピュータ
に予め登録していた種固有の体内蛍光分布パターン認識
情報と、検査用のデジタル画像の蛍光分布パターンとを
比較することによって行なうが、両パターンがどの程度
の確率でマッチングするかによってフジツボ類の種とそ
の種の単位海水容積当りの個体数が算出される。この結
果から測定者は、一般的な知見または独自の経験則に基
づいて防除対象種を決定し、この種に対する効果的な所
要期間だけフジツボ類に対して効果的な付着防除処理を
行なうことができる。
The comparison of the fluorescence distribution patterns is carried out by comparing the species-specific in-vivo fluorescence distribution pattern recognition information registered in advance in the computer with the fluorescence distribution pattern of the digital image for inspection. Depending on the probability of matching, the species of barnacles and the number of individuals per unit seawater volume of the species are calculated. From this result, the measurer can determine the target species for control based on general knowledge or unique empirical rules, and perform effective adhesion control treatment on barnacles only for the effective period required for this species. it can.

【0025】この発明では、従来技術における通常波長
光による顕微鏡観察では即時の対応が不可能であったフ
ジツボ類キプリス幼生の種判定及び生物量予測の画像解
析による自動識別化が可能になり、フジツボ類の繁殖
(付着)時期に絞った防除対策の効率化や、さらには対
象の海域で最も被害の大きい特定種の繁殖時期にだけ集
中した防除対策を確実に行える。
According to the present invention, it is possible to determine the species of barnacle Cyprus larvae, which could not be dealt with immediately by microscopic observation with ordinary wavelength light in the prior art, and to perform automatic identification by image analysis of the biomass estimation, and the barnacles. It is possible to improve the efficiency of the control measures focused on the breeding (adhesion) time of the species, and to perform the control measures focused only on the breeding time of the specific species that causes the most damage in the target sea area.

【0026】[0026]

【発明の実施の形態】この発明のフジツボ類キプリス幼
生の即時検出及び種類判定手法の実施形態について、添
付図面を用いながら以下に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for immediate detection and type determination of barnacle Cyprus larvae of the present invention will be described below in detail with reference to the accompanying drawings.

【0027】図1に示すように、フジツボ類(図面はチ
シマフジツボである。)の付着期幼生は、キプリス幼生
と呼ばれるものであり、サンプルは棲息密度(単位海水
量当りの個体数)を知るために、所定量の海水から採取
する。
As shown in FIG. 1, the adhering-stage larvae of barnacles (the drawing is a barnacle) is called a cypris larvae, and the sample knows the population density (the number of individuals per unit amount of seawater). In order to do this, collect from a predetermined amount of seawater.

【0028】採取は、濾水計付きのプランクトンネット
または海水を汲み上げたポンプから一定量の海水をネッ
トで濾過することによって行なうことができる。また、
自動採取方法としては、汲み上げた海水の流路中にガラ
ス製のセルからなる窓を設け、このセルにキプリス幼生
を一時的に付着させることにより、キプリス幼生を採取
し、またはセルを撮影して画像データとして記録するこ
ともできる。
The collection can be carried out by filtering a fixed amount of seawater with a net from a plankton net equipped with a drainage meter or a pump pumping up seawater. Also,
As an automatic collection method, a window made of a glass cell is provided in the flow path of the pumped seawater, and the cypris larva is temporarily attached to this cell to collect the cypris larva, or the cell is photographed. It can also be recorded as image data.

【0029】上記何れの採取法でもセルまたはプランク
トンネットに採取されたフジツボ類の付着期幼生に対し
て、必要に応じて糖鎖蛍光標識染色を行ない、次いで励
起光を照射し、発光した蛍光分布パターンをクールドCC
Dカメラやデジタルカメラなどを用いて撮影し、これを
デジタル画像情報としてコンピュータに入力する。
In any of the collection methods described above, attachment-stage larvae of barnacles collected in cells or plankton nets are subjected to sugar chain fluorescent label staining, if necessary, and then irradiated with excitation light to emit fluorescence distribution. Cooled pattern CC
Take a picture with a D camera or digital camera, and input it to a computer as digital image information.

【0030】励起光を照射するには、例えば落射蛍光実
体顕微鏡を用いることが好ましく、具体的には各励起フ
ィルタやスキャナーを用いて海水を満たしたガラス容器
内に所定波長の励起光を照射し、所定の吸収フィルタを
介して落射蛍光実体顕微鏡に取り付けたクールドCCDビ
デオカメラなどで記録すればよい。
To irradiate the excitation light, it is preferable to use, for example, an epi-illumination fluorescence stereomicroscope. Specifically, each excitation filter or scanner is used to irradiate the glass container filled with seawater with the excitation light of a predetermined wavelength. Recording may be performed with a cooled CCD video camera or the like attached to an epi-fluorescence stereomicroscope through a predetermined absorption filter.

【0031】フジツボ類の付着期幼生に対して照射され
る励起光の波長は400〜440nmであることが好ま
しい。
The wavelength of the excitation light with which the larvae of the barnacles are attached is preferably 400 to 440 nm.

【0032】発光する蛍光の波長が475nm以上であ
るものを観察することにより、フジツボ類以外の生物が
発する蛍光は殆どなく、フジツボの種を明瞭に区別でき
る蛍光のみを認識できる。
By observing the emitted fluorescence having a wavelength of 475 nm or more, there is almost no fluorescence emitted by organisms other than barnacles, and only fluorescence that can clearly distinguish the species of barnacles can be recognized.

【0033】発光した蛍光分布パターンの情報は、コン
ピュータに予め登録していた種固有の蛍光分布パターン
認識情報と比較する。実際に得られる特徴的な蛍光分布
パターンは、以下の説明、図2〜4に示す通りである。 (a)タテジマフジツボ幼生:図2(a)に示すように
幼生頭部及び後部が斑点状に強く発光する。 (b)アメリカフジツボ幼生:図2(b)に示すように
頭部及び後端が広範囲に強く発光する。 (c)サンカクフジツボ幼生:図2(c)に示すように
体部全体が発光し、さらに頭部が微細粒状に発光する。 (d)アカフジツボ幼生:図2(d)に示すように体部
全体が発光する。 (e)オオアカフジツボ幼生:図3(a)に示すように
体部全体が弱く発光すると共に体下縁部が斑状に発光す
る。 (f)サラサフジツボ幼生:図3(b)に示すように頭
部及び尾部が網目状に強く発光する。 (g)イワフジツボ幼生:図4(a)に示すように体部
前方全体が塊状に発光する。 (h)シロスジフジツボ幼生:図4(b)に示すように
体部前縁および後縁が縁取り状に発光する。 (i)ヨーロッパフジツボ幼生:図4(c)に示すよう
に体部前縁および後端にある小さい楕円盤が発光する。
The information on the emitted fluorescence distribution pattern is compared with the species-specific fluorescence distribution pattern recognition information registered in advance in the computer. The characteristic fluorescence distribution pattern actually obtained is as shown in the following description and FIGS. (A) Larvae of Aedes acupuncture: As shown in FIG. 2 (a), the head and back of the larvae emit strong light in spots. (B) American barnacle larva: As shown in FIG. 2 (b), the head and the rear end emit light strongly in a wide range. (C) Sankaku barnacle larva: As shown in FIG. 2 (c), the entire body emits light, and the head emits fine-grained light. (D) Larvae of red barnacles: The entire body emits light as shown in FIG. 2 (d). (E) Greater barnacle larva: As shown in FIG. 3 (a), the entire body emits light weakly and the lower edge of the body emits patchy light. (F) Larval Acupuncture Larva: As shown in FIG. 3 (b), the head and tail emit strong light in a mesh pattern. (G) Larval barnacle larva: As shown in FIG. 4 (a), the entire front part of the body emits light in a lump form. (H) White-breasted barnacle larvae: As shown in FIG. 4 (b), the front and rear edges of the body emit edging light. (I) European barnacle larvae: Small ellipsoidal discs at the front and rear edges of the body emit light, as shown in FIG. 4 (c).

【0034】これらの蛍光分布パターンがマッチングし
たフジツボ類の種とその種の単位海水容積当りの個体数
から防除対象種を決定する。
The species to be controlled is determined from the species of barnacles matching these fluorescence distribution patterns and the number of individuals per unit seawater volume of the species.

【0035】以上の種固有の蛍光分布パターンに関する
認識情報を予めコンピュータに登録しておくことによっ
て、被検海水中に存在する蛍光分布パターンがマッチン
グしたフジツボ類の種とその種の単位海水容積当りの個
体数を求めることができる。
By registering the recognition information on the fluorescence distribution pattern peculiar to the species in advance in a computer, the species of barnacles matching the fluorescence distribution pattern existing in the test seawater and the unit seawater volume of the species. Can be obtained.

【0036】このような情報から最も優占している種を
防除対象種とするか、または余り被害の大きくない種が
優占する場合に、これを無視して特定の被害の大きい種
を防除対象種とするかは、管理者の経験則に基づいて決
めればよい。
Based on such information, the most dominant species is set as the control target species, or when the less seriously damaging species dominate, this species is ignored and the specific heavily damaging species are controlled. The target species may be determined based on the manager's rule of thumb.

【0037】このようにして決定された防除対象種が優
占する海水に対し、所要期間の付着防除処理を行なう。
付着防除処理は、付着生物に対して慣用されている方法
その他の適当な防除方法を採用すればよく、一般的には
海水中に次亜塩素酸ナトリウム溶液等の防除用薬液を投
入することである。
The seawater dominated by the control target species thus determined is subjected to the adhesion control treatment for a required period.
Adhesion control treatment may be carried out by adopting a method conventionally used for adherent organisms or any other suitable control method.In general, by adding a control chemical such as sodium hypochlorite solution to seawater. is there.

【0038】因みに、フジツボ類の種類と海流系に応じ
た一般的な付着時期の例をまとめて以下の表1に示す。
なお、暖流系のフジツボ類については、関西地方におけ
る主な付着時期の例であり、寒流系のフジツボ類につい
ては東北地方における主な付着時期の例である。
By the way, Table 1 below shows a general example of the adhesion time depending on the type of barnacles and the ocean current system.
It should be noted that the warm-current barnacles are an example of the main adhesion time in the Kansai region, and the cold-current barnacles are an example of the main adhesion time in the Tohoku region.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【実施例】〔フジツボ類の種に固有の体内蛍光分布パタ
ーンの検出〕 1−1)試験生物 人工飼育によって得られた各種フジツボ類キプリス幼生
を、高濃度マグネシウムイオン海水に暴露し、一時的に
幼生の動きを止めた後、その海水とともにシャーレに収
容した。 1−2)幼生の自家蛍光の観察 落射蛍光実体顕微鏡を用いて、シャーレ内の幼生に各波
長の励起光を照射し、各吸収フィルタを介して各種幼生
の蛍光の自家発光性や発光形状の観察を行なった。照射
した光線の励起フィルタ波長及び吸収フィルタ透過波長
は、以下の通りである。 励起フィルタ波長330-385nm、吸収フィルタ透過波長
420nm以上 励起フィルタ波長400-440nm、吸収フィルタ透過波長
475nm以上 励起フィルタ波長400-440nm、吸収フィルタ透過波長
470-495nm 励起フィルタ波長460-490nm、吸収フィルタ透過波長
510-550nm 励起フィルタ波長510-550nm、吸収フィルタ透過波長
590nm以上 1−3)結果 フジツボ類キプリス幼生は、励起フィルタ波長400-4
40nm、吸収フィルタ透過波長475nm以上の励起光照射・
蛍光受容条件下で特異的な自家発光が観察され、他波長
域特に460nm以上の励起波長域では発光は全く認められ
なかった。 幼生の自家発光形状は、図2a,b,c,d、図3
a、b、図4a,b,cに示されるようにフジツボ各種
について特有の形態を示した。
[Examples] [Detection of fluorescence distribution pattern in body peculiar to barnacles species] 1-1) Various barnacles Cypris larvae obtained by artificial breeding of test organisms were exposed to high-concentration magnesium ion seawater to temporarily After stopping the movement of the larvae, they were placed in a petri dish together with the seawater. 1-2) Observation of larvae's autofluorescence Using an epi-illumination fluorescence stereomicroscope, the larvae in the petri dish are irradiated with excitation light of each wavelength, and the larvae's autofluorescence and luminescence of various larvae are observed through each absorption filter. Observations were made. The excitation filter wavelength and the absorption filter transmission wavelength of the irradiated light are as follows. Excitation filter wavelength 330-385 nm, absorption filter transmission wavelength
420nm or more Excitation filter wavelength 400-440nm, Absorption filter transmission wavelength
475nm or more Excitation filter wavelength 400-440nm, Absorption filter transmission wavelength
470-495nm Excitation filter wavelength 460-490nm, Absorption filter transmission wavelength
510-550nm Excitation filter wavelength 510-550nm, Absorption filter transmission wavelength
590nm or more 1-3) Results Barnacles Cypris larvae have an excitation filter wavelength of 400-4
Irradiation of excitation light of 40 nm, absorption filter transmission wavelength of 475 nm or more
Specific self-luminous emission was observed under fluorescence-accepting conditions, and no luminescence was observed in other wavelength regions, particularly in the excitation wavelength region of 460 nm or more. The self-luminous shapes of larvae are shown in Fig. 2a, b, c, d and Fig. 3.
As shown in FIGS. 4a, 4b, 4c, 4a, 4b, 4c, and 4d, peculiar morphologies of various barnacles are shown.

【0041】図2(a)に示すように、タテジマフジツ
ボ幼生は、幼生頭部及び後部が斑点状に強く発光した。
As shown in FIG. 2 (a), the larvae of the Tadema barnacles larvae emitted strong spot-like light at the head and back of the larvae.

【0042】図2(b)に示すように、アメリカフジツ
ボ幼生は、頭部及び後端が広範囲に強く発光した。
As shown in FIG. 2 (b), the barnacle larvae of the barnacles emitted intense light over a wide area at the head and rear end.

【0043】図2(c)に示すように、サンカクフジツ
ボ幼生は、体部全体が発光し、さらに頭部が微細粒状に
発光した。
As shown in FIG. 2 (c), in the larva of Sankaku barnacle, the whole body part emitted light, and the head part emitted fine particles.

【0044】図2(d)に示すように、アカフジツボ幼
生は、体部全体が発光した。
As shown in FIG. 2 (d), the entire body of the red barnacle larvae emitted light.

【0045】図3(a)に示すように、オオアカフジツ
ボ幼生は、体部全体が弱く発光すると共に体下縁部が斑
状に発光した。
As shown in FIG. 3 (a), in the larvae of the barnacles, the whole body part emitted weak light and the lower edge of the body emitted patchy light.

【0046】図3(b)に示すように、サラサフジツボ
幼生は、頭部及び尾部が網目状に強く発光した。
As shown in FIG. 3 (b), the head and tail portions of the larvae of Amaranthus acupuncture brilliantly emitted light in a mesh pattern.

【0047】図4(a)に示すように、イワフジツボ幼
生は、体部前方全体が塊状に発光した。
As shown in FIG. 4 (a), in the larvae of the barnacle, the entire front of the body emitted light in a lump form.

【0048】図4(b)に示すように、シロスジフジツ
ボ幼生は、体部前縁および後縁が縁取り状に発光した。
As shown in FIG. 4 (b), in the larva of the white barnacle, the front edge and the rear edge of the body emitted light in a edging manner.

【0049】図4(c)に示すように、ヨーロッパフジ
ツボは、体部前縁および後端にある小さい楕円盤が発光
した。
As shown in FIG. 4 (c), in the European barnacles, the small elliptical discs at the front and rear edges of the body emitted light.

【0050】すなわち、特定波長の励起光照射下での幼
生の特異的な自家蛍光発光を利用することによって、通
常光による形態観察のみでは不可能であったフジツボ類
幼生の即時検出及び種類判定が可能であった。また、画
像解析による自動識別化も可能となる。
That is, by utilizing the specific autofluorescence emission of larvae under irradiation of excitation light of a specific wavelength, immediate detection and type determination of barnacle larvae, which was impossible only by morphological observation with ordinary light, can be performed. It was possible. Also, automatic identification by image analysis is possible.

【0051】〔蛍光標識染色による検出〕 2−1)試験生物 底面にカバーグラスを貼り付けたプラスチックシャーレ
内に、タテジマフジツボキプリス幼生を海水とともに入
れ、数時間静置し、カバーグラス上に幼生を一次付着さ
せた。 2−2)蛍光標識染色及び観察 カバーグラス上に一次付着したキプリス幼生を固定する
か、または無固定のまま、蛍光標識レクチン(LCA-FIT
C)を用いた直接染色を行なった。染色条件は、濃度:1
00-1000倍TBS希釈、時間:10分〜4時間とし、染色後
の幼生を落射蛍光顕微鏡(励起光波長460-490nm、吸収
フィルタ透過波長510nm以上)下で観察した。 2−3)結果 LCA-FITC染色の場合、濃度1/1000×10分間染色で
も、キプリス幼生の体部、付着器官部全体の発光が確認
された。 また同時に、カバーグラス表面の有機物等、様々な
付着物の非特異的な発光が確認されたが、キプリス幼生
の発光はサイズ・形状とも非常に特徴的であり、他種付
着物や生物群との識別化は充分に可能であった。
[Detection by Fluorescent Labeling Staining] 2-1) Put Tadima Fujitsubo Cypris larvae together with seawater in a plastic petri dish with a cover glass attached to the bottom of the test organism and let stand for several hours to leave the larvae on the cover glass. It was first deposited. 2-2) Staining and observing fluorescence-labeled Cypris larvae that have been primarily attached to the cover glass are fixed or left unfixed, and fluorescence-labeled lectin (LCA-FIT) is used.
Direct staining with C) was performed. Staining conditions: density: 1
00-1000 times TBS dilution, time: 10 minutes to 4 hours, and the stained larvae were observed under an epifluorescence microscope (excitation light wavelength 460-490 nm, absorption filter transmission wavelength 510 nm or more). 2-3) Results In the case of LCA-FITC staining, luminescence was confirmed in the whole body part of the cypris larva and the whole adherent organ part even after staining at a concentration of 1/1000 × 10 minutes. At the same time, non-specific luminescence of various adherents such as organic matter on the surface of the cover glass was confirmed, but the luminescence of Cyprus larvae is very characteristic in size and shape, and it is different from other species' adherents and organisms. It was fully possible to discriminate.

【0052】すなわち、特定の蛍光標識染色後の蛍光観
察によっても、フジツボ類キプリス幼生の即時検出が可
能であった。従って、自家蛍光の場合と同様に画像解析
によるキプリス幼生の自動識別化も可能である。
That is, it was possible to immediately detect the barnacle Cyprus larvae by observing fluorescence after staining with a specific fluorescent label. Therefore, similar to the case of autofluorescence, it is possible to automatically identify the cypris larvae by image analysis.

【0053】〔実施例〕臨海プラント(関西地方)の冷
却用海水取水口付近の海域にサンプル海水の取水管を設
置し、ポンプで汲み上げた海水を定期的に1000リッ
トル採取し、これを動物プランクトン採取用ネット(網
目0.1mm)で濾過・捕集し、これを200mMMg
2+海水に暴露して、一時的に幼生の遊泳を停止させ、こ
の幼生含有のサンプルをシャーレに海水と一緒に収容し
た。
[Example] A sample seawater intake pipe was installed in the sea area near the cooling seawater intake of a coastal plant (Kansai region), and 1000 liters of seawater pumped by a pump was periodically collected, and this was used as a zooplankton. It is filtered and collected with a collection net (mesh 0.1 mm), and this is 200 mM Mg.
The larvae were temporarily stopped from swimming by exposure to 2+ seawater and samples containing the larvae were placed in a petri dish with seawater.

【0054】採集されたフジツボ類の付着期幼生を含む
試料に、落射蛍光実体顕微鏡(オリンパス社製)を用い
て波長400〜440nmの励起光を照射し、波長47
5nm以上の蛍光を透過する吸収フィルタを介して得ら
れる蛍光発光デジタル画像をパーソナルコンピュータの
画像解析ソフトウェア(NIH Image)にデータとし
て取り込んだ。
The collected sample containing the larval stage of the barnacles attached to the barnacle was irradiated with excitation light having a wavelength of 400 to 440 nm by using an epi-fluorescence stereomicroscope (manufactured by Olympus Corp.), and a wavelength of 47
The fluorescence emission digital image obtained through an absorption filter that transmits fluorescence of 5 nm or more was imported as data into image analysis software (NIH Image) of a personal computer.

【0055】また、この画像データ取り込みに先立っ
て、前記した実験によって得られた種に固有の蛍光分布
パターン(すなわち、タテジマフジツボ幼生は、幼生頭
部及び後部が斑点状に強く発光する。アメリカフジツボ
幼生は、頭部及び後端が広範囲に強く発光する。サンカ
クフジツボ幼生は、体部全体が発光し、さらに頭部が微
細粒状に発光する。アカフジツボ幼生は、体部全体が発
光する。オオアカフジツボ幼生は、体部全体が弱く発光
すると共に体下縁部が斑状に発光する。サラサフジツボ
幼生は、頭部及び尾部が網目状に強く発光する。イワフ
ジツボ幼生は、体部前方全体が塊状に発光する。シロス
ジフジツボ幼生は、体部前縁および後縁が縁取り状に発
光する。ヨーロッパフジツボは、体部前縁および後端に
ある小さい楕円盤が発光する。)から画像解析ソフトウ
ェア(NIH Image)によってフジツボ類付着期幼生
の特異的検出及び種類識別化に必要な認識情報を、予め
前記パーソナルコンピュータに登録しておいた。
Prior to the acquisition of this image data, the fluorescence distribution pattern peculiar to the species obtained by the above-described experiment (that is, the larvae of the Tadima barnacle larvae emit strong speckled light at the larval head and rear). In the larvae, the head and the rear end emit intense light over a wide range, in the larvae of Sankaku barnacles, the entire body part emits light, and in addition, the head emits fine-grained light, and in the larvae of red barnacles, the entire body part emits light. The larvae emit light weakly throughout the body and patchy emission at the lower edge of the body.The head and tail of the Sarasa barnacle larvae emit a strong net-like light. White barnacle larvae emit light with edging at the leading and trailing edges of the body, while European barnacles have small oval discs at the leading and trailing edges of the body. Light to.) Recognition information necessary for specific detection and type identification of barnacles attached life larva by image analysis software (NIH Image) from which had been registered in advance in the personal computer.

【0056】認識情報は、画像解析ソフトウェア(NI
H Image)のプラグラムに従って行なわれる処理で得
られる情報であり、具体的には濃度諧調処理、平滑化処
理、鮮鋭化処理、マスキングなどを必要に応じて行な
い、さらに画像の二値化処理を行なうと共に、適宜に目
的とする領域以外のノイズを除去し、計数目的領域の画
像パターンを認識する。
The recognition information is image analysis software (NI
H Image), which is information obtained by the processing performed according to the program, specifically, density gradation processing, smoothing processing, sharpening processing, masking, etc., if necessary, and further image binarization processing. At the same time, noise other than the target area is appropriately removed, and the image pattern of the counting target area is recognized.

【0057】コンピュータに登録された認識情報は、計
数対象の一種以上の種の認識情報を指定しておくと、サ
ンプルのデジタル発光画像から指定した一種以上のフジ
ツボ類付着期幼生の海水単位容積当りの個体数を自動的
に計測することができる。
As the recognition information registered in the computer, if recognition information of one or more species to be counted is designated, per unit volume of seawater of one or more species of barnacles attached period larvae designated from the digital luminescence image of the sample. The number of individuals can be automatically measured.

【0058】画像処理工程と自動計数例を図5および図
6(両図とも顕微鏡写真をパソコンにイメージデータと
して取り込んだものをトレースした図)に示した。
An image processing process and an example of automatic counting are shown in FIG. 5 and FIG. 6 (both of which are traces of micrographs captured as image data in a personal computer).

【0059】図5aは、採取されたサンプルを通常光下
で撮影した顕微鏡写真をトレースした図であり、矢印部
分の先にフジツボ類のキプリス幼生が認められた。次
に、図5bに示すようにBV励起光照射によりアメリカ
フジツボのキプリス幼生に特異的な発光が認められた。
図5cに示すように、画像解析ソフトウェア(NIHI
mage)を使用した画像処理および解析により、アメリカ
フジツボのキプリス幼生が自動計数された。
FIG. 5a is a traced micrograph of the collected sample taken under normal light, in which cypris larvae of barnacles were observed at the tip of the arrow. Next, as shown in Fig. 5b, specific light emission was observed in the cypris larvae of the American barnacle upon irradiation with BV excitation light.
As shown in FIG. 5c, image analysis software (NIHI
Cyprus larvae of barnacles were automatically counted by image processing and analysis using mage).

【0060】また、図6aは、サンプルに対し、BV励
起光を照射して観察した各種フジツボ類が混在する蛍光
発光画像(グレースケール)である。このサンプルに対
し、図6bに示すように画像解析ソフトウェア(NIH
Image)を使用した画像処理を行ない、濃度分布範囲
設定を行って(図面では発光領域は点の集合、すなわち
粗または密の程度で示した。なお、参考資料の写真では
赤色の表示である。)発光領域のパターンを調べた。そ
して、図6cに示すように、白黒の二値化処理を行なっ
て体部全体が発光するアカフジツボのキプリス幼生が特
異的に認識されたので、これを自動計数した。
Further, FIG. 6a is a fluorescence emission image (gray scale) in which various barnacles are mixed and observed by irradiating the sample with BV excitation light. For this sample, the image analysis software (NIH
Image processing using Image) was performed to set the density distribution range (in the drawing, the light emitting region is shown as a set of points, that is, in a coarse or dense degree. In the photograph of the reference material, it is displayed in red. ) The pattern of the light emitting region was examined. Then, as shown in FIG. 6c, black-and-white binarization processing was performed, and the Cyprus larva of the red barnacle, which emits light throughout the body, was specifically recognized, and this was automatically counted.

【0061】上記の例では、タテジマフジツボ、アメリ
カフジツボ、アカフジツボおよびサンカクフジツボが検
出されたが、このうち海中構築物に強固に付着し、被害
の主要原因種となるアカフジツボおよびサンカクフジツ
ボを防除対象種に決定した。この防除対象種の付着期幼
生の高密度検出時期が、5月下旬から7月上旬および1
1月中旬から12月中旬であるため、これらの時期に集
中的に前記した定法の付着防除処理を行ない、その他の
時期にはそのような付着防除処理を控えるという対応で
効率化を計ったところ、付着防除効果が有効であること
が確認された。
[0061] In the above example, Tatejima barnacles, American barnacles, Red barnacles and Sankaku barnacles were detected. Among them, red barnacles and Sankaku barnacles that strongly adhere to the subsea constructs and are the main causative species of damage were targeted for control. Were determined. The period of high density detection of larvae of the control target species in the adhering stage is from late May to early July and 1
Since it is from mid-January to mid-December, we tried to improve efficiency by intensively performing the above-mentioned standard adhesion control treatment at these times and refraining from such adhesion control treatment at other times. It was confirmed that the adhesion control effect was effective.

【0062】[0062]

【発明の効果】この発明は、以上説明したように、海水
含有サンプル中のフジツボ類キプリス幼生の体内蛍光パ
ターンをコンピュータで認識させ、その種類を即時に判
定して防除対象種を決定するようにしたので、防除対処
水域において被害の大きなフジツボを経時的な変化を考
慮しながら速やかに判定できるようになり、その結果、
フジツボ類キプリス幼生に対して周知の手段を適用し、
特定のフジツボ類キプリス幼生の付着行動を所定期間だ
け集中的に効率よく防除し、それらの付着による海水抵
抗や取水ポンプ負荷の増大、冷却効率低下、細管閉塞等
といった海水利用効率の低下を確実に防止できるという
利点がある。
INDUSTRIAL APPLICABILITY As described above, the present invention allows a computer to recognize the in-vivo fluorescence pattern of barnacle Cyprus larvae in a seawater-containing sample, and immediately determines its type to determine a control target species. As a result, it becomes possible to quickly determine barnacles that are severely damaged in the control area, taking into account changes over time, and as a result,
Applying well-known means to barnacle Cyprus larvae,
It controls the adhesion behavior of specific barnacle Cyprus larvae intensively and efficiently for a predetermined period of time, and surely reduces the seawater utilization efficiency such as increase of seawater resistance and intake pump load, cooling efficiency decrease, blockage of narrow tubes, etc. due to their adhesion. There is an advantage that it can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】フジツボ類のキプリス幼生の器官の配置を説明
する側面図
FIG. 1 is a side view illustrating the arrangement of organs of a cypris larva of the barnacle.

【図2】(a)励起光照射によるタテジマフジツボのキ
プリス幼生の蛍光発光パターンを示す模式図 (b)励起光照射によるアメリカフジツボのキプリス幼
生の蛍光発光パターンを示す模式図 (c)励起光照射によるサンカクフジツボのキプリス幼
生の蛍光発光パターンを示す模式図 (d)励起光照射によるアカフジツボのキプリス幼生の
蛍光発光パターンを示す模式図
FIG. 2A is a schematic diagram showing a fluorescence emission pattern of cypris larvae of Tadema barnacles by irradiation with excitation light. FIG. 2B is a schematic diagram showing a fluorescence emission pattern of cypris larvae of American barnacles by irradiation with excitation light. Schematic diagram showing the fluorescence emission pattern of the cypris larvae of the Scutellaria barnacles by (d).

【図3】(a)励起光照射によるオオアカフジツボのキ
プリス幼生の蛍光発光パターンを示す模式図 (b)励起光照射によるサラサフジツボのキプリス幼生
の蛍光発光パターンを示す模式図
FIG. 3A is a schematic diagram showing a fluorescence emission pattern of a cypris larva of a blue barnacle, which is irradiated by excitation light. FIG. 3B is a schematic diagram showing a fluorescence emission pattern of a cypris larva of a Sarasa barnacle, which is irradiated by excitation light.

【図4】(a)励起光照射によるイワフジツボのキプリ
ス幼生の蛍光発光パターンを示す模式図 (b)励起光照射によるシロスジフジツボのキプリス幼
生の蛍光発光パターンを示す模式図 (c)励起光照射によるヨーロッパフジツボのキプリス
幼生の蛍光発光パターンを示す模式図
FIG. 4 (a) is a schematic diagram showing the fluorescence emission pattern of cypris larvae of the barnacle barnacle upon irradiation with excitation light. FIG. 4 (b) is a schematic diagram showing the fluorescence emission pattern of cypris larvae of the white crocodile barnacle upon irradiation with excitation light. Schematic diagram showing the fluorescence emission pattern of Cyprus larvae of the European barnacle

【図5】(a)通常光下で顕微鏡観察した各種プランク
トン混在サンプルの説明図 (b)励起光を照射して顕微鏡観察したフジツボ類のキ
プリス幼生の蛍光発光を示す説明図 (c)アメリカフジツボのキプリス幼生を認識し自動計
数するコンピュータ画面の説明図
5A is an explanatory view of various plankton mixed samples observed under a microscope under normal light, and FIG. 5B is an explanatory view showing fluorescence emission of cypris larvae of barnacles observed under a microscope by irradiating with excitation light, and FIG. 5C is an American barnacle. Of computer screen for recognizing and automatically counting cypris larvae

【図6】(a)励起光を照射して顕微鏡観察した各種フ
ジツボ類幼生混在サンプルの説明図 (b)濃度分布範囲を設定した各種フジツボ類幼生混在
サンプルのコンピュータ画面の説明図 (c)アカフジツボのキプリス幼生を認識し自動計数す
るコンピュータ画面の説明図
6A is an explanatory view of various barnacle-larvae mixed samples observed under a microscope by irradiating excitation light. FIG. 6B is an explanatory diagram of a computer screen of various barnacle-larvae mixed samples in which concentration distribution ranges are set. Of computer screen for recognizing and automatically counting cypris larvae

【符号の説明】[Explanation of symbols]

1 甲皮 2 第1触角 3 胸肢 4 セメント腺 5 セメント管 6 油細胞 7 複眼 8 胸部 1 upper 2 first antenna 3 chest 4 cement glands 5 cement pipe 6 oil cells 7 compound eyes 8 chest

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 洋祐 広島市中区小町4番33号 中国電力株式会 社内 (72)発明者 柳川 敏治 広島市中区小町4番33号 中国電力株式会 社内 (72)発明者 山下 桂司 姫路市飾磨区都倉2丁目75番地 (72)発明者 松村 清隆 姫路市白浜町宇佐崎中1丁目223番地の1 (72)発明者 神谷 享子 姫路市飾磨区東堀32番地の32 (72)発明者 岡田 佳子 姫路市千代田町586番地 Fターム(参考) 2B121 AA06 CC21 DA49 EA21 FA13 FA14 2G043 AA03 AA04 BA16 CA05 DA02 EA01 GA07 GB21 JA03 KA02 KA03 KA05 LA03 NA06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yosuke Oka             4-33 Komachi, Naka-ku, Hiroshima-shi China Electric Power Stock Association             In-house (72) Inventor Toshiharu Yanagawa             4-33 Komachi, Naka-ku, Hiroshima-shi China Electric Power Stock Association             In-house (72) Inventor Keiji Yamashita             2-75 Tsukura, Shikama-ku, Himeji-shi (72) Inventor Kiyotaka Matsumura             1-223, 1-chome, Usazaki, Shirahama-cho, Himeji-shi (72) Inventor Kyoko Kamiya             32, 32 Higashibori, Shikama-ku, Himeji City (72) Inventor Yoshiko Okada             586 Chiyoda-cho, Himeji City F term (reference) 2B121 AA06 CC21 DA49 EA21 FA13                       FA14                 2G043 AA03 AA04 BA16 CA05 DA02                       EA01 GA07 GB21 JA03 KA02                       KA03 KA05 LA03 NA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定量の海水から採集されたフジツボ類
の付着期幼生に対して励起光を照射し、発光した各個体
の蛍光分布パターンをデジタル画像情報としてコンピュ
ータに入力し、この情報を前記コンピュータに予め登録
しておいた種に固有の体内蛍光分布パターン認識情報と
比較し、これらの蛍光分布パターンがマッチングしたフ
ジツボ類の種とその種の前記海水の単位容積当りの個体
数から防除対象種を決定し、この防除対象種に対して所
要期間の付着防除処理を行なうことからなるフジツボ類
の付着防除方法。
1. Irradiation of excitation light to adhering stage larvae of barnacles collected from a predetermined amount of seawater, and the fluorescence distribution pattern of each light-emitting individual is input to a computer as digital image information, and this information is recorded as described above. Compared with the in-vivo fluorescence distribution pattern recognition information unique to the species registered in advance in the computer, the species of barnacles matching these fluorescence distribution patterns and the number of individuals per unit volume of the seawater of that species should be controlled. A method for controlling adhesion of barnacles, which comprises determining a species and performing adhesion control treatment for the required period on the species to be controlled.
【請求項2】 励起光を照射する工程の前処理として、
蛍光標識化レクチンによるフジツボ類の付着期幼生の糖
鎖蛍光標識染色工程を有する請求項1に記載のフジツボ
類の付着防除方法。
2. As a pretreatment for the step of irradiating with excitation light,
The method for controlling adherence of barnacles according to claim 1, further comprising a step of fluorescently labeling a sugar chain of a juvenile of barnacles attached with a fluorescently labeled lectin.
【請求項3】 フジツボ類の付着期幼生に対して照射さ
れる励起光の波長が400〜440nmであり、かつ発
光した蛍光の受容波長が475nm以上である請求項1
に記載のフジツボ類の付着防除方法。
3. The excitation light having a wavelength of 400 to 440 nm, which is irradiated to the adhering stage larvae of barnacles, and the emission wavelength of emitted fluorescence is 475 nm or more.
The method for controlling the adhesion of barnacles according to.
【請求項4】 フジツボ類が、タテジマフジツボ、アメ
リカフジツボ、アカフジツボ、サンカクフジツボ、オオ
アカフジツボ、サラサフジツボ、イワフジツボ、シロス
ジフジツボおよびヨーロッパフジツボを含むフジツボ類
から選ばれる2種以上のフジツボ類である請求項1〜3
のいずれかに記載のフジツボ類の付着防除方法。
4. The barnacles, wherein the barnacles are two or more kinds of barnacles selected from the category of barnacles, including mane barnacles, barnacles, red barnacles, sankaku barnacles, oak barnacles, sala barnacles, barnacles, white barnacles and white barnacles. 1-3
The method for controlling adhesion of barnacles according to any one of 1.
JP2002300587A 2002-02-14 2002-10-15 Barnacles adhesion control method Expired - Lifetime JP3607904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300587A JP3607904B2 (en) 2002-02-14 2002-10-15 Barnacles adhesion control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002036789 2002-02-14
JP2002-36789 2002-02-14
JP2002300587A JP3607904B2 (en) 2002-02-14 2002-10-15 Barnacles adhesion control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003294013A Division JP3972028B2 (en) 2002-02-14 2003-08-15 Species discrimination method of barnacles attaching larvae

Publications (2)

Publication Number Publication Date
JP2003304796A true JP2003304796A (en) 2003-10-28
JP3607904B2 JP3607904B2 (en) 2005-01-05

Family

ID=29405151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300587A Expired - Lifetime JP3607904B2 (en) 2002-02-14 2002-10-15 Barnacles adhesion control method

Country Status (1)

Country Link
JP (1) JP3607904B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271331A (en) * 2005-03-30 2006-10-12 Chugoku Electric Power Co Inc:The Observation container for attached organism and method for cleaning observation container
JP2006271333A (en) * 2005-03-30 2006-10-12 Chugoku Electric Power Co Inc:The Apparatus and method for examining attached organism
JP2007037490A (en) * 2005-08-04 2007-02-15 Kansai Electric Power Co Inc:The Apparatus for detecting adhesion of marine life
JP2007261385A (en) * 2006-03-28 2007-10-11 Nippon N U S Kk Substrate structure for anti-fouling of shellfish
JP2007309819A (en) * 2006-05-19 2007-11-29 Central Res Inst Of Electric Power Ind Apparatus and method for observing planktons and apparatus, method, and program for measuring planktons
JP2010239978A (en) * 2010-08-02 2010-10-28 Chugoku Electric Power Co Inc:The Apparatus for investigating attached organisms and method for investigating attached organisms
JP7216976B1 (en) * 2022-06-21 2023-02-02 中国電力株式会社 Barnacle larva detection device and drug concentration control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749888B2 (en) * 1977-04-30 1982-10-25
JPS59139237A (en) * 1983-01-31 1984-08-10 熊谷 博彰 Fluorescent spectroscopic image analyser
JPH02268700A (en) * 1989-04-12 1990-11-02 Hitachi Ltd Determination of base sequence in dna
JPH05244854A (en) * 1992-01-28 1993-09-24 Fumio Sawada Removal of barnacle adhering to installation in sea
JPH06153744A (en) * 1992-09-25 1994-06-03 Riyouyou Sangyo Kk Method for diminishing parasite of fishes and bacterium and removing living thing attached to crawl net
JPH06225681A (en) * 1993-02-05 1994-08-16 Tohoku Electric Power Co Inc Method for killing living thing in water pipe
JPH10155406A (en) * 1996-11-29 1998-06-16 Taisei Corp Method for preventing sticking of underwater harmful organism by aeration
JPH10195682A (en) * 1996-12-26 1998-07-28 Pentel Kk Member for electrochemical biological control or antifouling
JPH11169057A (en) * 1997-12-15 1999-06-29 Ebara Corp Control of aquatic organism and judgment of adhesion state

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749888B2 (en) * 1977-04-30 1982-10-25
JPS59139237A (en) * 1983-01-31 1984-08-10 熊谷 博彰 Fluorescent spectroscopic image analyser
JPH02268700A (en) * 1989-04-12 1990-11-02 Hitachi Ltd Determination of base sequence in dna
JPH05244854A (en) * 1992-01-28 1993-09-24 Fumio Sawada Removal of barnacle adhering to installation in sea
JPH06153744A (en) * 1992-09-25 1994-06-03 Riyouyou Sangyo Kk Method for diminishing parasite of fishes and bacterium and removing living thing attached to crawl net
JPH06225681A (en) * 1993-02-05 1994-08-16 Tohoku Electric Power Co Inc Method for killing living thing in water pipe
JPH10155406A (en) * 1996-11-29 1998-06-16 Taisei Corp Method for preventing sticking of underwater harmful organism by aeration
JPH10195682A (en) * 1996-12-26 1998-07-28 Pentel Kk Member for electrochemical biological control or antifouling
JPH11169057A (en) * 1997-12-15 1999-06-29 Ebara Corp Control of aquatic organism and judgment of adhesion state

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271331A (en) * 2005-03-30 2006-10-12 Chugoku Electric Power Co Inc:The Observation container for attached organism and method for cleaning observation container
JP2006271333A (en) * 2005-03-30 2006-10-12 Chugoku Electric Power Co Inc:The Apparatus and method for examining attached organism
JP4594778B2 (en) * 2005-03-30 2010-12-08 中国電力株式会社 Adherent organism observation container and observation container cleaning method
JP4594779B2 (en) * 2005-03-30 2010-12-08 中国電力株式会社 Attached organism investigation device and attachment organism investigation method
JP2007037490A (en) * 2005-08-04 2007-02-15 Kansai Electric Power Co Inc:The Apparatus for detecting adhesion of marine life
JP4554465B2 (en) * 2005-08-04 2010-09-29 関西電力株式会社 Marine organism adhesion detector
JP2007261385A (en) * 2006-03-28 2007-10-11 Nippon N U S Kk Substrate structure for anti-fouling of shellfish
JP2007309819A (en) * 2006-05-19 2007-11-29 Central Res Inst Of Electric Power Ind Apparatus and method for observing planktons and apparatus, method, and program for measuring planktons
JP4633672B2 (en) * 2006-05-19 2011-02-16 財団法人電力中央研究所 Plankton observation device, plankton measurement device, plankton measurement method and plankton measurement program
JP2010239978A (en) * 2010-08-02 2010-10-28 Chugoku Electric Power Co Inc:The Apparatus for investigating attached organisms and method for investigating attached organisms
JP7216976B1 (en) * 2022-06-21 2023-02-02 中国電力株式会社 Barnacle larva detection device and drug concentration control system
WO2023248348A1 (en) * 2022-06-21 2023-12-28 中国電力株式会社 Barnacle larvae detection device and drug concentration management system

Also Published As

Publication number Publication date
JP3607904B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
Atamanalp et al. Microplastics in tissues (brain, gill, muscle and gastrointestinal) of Mullus barbatus and Alosa immaculata
Chebanov et al. Sturgeon hatchery manual
Leis et al. How Nemo finds home: the neuroecology of dispersal and of population connectivity in larvae of marine fishes
Tang et al. Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes
Hettler Marking otoliths by immersion of marine fish larvae in tetracycline
Robison et al. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis
Kelso et al. Collecting, processing, and identification of fish eggs and larvae and zooplankton
Gillanders Tools for studying biological marine ecosystem interactions—natural and artificial tags
JP2003304796A (en) Method of preventing barnacles from sticking
US10360667B2 (en) Biological material fouling assessment systems and methods
Vasconcelos-Filho et al. Peeling the otolith of fish: optimal parameterization for micro-CT scanning
Ihwan et al. Morphological description of pedunculate barnacle Octolasmis angulata (Aurivillius, 1894) on wild mud crab Genus Scylla from Setiu wetland, Terengganu coastal water, Malaysia
Skov et al. Marking pike fry otoliths with alizarin complexone and strontium: an evaluation of methods
JP3972028B2 (en) Species discrimination method of barnacles attaching larvae
JP4594779B2 (en) Attached organism investigation device and attachment organism investigation method
Zhou et al. Experimental evaluation of fluorescent (alizarin red S and calcein) and clip-tag markers for stock assessment of ark shell, Anadara broughtonii
JP5386208B2 (en) Physiological activity judgment method of barnacle Cypris larvae
Lindsay et al. The anthomedusan fauna of the Japan Trench: preliminary results from in situ surveys with manned and unmanned vehicles
Smith et al. An osmotic induction method for externally marking saltwater fishes, Stigmatopora argus and Stigmatopora nigra, with calcein
Witman et al. Benthic community structure at a subtidal rock pinnacle in the central Gulf of Maine
Ingram et al. Field detection of calcein in marked fish-a cautionary note.
Jackson et al. Precision of scales and dorsal spines for estimating age of common carp
JP7216976B1 (en) Barnacle larva detection device and drug concentration control system
JP4843727B2 (en) Attached organism investigation device and attachment organism investigation method
Kingma The role of the excavating sponge Cliona celata in oyster shells

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041008

R150 Certificate of patent or registration of utility model

Ref document number: 3607904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term