JP2003302336A - Method and element for signal processing by surface plasmon - Google Patents

Method and element for signal processing by surface plasmon

Info

Publication number
JP2003302336A
JP2003302336A JP2002108333A JP2002108333A JP2003302336A JP 2003302336 A JP2003302336 A JP 2003302336A JP 2002108333 A JP2002108333 A JP 2002108333A JP 2002108333 A JP2002108333 A JP 2002108333A JP 2003302336 A JP2003302336 A JP 2003302336A
Authority
JP
Japan
Prior art keywords
dielectric layer
thin film
surface plasmon
change
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108333A
Other languages
Japanese (ja)
Other versions
JP4109888B2 (en
Inventor
Sodan Kaneko
双男 金子
Keizo Kato
景三 加藤
Kazunari Shinpo
一成 新保
Takahiro Kawakami
貴浩 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002108333A priority Critical patent/JP4109888B2/en
Publication of JP2003302336A publication Critical patent/JP2003302336A/en
Application granted granted Critical
Publication of JP4109888B2 publication Critical patent/JP4109888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method in which a change in a signal of a surface plasmon is signal-processed as a change in a synchrotron radiation and to obtain a signal processing element by using the method. <P>SOLUTION: In the method for processing the signal by the surface plasmon, a dielectric layer 2 is arranged on a metal thin film 1, an optical coupler composed of a light transmission medium 3 is arranged on its opposite side, a single or multiple surface plasmon is excited in an interface between the dielectric layer 2 and the metal thin film 1 by using an excitation light source 4 and an excitation light source 5, the signal of the surface plasmon is changed due to a change in the dielectric layer 2, and the signal is processed by using the change in the synchrotron radiation due to the resonance of the changed surface plasmon with the optical coupler. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属表面に励起さ
れ伝搬する表面プラズモンを制御し、放射光の変化とし
て信号処理に利用する方法及びこれを信号処理装置とし
て利用できる信号処理素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling surface plasmons that are excited and propagated on a metal surface and use them for signal processing as a change in emitted light, and a signal processing element that can be used as a signal processing device. is there.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】遠隔場
光を用いる光素子は用いる光波長程度よりも小型の素子
は原理上構成できず、近接場光を用いた小型の光素子が
考えられているが、近接場光は物質表面近傍に局在して
いるのでこれを観測し利用するための装置等が必要にな
っている。
2. Description of the Related Art In principle, an optical element using far-field light cannot be constructed as an element smaller than the wavelength of light used, and a small optical element using near-field light is considered. However, since the near-field light is localized near the surface of the material, a device or the like for observing and utilizing it is needed.

【0003】また、金属薄膜上に誘電体層を配置し、そ
の反対側にプリズムを配置した構成で、レーザー光の照
射によって誘電体層と金属薄膜界面に多重の表面プラズ
モンを励起すると表面プラズモンの共鳴による放射光を
プリズム側で観測することが可能となっている。
In addition, a dielectric layer is arranged on a metal thin film, and a prism is arranged on the opposite side of the metal thin film. When multiple surface plasmons are excited at the interface between the dielectric layer and the metal thin film by irradiation of laser light, surface plasmons It is possible to observe the synchrotron radiation on the prism side.

【0004】そこで、金属薄膜上に誘電体層を配置し、
その反対側に光透過媒質からなる光結合器を配置した構
成とし、励起光源を用いて誘電体層と金属薄膜界面に単
一あるいは多重の表面プラズモンを励起して金属薄膜上
を伝搬させ、誘電体層の変化による表面プラズモンの信
号変化を、前記配置の光結合器を介して放射光の変化と
して得られる場合、これを用いて信号処理素子を構築で
きる可能性がある。
Therefore, a dielectric layer is arranged on the metal thin film,
An optical coupler consisting of a light-transmitting medium is arranged on the opposite side, and a single or multiple surface plasmons are excited at the interface between the dielectric layer and the metal thin film by using an excitation light source to propagate on the metal thin film. When the signal change of the surface plasmon due to the change of the body layer can be obtained as the change of the radiated light through the optical coupler of the arrangement, there is a possibility that the signal processing element can be constructed using this.

【0005】ここで、誘電体層に接する金属薄膜の膜厚
を、取り扱う表面プラズモンの振動数に対応する空気中
の光波長程度に厚くした場合、光透過媒質を置かない場
合や光透過媒質の屈折率が1程度の場合、表面プラズモ
ンは励起されず、あるいは励起しても光透過媒質から放
射光の信号を得ることが不可能である。
Here, when the thickness of the metal thin film in contact with the dielectric layer is made thicker to the light wavelength in air corresponding to the frequency of the surface plasmon to be handled, when no light transmitting medium is provided or when the light transmitting medium is used. When the refractive index is about 1, the surface plasmon is not excited, or even if it is excited, it is impossible to obtain a signal of radiated light from the light transmission medium.

【0006】本発明は、このような事情に鑑み、誘電体
層と金属薄膜の界面で単一あるいは多重の表面プラズモ
ンを励起し伝搬させ、誘電体層の変化による表面プラズ
モンの信号変化を放射光の変化として信号処理する方法
及び信号処理素子を提供することを目的とする。
In view of such circumstances, the present invention excites and propagates single or multiple surface plasmons at the interface between the dielectric layer and the metal thin film, and radiates the signal change of the surface plasmon due to the change of the dielectric layer. It is an object of the present invention to provide a method and a signal processing element for processing a signal as a change in the signal.

【0007】[0007]

【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。
The gist of the present invention will be described with reference to the accompanying drawings.

【0008】金属薄膜1上に誘電体層2を配置し、その
反対側に光透過媒質3からなる光結合器を配置し、励起
光源4,5を用いて誘電体層2と金属薄膜1界面に単一
あるいは多重の表面プラズモンを励起して金属薄膜1上
を伝搬させ、誘電体層2の変化によって表面プラズモン
の信号を変化させ、変化した表面プラズモンと光結合器
の共鳴による放射光変化の信号を用いることを特徴とす
る表面プラズモンによる信号処理の方法に係るものであ
る。
A dielectric layer 2 is arranged on the metal thin film 1, an optical coupler made of a light transmitting medium 3 is arranged on the opposite side, and an interface between the dielectric layer 2 and the metal thin film 1 is formed by using excitation light sources 4 and 5. A single or multiple surface plasmons are excited to propagate on the metal thin film 1, the signal of the surface plasmon is changed by the change of the dielectric layer 2, and the radiated light change due to the resonance of the changed surface plasmon and the optical coupler is changed. The present invention relates to a signal processing method using surface plasmons, which is characterized by using signals.

【0009】また、金属薄膜1上に誘電体層2を配置
し、その反対側に光透過媒質3からなる光結合器を配置
した構成とし、励起光源4,5を用いて誘電体層2と金
属薄膜1界面に単一あるいは多重の表面プラズモンを励
起して金属薄膜1上を伝搬させ、誘電体層2の変化によ
る表面プラズモンの信号変化を、前記配置の光結合器を
介して放射光6の変化より得るように構成したことを特
徴とする表面プラズモンによる信号処理素子に係るもの
である。
Further, the dielectric layer 2 is arranged on the metal thin film 1, and the optical coupler consisting of the light transmitting medium 3 is arranged on the opposite side, and the dielectric layers 2 are formed by using the excitation light sources 4 and 5. Single or multiple surface plasmons are excited at the interface of the metal thin film 1 to propagate on the metal thin film 1, and the signal change of the surface plasmon due to the change of the dielectric layer 2 is radiated through the optical coupler of the above-mentioned arrangement 6 The present invention relates to a signal processing element using surface plasmons, which is characterized in that it is obtained from the change of

【0010】また、前記誘電体層2に接する金属薄膜1
の膜厚を、取り扱う表面プラズモンの振動数に対応する
光波長の10〜50分の1程度に薄くし、前記金属薄膜
1をはさんで誘電体層2と反対側に光透過媒質3を置
き、誘電体層2と金属薄膜1の界面で励起し伝搬する表
面プラズモンを誘電体層2の変化によって変化させ、表
面プラズモンの信号変化を放射光変化として得られるこ
とが可能となるように前記光結合器を構成したことを特
徴とする請求項1,2のいずれか1項に記載の表面プラ
ズモンによる信号処理の方法並びに信号処理素子に係る
ものである。
A metal thin film 1 in contact with the dielectric layer 2 is also provided.
Of the surface plasmon to be handled is thinned to about 1/50 to 1/50 of the wavelength of light, and the light transmission medium 3 is placed on the side opposite to the dielectric layer 2 with the metal thin film 1 interposed therebetween. , The surface plasmon that is excited and propagated at the interface between the dielectric layer 2 and the metal thin film 1 is changed by the change of the dielectric layer 2, and the signal change of the surface plasmon can be obtained as a radiant light change. The present invention relates to a signal processing method and a signal processing element by surface plasmon according to any one of claims 1 and 2, wherein a coupler is configured.

【0011】また、前記金属薄膜1はアルミニウム層と
し、その上の誘電体層2はシアニン色素を分散したポリ
ビニルカルバゾール層2とし、その反対側の前記光透過
媒質3はBK7ガラス製の半円柱プリズムとして、アル
ミニウム薄膜1の厚さは励起光波長の10〜50分の1
程度とし、前記金属薄膜1と前記誘電体層2界面で表面
プラズモンが励起伝搬し、前記誘電体層2の変化で前記
光結合器を介して放射光6の変化を得ることが可能とな
るように前記光結合器を構成したことを特徴とする請求
項3記載の表面プラズモンによる信号処理の方法並びに
信号処理素子に係るものである。
The metal thin film 1 is an aluminum layer, the dielectric layer 2 thereon is a polyvinylcarbazole layer 2 in which a cyanine dye is dispersed, and the light transmission medium 3 on the opposite side is a semi-cylindrical prism made of BK7 glass. , The thickness of the aluminum thin film 1 is 1/50 to 1/50 of the excitation light wavelength.
The surface plasmon is excited and propagated at the interface between the metal thin film 1 and the dielectric layer 2, and the change of the dielectric layer 2 makes it possible to obtain the change of the radiated light 6 through the optical coupler. The present invention relates to a signal processing method and a signal processing element according to claim 3, wherein the optical coupler is configured as described above.

【0012】[0012]

【発明の実施の形態】好適と考える本発明の実施の形態
(発明をどのように実施するか)を、図面に基づいてそ
の作用効果を示して簡単に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention (how to carry out the invention) will be briefly described with reference to the drawings and showing its function and effect.

【0013】本発明者は、誘電体層2に接する金属薄膜
1の膜厚を、取り扱う表面プラズモンの振動数に対応す
る光波長の10〜50分の1程度に薄くし、前記金属薄
膜1をはさんで誘電体層2と反対側に光透過媒質3を置
き、誘電体層2と金属薄膜1の界面でほぼ光の速度で伝
搬する表面プラズモンを誘電体層2の変化によって変化
させ、変化した表面プラズモンの信号変化を放射光変化
として得ることができるとの知見を得た。このような知
見に基づき本発明がなされたものである。
The inventor of the present invention reduces the thickness of the metal thin film 1 in contact with the dielectric layer 2 to about 1/50 to 1/50 of the light wavelength corresponding to the frequency of surface plasmons to be handled. The light transmission medium 3 is placed on the opposite side of the dielectric layer 2 and the surface plasmon propagating at the interface of the dielectric layer 2 and the metal thin film 1 at almost the speed of light is changed by the change of the dielectric layer 2 and changed. It was found that the signal change of the surface plasmon can be obtained as the radiant light change. The present invention has been made based on such knowledge.

【0014】すなわち、請求項1に記載の発明は、励起
光源4,5を用いて誘電体層2と金属薄膜1界面に単一
あるいは多重の表面プラズモンを励起して金属薄膜1上
をほぼ光の速度で伝搬させ、誘電体層2の変化によって
表面プラズモンを変化させ、変化した表面プラズモンと
光結合器の共鳴による放射光6の強度変化や放射角度変
化、あるいはスペクトル波長の変化として信号処理を行
う方法についてのものである。
That is, in the invention described in claim 1, single or multiple surface plasmons are excited at the interface between the dielectric layer 2 and the metal thin film 1 by using the excitation light sources 4 and 5, so that the light on the metal thin film 1 is almost emitted. The signal processing is performed by changing the intensity of the radiated light 6 and the emission angle of the radiated light 6 due to the resonance of the changed surface plasmon and the optical coupler, or the change of the spectrum wavelength. It's about how to do it.

【0015】また、請求項2に記載の発明は、励起光源
4,5を用いて金属薄膜1上に単一あるいは多重の表面
プラズモンを励起して金属薄膜1上を伝搬させ、誘電体
層2の変化による表面プラズモンの信号変化を、光結合
器を介して放射光6の変化より得る信号処理素子につい
てのものである。
In the second aspect of the present invention, the excitation light sources 4 and 5 are used to excite single or multiple surface plasmons on the metal thin film 1 to propagate the surface plasmons on the metal thin film 1, and the dielectric layer 2 The present invention relates to a signal processing element which obtains a signal change of surface plasmon due to the change of the above from the change of the emitted light 6 through the optical coupler.

【0016】さらに、請求項3,4の発明は、金属薄膜
1は例えばアルミニウム層でその上の誘電体層2は例え
ばシアニン色素を分散したポリビニルカルバゾール層2
であり、その反対側の光透過媒質3は例えばBK7ガラ
ス製の半円柱プリズムであり、アルミニウム層の厚さは
励起光波長の10〜50分の1程度として、誘電体層2
と金属薄膜1の界面で励起され伝搬する表面プラズモン
を誘電体層2の変化によって変化させ、光結合器からの
放射光変化として得ることで信号処理を行う方法並びに
信号処理素子についてのものである。
Further, in the inventions of claims 3 and 4, the metal thin film 1 is, for example, an aluminum layer, and the dielectric layer 2 thereon is a polyvinylcarbazole layer 2 in which, for example, a cyanine dye is dispersed.
The light transmission medium 3 on the opposite side is, for example, a semi-cylindrical prism made of BK7 glass, and the thickness of the aluminum layer is set to about 1/10 to 1/50 of the excitation light wavelength, and the dielectric layer 2 is formed.
The present invention relates to a method and a signal processing element for performing signal processing by changing the surface plasmon excited and propagating at the interface between the metal thin film 1 and the metal thin film 1 by a change in the dielectric layer 2 and obtaining the change as radiated light from the optical coupler. .

【0017】請求項1に記載の発明においては、励起光
源4,5により誘電体層2と金属薄膜1界面に単一ある
いは多重の表面プラズモンが励起され金属薄膜1上を伝
搬し、誘電体層2を変化させることで表面プラズモンが
変化し、表面プラズモンと光結合器の共鳴による放射光
6の変化を発生する。
According to the first aspect of the invention, single or multiple surface plasmons are excited at the interface between the dielectric layer 2 and the metal thin film 1 by the excitation light sources 4 and 5, and propagate on the metal thin film 1 to form the dielectric layer. By changing 2, the surface plasmon changes, and the radiated light 6 changes due to the resonance of the surface plasmon and the optical coupler.

【0018】請求項2の発明においては、例えば励起光
源4,5の光波長の10〜50分の1程度の厚さの金属
薄膜1とその上に誘電体層2、そしてその反対側の光透
過媒質3で構成する光結合器で、誘電体層2の変化によ
って金属薄膜1上を励起され伝搬する表面プラズモンを
変化させることで、光結合器を介する放射光6の放射角
度依存性は変化する。
In the second aspect of the invention, for example, the metal thin film 1 having a thickness of about 10 to 1/50 of the light wavelength of the excitation light sources 4 and 5, the dielectric layer 2 thereon, and the light on the opposite side thereof. In the optical coupler composed of the transmission medium 3, the surface plasmon excited and propagating on the metal thin film 1 is changed by the change of the dielectric layer 2, so that the emission angle dependence of the emitted light 6 through the optical coupler is changed. To do.

【0019】[0019]

【実施例】本発明の具体的な実施例について図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0020】図1は、本発明の信号処理の方法及び信号
処理素子の実施例における断面図を示しており、1は金
属薄膜である例えば厚さ約15nmのアルミニウム薄膜
で、2は誘電体層である例えばシアニン色素を分散した
ポリビニルカルバゾール層、3は光透過媒質である例え
ばBK7ガラス製の半径10nmの半円柱プリズム、4
は光透過媒質を通しての励起光源である例えば波長48
8nmのアルゴンレーザー、5は誘電体層を直接励起す
る励起光源である例えば波長488nmのアルゴンレー
ザー、6は信号処理された放射光、7は放射角度の例で
ある。
FIG. 1 is a sectional view showing an embodiment of a signal processing method and a signal processing element according to the present invention. 1 is a metal thin film, for example, an aluminum thin film having a thickness of about 15 nm, and 2 is a dielectric layer. For example, a polyvinylcarbazole layer in which a cyanine dye is dispersed, 3 is a light transmitting medium, for example, a semi-cylindrical prism made of BK7 glass and having a radius of 10 nm, 4
Is an excitation light source through the light transmitting medium, for example, a wavelength of 48
An 8 nm argon laser, 5 is an excitation light source for directly exciting the dielectric layer, for example, an argon laser having a wavelength of 488 nm, 6 is a signal-processed emitted light, and 7 is an example of an emission angle.

【0021】アルミニウム薄膜1は表面プラズモン励起
のために必要であり、その厚さが半分の約8nmや2倍
の約30nmでは表面プラズモンの強い励起や強い放射
光6を得ることが困難であり、アルミニウム薄膜1の替
わりに銀薄膜や金薄膜を用いる場合では表面プラズモン
の励起や放射光6を得るための最適な膜厚は約50nm
であり、銀薄膜や金薄膜の厚さが半分の約25nmや2
倍の約100nmでは表面プラズモンの強い励起や強い
放射光6を得ることが困難である。
The aluminum thin film 1 is necessary for surface plasmon excitation, and it is difficult to obtain strong excitation of the surface plasmon and strong synchrotron radiation 6 when the thickness thereof is about 8 nm, which is half, or about 30 nm, which is twice the thickness. When a silver thin film or a gold thin film is used instead of the aluminum thin film 1, the optimum film thickness for exciting the surface plasmon and obtaining the emitted light 6 is about 50 nm.
And the thickness of the silver thin film and the gold thin film is half, about 25 nm or 2
It is difficult to obtain the strong excitation of the surface plasmon and the strong radiated light 6 when the wavelength is about 100 nm.

【0022】シアニン色素を分散したポリビニルカルバ
ゾール層2を誘電体層として機能し、金属薄膜1とシア
ニン色素を分散したポリビニルカルバゾール層2の界面
で表面プラズモンが励起され伝搬し、シアニン色素を分
散したポリビニルカルバゾール層2を熱処理すること
で、表面プラズモンの変化に起因した放射光6の変化の
例が図2であり、誘電体層2は表面プラズモンを励起
し、伝搬特性を変化できるように金属薄膜1上に配置す
る。
The polyvinylcarbazole layer 2 in which the cyanine dye is dispersed functions as a dielectric layer, and surface plasmons are excited and propagated at the interface between the metal thin film 1 and the polyvinylcarbazole layer 2 in which the cyanine dye is dispersed, and the polyvinyl in which the cyanine dye is dispersed. FIG. 2 shows an example of the change of the radiated light 6 caused by the change of the surface plasmon when the carbazole layer 2 is heat-treated, and the dielectric layer 2 excites the surface plasmon and changes the propagation characteristics so that the metal thin film 1 can be changed. Place it on top.

【0023】BK7製の光透過媒質3は屈折率が1.5
2で、金属薄膜1をはさんで誘電体層2の反対側に配置
することで、励起光源4を用いて誘電体層2と金属薄膜
1界面に表面プラズモンを励起し、また伝搬する表面プ
ラズモンからの放射光6を得ている。
The light transmitting medium 3 made of BK7 has a refractive index of 1.5.
By disposing the metal thin film 1 on the opposite side of the dielectric layer 2 at 2, the surface plasmon is excited and propagated at the interface between the dielectric layer 2 and the metal thin film 1 by using the excitation light source 4. The radiant light 6 from is obtained.

【0024】実施例の図2では、誘電体層2にシアニン
色素を分散したポリビニルカルバゾール層2を用いてい
るが、有機・無機物質に関係なく、熱処理で構造や誘電
特性を変化する誘電体層2を用いて良く、また、光照射
で構造や誘電特性を変化する誘電体層2を用いても良
く、あるいは電気信号で誘電特性を変化する誘電体層2
を用いても良く、気体や液体、固体物質を吸着する誘電
体層2を用いても良い。
In FIG. 2 of the embodiment, the polyvinylcarbazole layer 2 in which the cyanine dye is dispersed is used as the dielectric layer 2, but the dielectric layer whose structure and dielectric characteristics are changed by heat treatment regardless of the organic / inorganic substance. 2 may be used, or the dielectric layer 2 whose structure and dielectric characteristics are changed by light irradiation may be used, or the dielectric layer 2 whose dielectric characteristics are changed by an electric signal.
Alternatively, the dielectric layer 2 that adsorbs gas, liquid, or solid substance may be used.

【0025】なお、誘電体層2は層状である必要はな
く、島状や球状でも良く、金属薄膜1を完全に覆う必要
もなく、表面プラズモンを励起する部分や表面プラズモ
ンが伝搬する部分、また放射光6を得る部分でそれぞれ
異なる誘電体を用いても良い。
The dielectric layer 2 does not have to be layered, and may be island-shaped or spherical, and it is not necessary to completely cover the metal thin film 1, and a portion that excites surface plasmons and a portion where surface plasmons propagate, Different dielectrics may be used in the portion for obtaining the emitted light 6.

【0026】光結合器は、図1の金属薄膜1及び誘電体
層2、それに光透過媒質3とで構成されており、光透過
媒質3はBK7の半円柱プリズムである必要はなく、励
起光源4を用いた場合にこの構成で表面プラズモンが励
起可能であれば良く、また、表面プラズモンによる放射
光6が得られれば良く、例えば屈折率が1よりもある程
度高く光透過できる透明なプラスチック材料でも他のガ
ラス材料でも良く、形状も半円柱である必要はなく直方
体や半球型、三角柱型、あるいはそのような形状が光透
過できる板の上に多数配置されていても良く、励起光源
4の入射側と放射光6の側で異なる光結合器を用いても
良い。
The optical coupler is composed of the metal thin film 1 and the dielectric layer 2 of FIG. 1 and the light transmitting medium 3. The light transmitting medium 3 does not need to be a semi-cylindrical prism of BK7, and an excitation light source. When 4 is used, it is sufficient if the surface plasmon can be excited by this configuration, and it is sufficient that the radiated light 6 due to the surface plasmon can be obtained. For example, even a transparent plastic material having a refractive index higher than 1 and capable of transmitting light can be used. Other glass materials may be used, and the shape does not have to be a semi-cylindrical shape, and may be a rectangular parallelepiped shape, a hemispherical shape, a triangular prism shape, or a large number of such shapes may be arranged on a light-transmitting plate. Different optical couplers may be used on the side of the emitted light 6 and on the side of the emitted light 6.

【0027】また、励起光源4や励起光源5の励起レー
ザー光の導入、さらに放射光6を導出する場合は光ファ
イバーを用いても良い。
When introducing the excitation laser light from the excitation light source 4 or the excitation light source 5 and further deriving the emitted light 6, an optical fiber may be used.

【0028】尚、本発明は、本実施例に限られるもので
はなく、各構成要件の具体的構成は適宜設計し得るもの
である。
The present invention is not limited to this embodiment, and the specific constitution of each constituent element can be designed as appropriate.

【0029】[0029]

【発明の効果】本発明は上述のように構成したから、本
発明にかかる請求項1に記載の発明は、励起光源を用い
て誘電体層と金属薄膜界面に単一あるいは多重の表面プ
ラズモンを励起して金属薄膜上を伝搬させ、誘電体層の
変化によって表面プラズモンの信号を変化させ、変化し
た表面プラズモンと光結合器の共鳴による放射光の変化
として信号処理を行うことができるので、誘電体層の変
化に対応した速度で多重の信号処理を行うこともできる
表面プラズモンによる信号処理の方法となる。
Since the present invention is configured as described above, the invention according to claim 1 according to the present invention uses an excitation light source to form single or multiple surface plasmons at the interface between the dielectric layer and the metal thin film. Since it is excited and propagated on the metal thin film, the signal of the surface plasmon is changed by the change of the dielectric layer, and the signal processing can be performed as the change of the emitted light due to the resonance of the changed surface plasmon and the optical coupler. This is a method of signal processing by surface plasmon that can perform multiple signal processing at a speed corresponding to changes in body layers.

【0030】また、請求項2に記載の発明は、誘電体層
と金属薄膜界面に単一あるいは多重の表面プラズモンを
励起して金属薄膜上を伝搬させ、誘電体層の変化による
表面プラズモンの信号変化を放射光の信号変化とする信
号処理素子を構成することができる表面プラズモンによ
る信号処理素子となる。
Further, in the invention described in claim 2, single or multiple surface plasmons are excited at the interface between the dielectric layer and the metal thin film to propagate on the metal thin film, and the signal of the surface plasmon due to the change of the dielectric layer is generated. The signal processing element is a surface plasmon that can form a signal processing element that changes the signal of emitted light.

【0031】また、請求項3の発明は、誘電体層に接す
る金属薄膜の膜厚を、取り扱う表面プラズモンの振動数
に対応する光波長の10〜50分の1程度に薄くし、誘
電体層の変化による表面プラズモンの信号変化を放射光
変化として得られることを可能とする光透過媒質3を配
置して、確実に前記作用・効果を発揮する極めて優れた
表面プラズモンによる信号処理の方法並びに信号処理素
子となる。
According to a third aspect of the present invention, the thickness of the metal thin film in contact with the dielectric layer is reduced to about 1/50 to 1/50 of the light wavelength corresponding to the frequency of surface plasmons to be handled, and the dielectric layer is reduced. The signal processing method and signal by the extremely excellent surface plasmon that arranges the light transmission medium 3 that makes it possible to obtain a signal change of the surface plasmon due to the change of It becomes a processing element.

【0032】また、請求項4に記載の発明は、金属薄膜
はアルミニウム層でその上の誘電体層はシアニン色素を
分散したポリビニルカルバゾール層であり、その反対側
の光透過媒質3はBK7ガラス製の半円柱プリズムの配
置としたので、更に確実に誘電体層の変化で光結合器を
介して放射光の変化が得られる表面プラズモンによる信
号処理の方法並びに信号処理素子となる。
In the invention according to claim 4, the metal thin film is an aluminum layer, the dielectric layer thereon is a polyvinylcarbazole layer in which a cyanine dye is dispersed, and the light transmitting medium 3 on the opposite side is made of BK7 glass. Since the semi-cylindrical prism is arranged, the signal processing method and the signal processing element by the surface plasmon that can more surely obtain the change of the radiated light through the optical coupler by the change of the dielectric layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の概略構成説明図である。FIG. 1 is a schematic configuration explanatory diagram of the present embodiment.

【図2】本実施例のシアニン色素を分散したポリビニル
カルバゾール層は誘電体層として機能し、直接励起レー
ザーを用いて多重の表面プラズモンが励起されている場
合の誘電体層の熱処理前後の放射光の変化の例を示す放
射角度−放射光強度を示すグラフであり、太線の熱処理
後では放射角度約50度の放射光強度が強くなってい
る。
FIG. 2 shows a polyvinylcarbazole layer in which a cyanine dye of the present example is dispersed functions as a dielectric layer, and radiated light before and after heat treatment of the dielectric layer when multiple surface plasmons are excited by using a direct excitation laser. Is a graph showing an example of a change in the radiation angle vs. the radiation intensity, and the radiation intensity at a radiation angle of about 50 degrees is strong after the thick line heat treatment.

【符号の説明】[Explanation of symbols]

1 金属薄膜(アルミニウム薄膜) 2 誘電体層(ポリビニルカルバゾール層) 3 光透過媒質 4 励起光源 5 励起光源 6 放射光 1 Metal thin film (aluminum thin film) 2 Dielectric layer (polyvinylcarbazole layer) 3 Light transmission medium 4 Excitation light source 5 Excitation light source 6 Synchrotron radiation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新保 一成 新潟県新潟市五十嵐2の町8050 新潟大学 工学部内 (72)発明者 川上 貴浩 新潟県新潟市五十嵐2の町8050 新潟大学 工学部内 Fターム(参考) 2G059 EE01 EE02 GG01 GG03 HH02 HH06 JJ12 JJ22 MM01 5F072 PP10 YY15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazunari Shinbo             8050 2 Igarashi, Niigata City, Niigata Prefecture 8050 Niigata University             Faculty of Engineering (72) Inventor Takahiro Kawakami             8050 2 Igarashi, Niigata City, Niigata Prefecture 8050 Niigata University             Faculty of Engineering F term (reference) 2G059 EE01 EE02 GG01 GG03 HH02                       HH06 JJ12 JJ22 MM01                 5F072 PP10 YY15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属薄膜上に誘電体層を配置し、その反
対側に光透過媒質からなる光結合器を配置し、励起光源
を用いて誘電体層と金属薄膜界面に単一あるいは多重の
表面プラズモンを励起して金属薄膜上を伝搬させ、誘電
体層の変化によって表面プラズモンの信号を変化させ、
変化した表面プラズモンと光結合器の共鳴による放射光
変化の信号を用いることを特徴とする表面プラズモンに
よる信号処理の方法。
1. A dielectric layer is arranged on a metal thin film, an optical coupler made of a light transmitting medium is arranged on the opposite side, and a single or multiple layers are formed at the interface between the dielectric layer and the metal thin film by using an excitation light source. The surface plasmon is excited and propagated on the metal thin film, and the change of the dielectric layer changes the signal of the surface plasmon,
A method of signal processing by surface plasmon, which uses a signal of radiated light change due to the resonance of the changed surface plasmon and the optical coupler.
【請求項2】 金属薄膜上に誘電体層を配置し、その反
対側に光透過媒質からなる光結合器を配置した構成と
し、励起光源を用いて誘電体層と金属薄膜界面に単一あ
るいは多重の表面プラズモンを励起して金属薄膜上を伝
搬させ、誘電体層の変化による表面プラズモンの信号変
化を、前記配置の光結合器を介して放射光の変化より得
るように構成したことを特徴とする表面プラズモンによ
る信号処理素子。
2. A structure in which a dielectric layer is arranged on a metal thin film and an optical coupler made of a light transmitting medium is arranged on the opposite side, and a single or a single layer is formed at the interface between the dielectric layer and the metal thin film by using an excitation light source. It is characterized in that multiple surface plasmons are excited and propagated on a metal thin film, and a signal change of the surface plasmon due to a change of a dielectric layer is obtained from a change of radiated light through an optical coupler having the above arrangement. Signal processing element by surface plasmon.
【請求項3】 前記誘電体層に接する金属薄膜の膜厚
を、取り扱う表面プラズモンの振動数に対応する光波長
の10〜50分の1程度に薄くし、前記金属薄膜をはさ
んで誘電体層と反対側に光透過媒質を置き、誘電体層と
金属薄膜の界面で励起し伝搬する表面プラズモンを誘電
体層の変化によって変化させ、表面プラズモンの信号変
化を放射光変化として得られることが可能となるように
前記光結合器を構成したことを特徴とする請求項1,2
のいずれか1項に記載の表面プラズモンによる信号処理
の方法並びに信号処理素子。
3. A thin film of a metal thin film in contact with the dielectric layer is thinned to about 1/50 to 1/50 of a light wavelength corresponding to the frequency of surface plasmons to be handled, and the dielectric film is sandwiched between the thin metal films. A light transmissive medium is placed on the opposite side of the layer, and the surface plasmon excited and propagated at the interface between the dielectric layer and the metal thin film is changed by the change of the dielectric layer, and the signal change of the surface plasmon can be obtained as a radiant light change. The optical coupler is configured so as to be possible.
A method of signal processing by the surface plasmon according to any one of 1 to 4 and a signal processing element.
【請求項4】 前記金属薄膜はアルミニウム層とし、そ
の上の誘電体層はシアニン色素を分散したポリビニルカ
ルバゾール層とし、その反対側の前記光透過媒質はBK
7ガラス製の半円柱プリズムとして、アルミニウム薄膜
の厚さは励起光波長の10〜50分の1程度とし、前記
金属薄膜と前記誘電体層界面で表面プラズモンが励起伝
搬し、前記誘電体層の変化で前記光結合器を介して放射
光の変化を得ることが可能となるように前記光結合器を
構成したことを特徴とする請求項3記載の表面プラズモ
ンによる信号処理の方法並びに信号処理素子。
4. The metal thin film is an aluminum layer, the dielectric layer thereon is a polyvinylcarbazole layer in which a cyanine dye is dispersed, and the light transmission medium on the opposite side is BK.
7 As a semi-cylindrical prism made of glass, the thickness of the aluminum thin film is set to about 10 to 1/50 of the excitation light wavelength, surface plasmons are excited and propagated at the interface between the metal thin film and the dielectric layer, and the dielectric layer of the dielectric layer is The method of signal processing by surface plasmon and the signal processing element according to claim 3, wherein the optical coupler is configured so that a change in radiated light can be obtained through the optical coupler by a change. .
JP2002108333A 2002-04-10 2002-04-10 Method of signal processing by surface plasmon and signal processing element Expired - Fee Related JP4109888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108333A JP4109888B2 (en) 2002-04-10 2002-04-10 Method of signal processing by surface plasmon and signal processing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108333A JP4109888B2 (en) 2002-04-10 2002-04-10 Method of signal processing by surface plasmon and signal processing element

Publications (2)

Publication Number Publication Date
JP2003302336A true JP2003302336A (en) 2003-10-24
JP4109888B2 JP4109888B2 (en) 2008-07-02

Family

ID=29392143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108333A Expired - Fee Related JP4109888B2 (en) 2002-04-10 2002-04-10 Method of signal processing by surface plasmon and signal processing element

Country Status (1)

Country Link
JP (1) JP4109888B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259064A (en) * 2005-03-16 2006-09-28 Fdk Corp Method and device for intensifying electric field with surface plasmon
JP2009004027A (en) * 2007-06-21 2009-01-08 Panasonic Corp Micro-diameter light generation device
JP2009289856A (en) * 2008-05-28 2009-12-10 Stanley Electric Co Ltd Optical amplifier and method of designing the same
JP2010025966A (en) * 2008-07-15 2010-02-04 Stanley Electric Co Ltd Optical pulse generating apparatus and method of designing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259064A (en) * 2005-03-16 2006-09-28 Fdk Corp Method and device for intensifying electric field with surface plasmon
JP2009004027A (en) * 2007-06-21 2009-01-08 Panasonic Corp Micro-diameter light generation device
JP4712004B2 (en) * 2007-06-21 2011-06-29 パナソニック株式会社 Small diameter light production equipment
JP2009289856A (en) * 2008-05-28 2009-12-10 Stanley Electric Co Ltd Optical amplifier and method of designing the same
JP2010025966A (en) * 2008-07-15 2010-02-04 Stanley Electric Co Ltd Optical pulse generating apparatus and method of designing the same

Also Published As

Publication number Publication date
JP4109888B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
Ramakrishna et al. Removal of absorption and increase in resolution in a near-field lens via optical gain
JP3654836B2 (en) Photonic crystal omnidirectional reflector
JP5495718B2 (en) Subject information acquisition device
US7349598B2 (en) Surface plasmon resonance device
JP5354582B2 (en) Terahertz wave generator
WO2014099081A2 (en) Holey optical device
JP2003302336A (en) Method and element for signal processing by surface plasmon
US20100054296A1 (en) Terahertz wave generating apparatus and terahertz wave generating method
JPS598802B2 (en) Optical waveguide coupling device and manufacturing method
Willard Focusing ultrasonic radiators
Valenta et al. Microcavity-like leaky mode emission from a planar optical waveguide made of luminescent silicon nanocrystals
Seki et al. Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system
Shibayama et al. Fundamental investigation of a grating consisting of InSb-coated dielectric cylinders on a substrate in the THz regime
JP2004146189A (en) Light guide plate
JP2009282073A (en) Intensity modulation method for terahertz wave and intensity modulator for terahertz wave
Beadle et al. The acoustic phase resonances and surface waves supported by a compound rigid grating
JP2008175616A (en) Surface plasmon resonance sensor
Raetz et al. Acoustic beam steering by light refraction: Illustration with directivity patterns of a tilted volume photoacoustic source
US20130181146A1 (en) Electromagnetic wave emission device
Soller et al. Dynamic modifications to the plasmon resonance of a metallic nanoparticle coupled to a planar waveguide: beyond the point-dipole limit
Lanoy et al. Three-dimensional acoustic lensing with a bubbly diamond metamaterial
JP2005195868A (en) Electromagnetic field generating element
Uehara et al. Enhancement of ultrahigh-frequency vibration of an Au/Si3N4 composite resonator with picosecond ultrasound
JP2019211725A (en) Light irradiation device
Fesenko et al. Terahertz aperiodic multilayered structure arranged according to the Kolakoski sequence

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050411

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061207

A521 Written amendment

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071112

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120411

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees