JP2003302333A - Diagnostic method for in-duct contamination and simple evaluation method for duct cleaning effect - Google Patents

Diagnostic method for in-duct contamination and simple evaluation method for duct cleaning effect

Info

Publication number
JP2003302333A
JP2003302333A JP2002107339A JP2002107339A JP2003302333A JP 2003302333 A JP2003302333 A JP 2003302333A JP 2002107339 A JP2002107339 A JP 2002107339A JP 2002107339 A JP2002107339 A JP 2002107339A JP 2003302333 A JP2003302333 A JP 2003302333A
Authority
JP
Japan
Prior art keywords
duct
adhesive tape
image
adhered particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002107339A
Other languages
Japanese (ja)
Other versions
JP3607258B2 (en
Inventor
Kazuhiko Sakamoto
数彦 坂本
Takashi Yanagi
宇 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2002107339A priority Critical patent/JP3607258B2/en
Publication of JP2003302333A publication Critical patent/JP2003302333A/en
Application granted granted Critical
Publication of JP3607258B2 publication Critical patent/JP3607258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Duct Arrangements (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate a dust cleaning effect simply, instantly, quantitatively and precisely when an in-duct contamination is diagnosed. <P>SOLUTION: An adhesive tape 2 is pasted on a prescribed position at the inside of a duct 1, stuck particles 3, 3, etc., and so on deposited at the inside of the duct are transferred to the adhesive tape 2, the adhesive tape 2 is photographed by a microscope, a photographed image is fetched by a computer 8, the photographed image is binarization-processed by the computer 8, a projection area of the stuck particles is divided by an area of the whole photographed image so as to find an area rate of the stuck particles, and a contamination degree inside the duct is decided on the basis of the area rate of the stuck particles. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調ダクト内の汚
染度合いを評価するとともに、ダクト清掃効果を簡易的
に評価するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the degree of contamination in an air conditioning duct and simply evaluating the duct cleaning effect.

【0002】[0002]

【従来の技術】例えばビル、工場、病院などの大きな建
物には、温湿度、気流、塵埃、微生物数、臭気等の条件
を、建物内の人間や物品に対して最適な条件に保つこと
を目的として空調が設置されている。前記空調におい
て、空気の搬送路となるのがダクトである。
2. Description of the Related Art For large buildings such as buildings, factories and hospitals, it is necessary to keep the conditions such as temperature and humidity, air flow, dust, number of microorganisms, odor, etc., to optimum conditions for humans and articles in the building. Air conditioning is installed for the purpose. In the air conditioning, the duct serves as an air carrying path.

【0003】前記ダクトは、経時的に内面に粒子が付着
し堆積するとともに、微生物にとって生息し易い好環境
であることから、塵埃や微生物が徐々に増え次第に汚染
の度合いが増していく。従って、ダクトの汚染度合いを
正確に把握することが重要であるとともに、ダクト清掃
を行った際にはその効果を定量的に評価することが必要
となる。
Particles adhere to and accumulate on the inner surface of the duct over time, and since it is a favorable environment for microorganisms to inhabit, the degree of contamination increases as the amount of dust and microorganisms gradually increases. Therefore, it is important to accurately grasp the degree of pollution of the duct, and it is necessary to quantitatively evaluate the effect when the duct is cleaned.

【0004】従来より、ダクト内汚染の診断は一般的に
目視により行われ、ダクト清掃による付着粒子の除去効
果は、専らダクトの清掃前後にダクト内面の付着粒子を
クリーンルーム用ワイパ等の化学雑巾で拭き取り、前記
化学雑巾の重量を測定する拭い取り法や、ダクト内面に
粘着テープを貼り付け、清掃前後にダクト内面の付着粒
子を前記粘着テープに転写し、この粘着テープに光を透
過して、光透過率を測定する光透過法、さらには前記化
学雑巾より検液を培地に塗布した後、一定期間培養し
て、発育したコロニー数を計数することにより、ダクト
清掃前後のダクト内面の付着微生物数を測定する微生物
数計数法などが知られている。
[0004] Conventionally, the diagnosis of contamination in the duct is generally performed by visual inspection, and the effect of removing adhered particles by cleaning the duct is to remove the adhered particles on the inner surface of the duct with a chemical rag such as a wiper for clean room before and after cleaning the duct. Wiping, a wiping method for measuring the weight of the chemical wipe, or sticking an adhesive tape on the inner surface of the duct, transferring the adhered particles on the inner surface of the duct to the adhesive tape before and after cleaning, transmitting light to this adhesive tape, Light transmission method to measure the light transmittance, further after applying the test solution from the chemical wipe to the medium, cultured for a certain period, by counting the number of colonies that have grown, adhered microorganisms on the inner surface of the duct before and after cleaning the duct A method for counting the number of microorganisms for measuring the number is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、目視に
よる診断方法の場合は、汚染度合いが具体的にどの程度
であるかを定量化することができないため、診断者によ
る個人差が評価に出易いなど問題があった。
However, in the case of the visual diagnosis method, it is not possible to quantify the concrete degree of contamination, and therefore individual differences among diagnosticians are likely to be evaluated. There was a problem.

【0006】一方、拭い取り法では、ある程度定量化は
可能であるが、化学雑巾の重量が測定環境の湿度に影響
される。この影響を抑えるために、例えば湿度が調整さ
れたデシケータ内に前記化学雑巾を少なくとも1日以上
放置する必要があり、迅速に評価が出来ず即時性がな
い。さらには、清掃後にダクト内の汚染度合いが非常に
低くなった場合には、拭き取った粒子の量を既存天秤で
量れない場合があり、正確性に欠けるなどの問題があっ
た。
On the other hand, in the wiping method, although quantification is possible to some extent, the weight of the chemical wipe is influenced by the humidity of the measuring environment. In order to suppress this effect, it is necessary to leave the chemical rag for at least one day in a desiccator whose humidity has been adjusted, so that quick evaluation cannot be performed and it is not immediate. Furthermore, when the degree of contamination in the duct becomes extremely low after cleaning, the amount of particles wiped off may not be measured by the existing balance, and there is a problem such as lack of accuracy.

【0007】前記光透過法の場合は、即時性はあるけれ
ども、粒子の色に影響を受けるため、正確に粒子量を計
れないとともに、測定用粘着テープには光透過度のばら
つきがあり補正が必要となるなどの問題があった。微生
物数を計数する方法は、正確性は高いものの、培養が必
要となり、清掃直後に迅速に評価を得ることができない
などの問題があった。具体的に、微生物には原核細胞よ
りなる細菌と、真核細胞よりなるカビ・酵母等の真菌と
があるが、ダクト内に増殖し易いのは真菌であり、かか
る真菌の培養には5〜7日程度の日数が必要となる。
In the case of the light transmission method, although it has immediacy, it is not possible to accurately measure the amount of particles because it is affected by the color of the particles, and the adhesive tape for measurement has a variation in the light transmittance, which causes correction. There was a problem such as being necessary. Although the method of counting the number of microorganisms is highly accurate, it has a problem that it requires culturing and it is not possible to quickly obtain an evaluation immediately after cleaning. Specifically, microorganisms include bacteria consisting of prokaryotic cells and fungi such as mold and yeast consisting of eukaryotic cells, but it is fungi that easily grow in the duct, and it is necessary to culture 5 to 5 such fungi. It takes about 7 days.

【0008】そこで、本発明の主たる課題は、ダクト内
汚染の診断およびダクト清掃効果の評価に当たり、これ
らを簡便かつ即時に、そして定量的かつ正確に評価でき
るようにすることにある。
[0008] Therefore, the main object of the present invention is to make it possible to easily and immediately evaluate quantitatively and accurately the diagnosis of duct contamination and the evaluation of duct cleaning effect.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる課
題を解決するために種々の検討を重ねた結果、視野面積
に対する付着粒子の投影面積の割合と、ダクト内の堆積
粒子量とが比例するとともに、前記堆積粒子量とダクト
内の微生物数とが比例するとの知見を得た。
As a result of various studies to solve the above problems, the present inventors have found that the ratio of the projected area of adhered particles to the visual field area and the amount of accumulated particles in the duct are In addition to being proportional, it was found that the amount of accumulated particles is proportional to the number of microorganisms in the duct.

【0010】すなわち本発明は、前記面積率が大きけれ
ば、堆積粒子数が多くかつ生息している微生物数が多い
ため汚染度が高いと評価でき、逆に前記面積率が小さけ
れば、堆積粒子数が少なくかつ生息している微生物数が
少ないため汚染度が低いと評価できる、との知見に基づ
いて成されたものであって、前記課題を解決するための
請求項1に係る本発明として、ダクト内面の所定位置に
粘着テープを貼り付け、前記ダクト内面に堆積した付着
粒子を前記粘着テープに転写させた後、該粘着テープを
顕微鏡により撮影して、撮影画像をコンピュータに取り
込み、前記コンピュータにより前記撮影画像の二値化処
理を行って、前記撮影画像全体の面積に対する付着粒子
の投影面積の割合を求め、この付着粒子の投影面積割合
に基づいてダクト内の汚染度を判断することを特徴とす
るダクト内汚染の診断方法が提供される。
That is, according to the present invention, if the area ratio is large, it can be evaluated that the pollution degree is high because the number of accumulated particles is large and the number of living microorganisms is large, and conversely, if the area ratio is small, the number of accumulated particles is large. The present invention according to claim 1 for solving the above-mentioned problems is based on the finding that the degree of pollution can be evaluated to be low because the number of living organisms is small and the number of living microorganisms is small. An adhesive tape is attached to a predetermined position on the inner surface of the duct, and after the adhered particles accumulated on the inner surface of the duct are transferred to the adhesive tape, the adhesive tape is photographed by a microscope and the photographed image is taken into a computer, and the computer The binarization processing of the photographed image is performed to obtain the ratio of the projected area of the adhered particles to the area of the entire photographed image, and the duct is based on the projected area ratio of the adhered particles. Diagnostic methods in the duct contamination, characterized in that to determine the degree of contamination is provided.

【0011】上記請求項1に係る発明においては、前記
付着粒子の投影面積割合(以下、面積率ともいう。)に
よってダクト内の汚染度合いを判断するようにした。前
記判断は、例えば前記面積率に応じたランク付けを行っ
ておき、定量評価とすることでもよいし、面積率と付着
粒子量の相関図、付着粒子量と微生物数の相関図等から
判断するようにしてもよい。
In the invention according to claim 1, the degree of contamination in the duct is determined by the projected area ratio (hereinafter, also referred to as area ratio) of the adhered particles. The determination may be performed, for example, by ranking according to the area ratio and quantitative evaluation may be performed, or may be determined from a correlation diagram between the area ratio and the amount of adhered particles, a correlation diagram between the amount of adhered particles and the number of microorganisms, and the like. You may do it.

【0012】このような手法であれば、一連の作業は数
分〜数十分で済ますことができ、簡便かつ即時に評価で
きるとともに、個人差に拠らず定量的かつ正確に判断で
きるようになる。
[0012] With such a method, a series of work can be completed in a few minutes to several tens of minutes, and it is possible to make a simple and immediate evaluation, and to make a quantitative and accurate judgment regardless of individual differences. Become.

【0013】請求項2に係る本発明として、ダクト清掃
前および清掃後にそれぞれ、ダクト内面の所定位置に粘
着テープを貼り付け、前記ダクト内面に堆積した付着粒
子を前記粘着テープに転写させた後、該粘着テープを顕
微鏡により撮影して、撮影画像をコンピュータに取り込
み、前記コンピューターにより前記撮影画像の二値化処
理を行って、前記撮影画像全体の面積に対する付着粒子
の投影面積の割合を求め、前記ダクト清掃前の付着粒子
の投影面積割合とダクト清掃後の付着粒子の投影面積割
合との比較によってダクト清掃効果を評価することを特
徴とするダクト清掃効果の簡易評価方法が提供される。
According to the second aspect of the present invention, an adhesive tape is attached to a predetermined position on the inner surface of the duct before and after cleaning the duct, and after the adhered particles deposited on the inner surface of the duct are transferred to the adhesive tape, The adhesive tape is photographed by a microscope, the photographed image is taken into a computer, the photographed image is binarized by the computer, and the ratio of the projected area of the adhered particles to the entire area of the photographed image is obtained. There is provided a simple method for evaluating a duct cleaning effect, characterized by evaluating the duct cleaning effect by comparing the projected area ratio of the adhered particles before the duct cleaning and the projected area ratio of the adhered particles after the duct cleaning.

【0014】上記請求項2記載の発明では、ダクト清掃
前の付着粒子の面積率とダクト清掃後の付着粒子の面積
率との比較によってダクト清掃効果を評価することとし
た。
According to the second aspect of the invention, the duct cleaning effect is evaluated by comparing the area ratio of the adhered particles before the duct cleaning and the area ratio of the adhered particles after the duct cleaning.

【0015】請求項3に係る本発明として、前記粘着テ
ープは有色テープを使用するとともに、顕微鏡撮影時に
斜め上方360°方向から光を照射することにより、前
記コンピュータにおける二値化処理時に画像前処理を実
質的に不要とした請求項1、2いずれかに記載のダクト
内汚染の診断方法またはダクト清掃効果の簡易評価方法
が提供される。
According to a third aspect of the present invention, the adhesive tape is a colored tape, and by irradiating light from an obliquely upper 360 ° direction during photographing with a microscope, image preprocessing is performed during binarization processing in the computer. A method for diagnosing contamination in a duct or a simple method for evaluating a duct cleaning effect according to any one of claims 1 and 2 in which the above is substantially unnecessary.

【0016】上記請求項3記載の発明では、顕微鏡によ
る撮影時に、反射光の影響を無くし、付着粒子の散乱光
のみを効果的に捕捉するため、粘着テープは有色テー
プ、好ましくは黒色テープを使用するとともに、顕微鏡
撮影時に斜め上方360°方向から光を照射するように
した。これによって、コンピュータにおける二値化処理
時に、エッジ強調や穴埋め等の画像前処理を行わなくて
も、簡便に二値化が可能となる。なお、有色テープを使
用する場合は、光源色をバックグランド色(テープ地
色)と補色関係としたり、画像信号処理を行うこと等に
より、撮影画像のバックグランドを黒色として粒子像の
みを浮き上がらせることが可能となる。
In the invention described in claim 3, a colored tape, preferably a black tape is used as the adhesive tape in order to eliminate the influence of the reflected light and effectively capture only the scattered light of the adhered particles at the time of photographing with a microscope. At the same time, the light was radiated from the obliquely upper 360 ° direction at the time of microscopic photography. As a result, the binarization can be easily performed without performing image preprocessing such as edge enhancement and hole filling during the binarization processing in the computer. When a colored tape is used, the light source color is made complementary to the background color (tape background color), and the background of the captured image is made black to make only the particle image stand out by performing image signal processing. It becomes possible.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0018】〔ダクト内汚染の診断方法〕図1に示され
るように、ダクト1内の所定箇所に対し、黒色の粘着テ
ープ2を貼り付け、図示しない圧力ローラーにより一定
の圧力をかけた後、前記粘着テープ2を前記ダクト1よ
り引き剥がすことにより、ダクト1内面の付着粒子3を
前記粘着テープ2に転写し、同図に示されるように、前
記粘着テープ2をスライドガラス4の表面に巻きつけ、
測定試料5を作成する。
[Diagnosis Method for Duct Contamination] As shown in FIG. 1, a black adhesive tape 2 is attached to a predetermined place in the duct 1, and a constant pressure is applied by a pressure roller (not shown). By peeling off the adhesive tape 2 from the duct 1, the adhered particles 3 on the inner surface of the duct 1 are transferred to the adhesive tape 2, and the adhesive tape 2 is wound on the surface of the slide glass 4 as shown in FIG. Turn on
A measurement sample 5 is created.

【0019】前記ダクト1内面の付着粒子3を粘着テー
プ2に転写する際には、粘着シート試験法(JIS Z 0237)
に準じて行うことが望ましい。同試験法では、約15cm
の前記粘着テープ2をダクト1内面に貼った後、前記粘
着テープ2の上面を、2kgの圧着ローラーを往復5回走
行させて、前記ダクト1内面の付着粒子3を前記粘着テ
ープ2に転写させ、180°引き剥がし法により前記ダ
クト1内面より引き剥がすことを規定している。
When transferring the adhered particles 3 on the inner surface of the duct 1 to the adhesive tape 2, an adhesive sheet test method (JIS Z 0237)
It is desirable to carry out according to. The test method is about 15 cm
After sticking the adhesive tape 2 on the inner surface of the duct 1, a 2 kg pressure roller is reciprocated 5 times on the upper surface of the adhesive tape 2 to transfer the adhered particles 3 on the inner surface of the duct 1 to the adhesive tape 2. , 180 ° peeling method is defined as peeling from the inner surface of the duct 1.

【0020】なお、前記粘着テープ2の材質としては、
ゴム系、アクリル系、ビニルエーテル系、ウレタン系
等、通常粘着テープの材質として使用できるものであれ
ば、どのようなものを用いても良い。黒色化に際して、
表面に黒色系顔料を含んだ塗料を塗工するか、テープ基
材の製造段階で樹脂自体に添加するかのいずれかの方法
を採ることができる。
The material of the adhesive tape 2 is as follows.
Any material such as rubber-based, acrylic-based, vinyl ether-based, and urethane-based materials that can be usually used as the material of the adhesive tape may be used. When blackening,
Either a method of applying a paint containing a black pigment on the surface or adding it to the resin itself at the stage of manufacturing the tape substrate can be adopted.

【0021】次に前記測定試料5を、図2に示されるよ
うに、後述の付着粒子を正確に映し出すために、好まし
くは1μm以上の解像力を有するデジタル顕微鏡6によ
り撮影して、その画像をメモリカード7に記録し、前記
メモリカード7に記録された画像をコンピュータ8に取
り込み、コンピュータ8により前記撮影画像の二値化処
理を行い、撮影画像全体の面積に対する付着粒子の投影
面積の割合、すなわち付着粒子の「面積率」を求めるよ
うにする。なお、前記コンピュータ8への取込みはメモ
リーカード7を介さず、ケーブル接続等によって直接取
り込むようにしてもよい。
Next, as shown in FIG. 2, the measurement sample 5 is photographed by a digital microscope 6 having a resolving power of preferably 1 μm or more in order to accurately display adhered particles described later, and the image is stored in a memory. The image recorded on the card 7 is read into the computer 8, the image recorded on the memory card 7 is loaded into the computer 8, and the computer 8 binarizes the photographed image. Try to find the "area ratio" of the adhered particles. It should be noted that the computer 8 may be directly loaded by a cable connection or the like without using the memory card 7.

【0022】前記デジタル顕微鏡6による撮影に際して
は、後述の実施例2で検証されるように、斜め上方36
0°方向から光を照射するようにする。前記粘着テープ
2として黒色テープを使用し、かつ斜め上方360°方
向から光を照射して撮影を行うことにより、図3に示さ
れるように、顕微鏡レンズに入射するテープからの反射
光を極力抑えることができ、付着粒子の散乱光のみを効
果的に捕捉することができるようになる。その結果、前
記コンピュータ8による二値化処理時に、画像の前処理
を実質的に不要とすることができる。従来、この種のコ
ンピュータによる二値化処理においては、背景と粒子像
を明確に区別できるように、エッジ強調や穴埋め等の画
像の前処理を行うことが必要とされ、この前処理には計
測者の主観的な判断に基づいて行われていた。前者の前
記エッジ強調処理とは、対象物の輪郭がぼやけてはっき
りしないような場合に、画像データのRGB値や輝度に
微分をかけることにより、画像データの変化量の大きい
ところを検出することで、対象物のエッジをはっきりさ
せるようにする処理を言い、後者の穴埋め処理とは撮影
の段階で、光の加減などにより影が出来たり、画像に抜
け落ちが生じている場合に、二値化を行う前に、対象物
として認識させるために抜け落ちた部分を対象物と同色
で塗り潰す処理を言う。
When the image is taken by the digital microscope 6, as shown in Example 2 which will be described later, the obliquely upper portion 36
Light is emitted from the 0 ° direction. By using a black tape as the adhesive tape 2 and irradiating light obliquely from the upper 360 ° direction for photographing, as shown in FIG. 3, the reflected light from the tape incident on the microscope lens is suppressed as much as possible. Therefore, only the scattered light of the adhered particles can be effectively captured. As a result, it is possible to substantially eliminate the need for image preprocessing during the binarization processing by the computer 8. Conventionally, in this type of computer binarization processing, it is necessary to perform image preprocessing such as edge enhancement and hole filling so that the background and the particle image can be clearly distinguished. It was done based on the subjective judgment of the person. The former edge enhancement processing is to detect a large amount of change in the image data by differentiating the RGB values and the brightness of the image data when the outline of the object is blurred and not clear. , The process of clarifying the edge of the object.The latter hole filling process is a process of binarization when there is a shadow due to the adjustment of light at the shooting stage or a dropout occurs in the image. Before performing, it refers to a process of filling the missing part with the same color as the object in order to recognize it as the object.

【0023】ところで、前記粘着テープ2の地色は、前
記黒色以外の有色とすることもできる。この場合は、画
像信号処理を行うことにより、撮影画像のバックグラン
ドを黒色として粒子像のみを浮き上がらせることが可能
となる。例えば、バックグランド色をマゼンタ(RGB値:
&hff00ff)、光源色を白色(RGB値:&hffffff)とし、デ
ジタルカメラのホワイトバランス調整でCCD素子から
送られてくるRGB信号に対しマゼンタを減算すること
により、撮影画像はバックグランドが黒色(&hff00ff-&
hff00ff=&h000000)となり、粒子像は散乱光色(&hffff
ffに近い色)−&hff00ffとなり、緑(&h00ff00)で撮影
されることになる。
By the way, the background color of the adhesive tape 2 may be a color other than the black color. In this case, by performing the image signal processing, it is possible to make the background of the captured image black and raise only the particle image. For example, set the background color to magenta (RGB value:
& hff00ff), the light source color is white (RGB value: & hffffff), and the background of the captured image is black (& hff00ff- &
hff00ff = & h000000), and the particle image is a scattered light color (& hffff
Color close to ff)-& hff00ff, which means that you will be shooting in green (& h00ff00).

【0024】また、粘着テープ色と補色関係にある光源
色を使用することによっても、撮影画像のバックグラン
ドをモノトーンとして粒子像のみを浮き上がらせること
が可能である。例えば、バックグランドをマゼンタ(RG
B値:&hff00ff)、光の色を緑(RGB値:&h00ff00)とする
ことにより、前記画像信号処理の場合と同様に、撮影画
像はバックグランドが黒色となり、粒子像は緑で撮影さ
れることになる。
Further, by using a light source color which has a complementary color relationship with the color of the adhesive tape, it is possible to raise only the particle image with the background of the photographed image as a monotone. For example, set the background to magenta (RG
By setting the B value: & hff00ff) and the light color to green (RGB value: & h00ff00), the background of the captured image will be black and the particle image will be captured in green, as in the case of the image signal processing. become.

【0025】前記付着粒子の面積率に基づいて、ダクト
汚染度を診断するには、該面積率は付着粒子量に比例
し、かつ付着粒子量は微生物量に比例することが分かっ
ているため、例えば前記面積率に応じたランク付けを行
っておき、定量評価とすることでもよいし、面積率と付
着粒子量の相関図、付着粒子量と微生物数の相関図等か
ら判断するようにしてもよい。
In order to diagnose the duct contamination degree based on the area ratio of the adhered particles, it is known that the area ratio is proportional to the amount of adhered particles and the amount of adhered particles is proportional to the amount of microorganisms. For example, ranking may be performed according to the area ratio and quantitative evaluation may be performed, or determination may be made from the correlation diagram between the area ratio and the amount of adhered particles, the correlation diagram between the amount of adhered particles and the number of microorganisms, and the like. Good.

【0026】また、経年時の付着粒子量の予測も可能で
あるため、何年後にダクト清掃を行うべきかも判断でき
るようになるとともに、前記面積率からダクト内の付着
微生物数を求めることもできる。
Further, since it is possible to predict the amount of adhered particles over time, it becomes possible to determine how many years later the duct should be cleaned, and the number of adhered microorganisms in the duct can be obtained from the area ratio. .

【0027】〔ダクト清掃効果の簡易評価方法〕次に、
前記ダクト内汚染の診断方法に基づく清掃効果の簡易評
価方法について説明すると、前記ダクト内汚染の診断方
法は付着粒子の多少に拘わらず、汚染度の診断が可能で
あるから、ダクト清掃前および清掃後にそれぞれ、同様
の手順に従って測定試料5を採取し、デジタル顕微鏡6
により撮影して、その画像をメモリカード7に記録し、
前記メモリカード7に記録された画像をコンピューター
8に取り込み、コンピュータ8により前記撮影画像の二
値化処理を行い、撮影画像全体の面積に対する付着粒子
の投影面積の割合、すなわち付着粒子の「面積率」を求
めるようにする。
[Simplified Evaluation Method of Duct Cleaning Effect] Next,
A simple evaluation method of the cleaning effect based on the method for diagnosing contamination in the duct will be described. Since the method for diagnosing contamination in the duct can diagnose the degree of contamination regardless of the amount of particles adhering to the duct, before and after cleaning the duct. After that, the measurement sample 5 is collected according to the same procedure, and the digital microscope 6 is used.
, And record the image on the memory card 7,
The image recorded in the memory card 7 is loaded into the computer 8, and the computer 8 binarizes the photographed image. The ratio of the projected area of the adhered particles to the entire area of the photographed image, that is, the “area ratio of the adhered particles” To be asked.

【0028】そして、前記ダクト清掃前の付着粒子の面
積率とダクト清掃後の付着粒子の面積率との比較によっ
てダクト清掃効果を評価するようにする。この測定は、
数分〜数十分で済ますことができるため、清掃直後にダ
クト清掃効果を知ることが可能となる。
Then, the duct cleaning effect is evaluated by comparing the area ratio of the adhered particles before the duct cleaning with the area ratio of the adhered particles after the duct cleaning. This measurement is
Since it takes only several minutes to several tens of minutes, it is possible to know the duct cleaning effect immediately after cleaning.

【0029】[0029]

【実施例1】本実施例1では、本発明者等が実験で得た
知見、すなわち視野面積に対する付着粒子の投影面積の
割合(面積率)と、ダクト内の堆積粒子量とが比例する
とともに、前記堆積粒子量とダクト内の微生物数とが比
例するとの知見に係る実験例について詳述する。
Example 1 In Example 1, the knowledge obtained by the present inventors through experiments, that is, the ratio of the projected area of adhered particles to the visual field area (area ratio) is proportional to the amount of accumulated particles in the duct. An experimental example relating to the finding that the amount of accumulated particles is proportional to the number of microorganisms in the duct will be described in detail.

【0030】(1)ダクト内堆積粒子の予測式 先ず最初に、本発明者等は実験に先立ち、ダクト内堆積
粒子の付着状況から面積率と経過時間との関係の予測式
を仮定した。
(1) Prediction Formula for Deposited Particles in Duct First, prior to the experiment, the present inventors assumed a predictive formula for the relationship between the area ratio and the elapsed time from the adhesion state of the deposited particles in the duct.

【0031】仮に、単位時間においてダクト1に堆積
する付着粒子3の面積が一定である。付着粒子間の重
なり合い面積は前記付着粒子3の面積に比例する。とい
う仮定が成立するとすれば、堆積による付着粒子3の面
積の増加は、前記付着粒子3の総面積から重なり合い面
積を引いたものになる。この関係は下式(1)で表すこと
ができる。そして、t=0のときにはC=0という条件
で下式(1)の両辺を積分し整理すると、下式(2)を導くこ
とができる。一方、t=∞のときにはC=1とすると、
下式(2)よりCo=Aが得られ、この関係を下式(2)に再度
代入すると、下式(3)を導くことができる。
It is assumed that the area of the adhered particles 3 deposited on the duct 1 per unit time is constant. The overlapping area between the adhering particles is proportional to the area of the adhering particles 3. If the above assumption holds, the increase in the area of the adhering particles 3 due to the deposition is the total area of the adhering particles 3 minus the overlapping area. This relationship can be expressed by the following equation (1). Then, when t = 0, the following equation (2) can be derived by integrating and rearranging both sides of the following equation (1) under the condition of C = 0. On the other hand, when t = ∞ and C = 1,
Co = A is obtained from the following equation (2), and by substituting this relationship into the following equation (2), the following equation (3) can be derived.

【0032】[0032]

【数1】 [Equation 1]

【0033】(2)面積率と付着粒子の関係 図4に示されるように、給気ダクト1内にワセリン粘膜
を塗布した複数枚のスライドガラス4を置き、90日、21
0日、1200日の期間に亘り暴露し、付着粒子を採取した
スライドガラス4を画像処理・解析装置SPICA(Speedy P
article Image& Color Analysis、日本アビオニクス社
製)にて、粒子の個数、面積等の解析を行った。
(2) Relationship between area ratio and adhered particles As shown in FIG. 4, a plurality of glass slides 4 coated with Vaseline mucosa were placed in the air supply duct 1 and left for 90 days, 21 days.
The slide glass 4 that has been exposed for 0 days and 1200 days and collected adhered particles is used as an image processing / analyzing device SPICA (Speedy P
The number of particles, the area, etc. were analyzed by article Image & Color Analysis, manufactured by Japan Avionics Co., Ltd.).

【0034】上記試験の結果を図5に示す。図5は縦軸
を面積率とし横軸を経過時間としたグラフ上にプロット
するとともに、上記数1による経過時間と面積率との予
測線を引いたものである。図5より、面積率は時間の経
過に従い上昇すること、及び上記予測線と実測値とがほ
ぼ一致することが確認された。
The results of the above test are shown in FIG. FIG. 5 is plotted on a graph in which the vertical axis is the area ratio and the horizontal axis is the elapsed time, and a prediction line for the elapsed time and the area ratio is drawn according to the above mathematical expression 1. From FIG. 5, it was confirmed that the area ratio increased with the passage of time, and that the above-mentioned predicted line and the actually measured value substantially matched.

【0035】また、1200日経過後の粒子重量を拭い取り
法により測定し、図6に示される縦軸を粒子重量、横軸
を面積率としたグラフ上にプロットするとともに、築後
19年経っていた建物のダクトを計測した際の実績値を
プロットした。なお、19年後の実測値の面積率は不明
であるため、上記予測式の値を採用した。同図6から明
らかに、粒子重量が面積率と比例関係にあることが確認
された。また、これらの関係に基づいて、ダクト内の堆
積粒子重量の経時変化を予測した結果を図7に示す。
The particle weight after 1200 days was measured by the wiping method and plotted on a graph in which the vertical axis represents the particle weight and the horizontal axis represents the area ratio shown in FIG. The actual values when measuring the duct of the building were plotted. Since the area ratio of the actual measurement value after 19 years is unknown, the value of the above-mentioned prediction formula was adopted. It was confirmed from FIG. 6 that the particle weight is in a proportional relationship with the area ratio. In addition, based on these relationships, FIG. 7 shows the results of predicting the change over time in the weight of the deposited particles in the duct.

【0036】(3)付着粒子量と付着真菌数との関係 ダクト内の堆積条件の異なる部位、3箇所について、前
記付着粒子量を拭い取り法により計測するとともに、粒
子を拭き取った化学雑巾より検液および検液の10倍希
釈液を作成し、それぞれを0.5mlずつ2種類のPDA培地に
塗布した後、25℃で5日間培養し、発育した集落数
(コロニー数)を付着真菌数とした。
(3) Relationship between the amount of adhered particles and the number of adhered fungi The amount of adhered particles is measured by the wiping method at three locations in the duct where the deposition conditions are different, and the particle size is measured by a chemical wipe. Solution and test solution were diluted 10 times, and 0.5 ml of each solution was applied to two kinds of PDA medium, and then cultured at 25 ° C for 5 days, and the number of developed colonies (the number of colonies) was defined as the number of adherent fungi. .

【0037】その結果を図8に示す。同図から、付着粒
子量と付着真菌数とには明らかに比例関係があることが
確認された。また、回帰直線より、1gの堆積粒子には
約40、000個の真菌が含まれているものと予測される。
The results are shown in FIG. From the figure, it was confirmed that the amount of adhered particles and the number of adhered fungi have a clear proportional relationship. Further, from the regression line, it is predicted that 1 g of deposited particles contains about 40,000 fungi.

【0038】[0038]

【実施例2】本発明では特に、コンピュータにおける二
値化処理に際し、前処理が不要となるように、粘着テー
プとして黒色テープを使用するとともに、顕微鏡撮影時
に斜め上方360°方向から光を照射するようにしてい
る。本実施例2では、この方法に至るまでに行った種々
の検討実験について述べる。
[Embodiment 2] In particular, in the present invention, a black tape is used as an adhesive tape so that pre-processing is not required during binarization processing in a computer, and light is obliquely irradiated from an upward 360 ° direction during microscopic photography. I am trying. In the second embodiment, various examination experiments conducted up to this method will be described.

【0039】図9は本発明法に従って粘着テープとして
黒色テープを使用するとともに、顕微鏡撮影時に斜め上
方360°方向から光を照射して撮影した画像と、その
二値化画像である。撮影段階で既に背景と粒子像が明確
に区別されており、前処理を行わなくても二値化が可能
であることが確認された。
FIG. 9 shows an image photographed by using a black tape as an adhesive tape according to the method of the present invention and irradiating light from an obliquely upper 360 ° direction when photographing with a microscope, and a binarized image thereof. At the shooting stage, the background and the particle image were already clearly distinguished, and it was confirmed that binarization is possible without pretreatment.

【0040】これに対して、図10に示される例は、粘
着テープとして透明テープを使用し、光を真上から照射
して撮影を行った従来法の場合の撮影画像と、その二値
化画像である。二値化画像に背景が写り込んでおり、ま
た粒子像に抜けが生じ、更に粒子の影を写り込んでいる
ことが分かる。単純に二値化した場合は、的確に粒子像
を捉えることができず前処理が必要である。
On the other hand, in the example shown in FIG. 10, a transparent tape is used as an adhesive tape, and a photographed image in the case of the conventional method photographed by irradiating light from directly above and its binarization It is an image. It can be seen that the background is reflected in the binarized image, omission occurs in the particle image, and the shadow of the particle is further reflected. In the case of simple binarization, the particle image cannot be captured accurately and preprocessing is required.

【0041】図11に示される例は、粘着テープとして
黒色テープを使用し、光を真上から照射して撮影を行っ
た従来法の場合の撮影画像と、その二値化画像である。
黒色テープを使用してはいるものの、光を真上から照射
しているため、背景が写し出されており、単純に二値化
した場合には、粒子像だけでなくテープ表面の像も拾っ
てしまうため、テープ表面の画像を前処理により除去す
る必要がある。
The example shown in FIG. 11 is a photographed image in the case of the conventional method in which a black tape is used as the adhesive tape and light is irradiated from directly above, and a binarized image thereof.
Although the black tape is used, since the light is emitted from directly above, the background is projected, and in the case of simple binarization, not only the particle image but also the image on the tape surface is picked up. Therefore, it is necessary to remove the image on the tape surface by pretreatment.

【0042】更に、図12に示される例は、粘着テープ
として黒色テープを使用し、4方向から光を照射して撮
影を行った撮影画像である。この場合も、粒子像に影が
生じてしまい、明確に粒子像を捉えることはできなかっ
た。
Further, the example shown in FIG. 12 is a photographed image photographed by irradiating light from four directions using a black tape as the adhesive tape. Also in this case, a shadow was generated in the particle image, and the particle image could not be clearly captured.

【0043】[0043]

【発明の効果】以上詳説のとおり本発明によれば、ダク
ト内汚染の診断およびダクト清掃効果の評価に当たり、
これらを簡便かつ即時に、そして定量的かつ正確に評価
できるようになる。
As described above in detail, according to the present invention, in diagnosing the contamination in the duct and evaluating the duct cleaning effect,
It becomes possible to evaluate these easily and immediately, quantitatively and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】ダクト1内面の付着粒子3を粘着テープ2に転
写する図であり、(A)はダクト1内面、(B)は測定試料5
を示す図である。
FIG. 1 is a diagram of transferring adhered particles 3 on the inner surface of a duct 1 to an adhesive tape 2, where (A) is the inner surface of the duct 1 and (B) is a measurement sample 5.
FIG.

【図2】測定試料5の面積率測定要領図である。FIG. 2 is an area ratio measurement procedure diagram of a measurement sample 5.

【図3】デジタル顕微鏡6による撮影要領図である。FIG. 3 is a diagram showing a shooting procedure by the digital microscope 6.

【図4】実施例1における計測要領図である。FIG. 4 is a measurement procedure diagram in the first embodiment.

【図5】面積率と経過時間との相関図である。FIG. 5 is a correlation diagram between an area ratio and elapsed time.

【図6】面積率と付着粒子量との相関図である。FIG. 6 is a correlation diagram between the area ratio and the amount of adhered particles.

【図7】付着粒子量と経過年数との相関図である。FIG. 7 is a correlation diagram between the amount of adhered particles and the number of years elapsed.

【図8】付着微生物数と付着粒子量との相関図である。FIG. 8 is a correlation diagram between the number of adhered microorganisms and the amount of adhered particles.

【図9】本発明法に従って撮影した画像とその二値化画
像である。
FIG. 9 is an image taken according to the method of the present invention and a binarized image thereof.

【図10】比較法(その1)による撮影画像とその二値
化画像である。
FIG. 10 is a photographed image and a binarized image thereof by the comparison method (No. 1).

【図11】比較法(その2)による撮影画像とその二値
化画像である。
FIG. 11 is a photographed image and a binarized image thereof according to the comparison method (Part 2).

【図12】4方向から光照射した場合の撮影画像であ
る。
FIG. 12 is a photographed image when light is irradiated from four directions.

【符号の説明】[Explanation of symbols]

1…ダクト、2…粘着テープ、3…付着粒子、4…スラ
イドガラス、5…測定試料、6…デジタル式顕微鏡、7
…メモリカード、8…コンピューター、9…撮影画像、
10…二値化画像
1 ... Duct, 2 ... Adhesive tape, 3 ... Adhesive particles, 4 ... Slide glass, 5 ... Measurement sample, 6 ... Digital microscope, 7
... memory card, 8 ... computer, 9 ... captured image,
10 ... Binary image

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G052 AA04 AA40 AC23 AD12 AD52 FD03 GA32 JA16 2G059 AA05 CC19 DD12 DD13 EE02 EE13 FF01 FF03 GG10 HH02 KK04 MM01 MM09 MM10 PP04 3L080 AD01 AE04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G052 AA04 AA40 AC23 AD12 AD52                       FD03 GA32 JA16                 2G059 AA05 CC19 DD12 DD13 EE02                       EE13 FF01 FF03 GG10 HH02                       KK04 MM01 MM09 MM10 PP04                 3L080 AD01 AE04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ダクト内面の所定位置に粘着テープを貼り
付け、前記ダクト内面に堆積した付着粒子を前記粘着テ
ープに転写させた後、該粘着テープを顕微鏡により撮影
して、撮影画像をコンピュータに取り込み、前記コンピ
ュータにより前記撮影画像の二値化処理を行って、前記
撮影画像全体の面積に対する付着粒子の投影面積の割合
を求め、この付着粒子の投影面積割合に基づいてダクト
内の汚染度を判断することを特徴とするダクト内汚染の
診断方法。
1. An adhesive tape is attached at a predetermined position on the inner surface of a duct, and after the adhered particles deposited on the inner surface of the duct are transferred to the adhesive tape, the adhesive tape is photographed by a microscope and a photographed image is displayed on a computer. The captured image is binarized by the computer to obtain the ratio of the projected area of the adhered particles to the entire area of the captured image, and the contamination degree in the duct is calculated based on the projected area ratio of the adhered particles. A method for diagnosing contamination in a duct characterized by making a judgment.
【請求項2】ダクト清掃前および清掃後にそれぞれ、ダ
クト内面の所定位置に粘着テープを貼り付け、前記ダク
ト内面に堆積した付着粒子を前記粘着テープに転写させ
た後、該粘着テープを顕微鏡により撮影して、撮影画像
をコンピュータに取り込み、前記コンピューターにより
前記撮影画像の二値化処理を行って、前記撮影画像全体
の面積に対する付着粒子の投影面積の割合を求め、 前記ダクト清掃前の付着粒子の投影面積割合とダクト清
掃後の付着粒子の投影面積割合との比較によってダクト
清掃効果を評価することを特徴とするダクト清掃効果の
簡易評価方法。
2. An adhesive tape is adhered to a predetermined position on the inner surface of the duct before and after cleaning the duct, the adhered particles accumulated on the inner surface of the duct are transferred to the adhesive tape, and then the adhesive tape is photographed by a microscope. Then, the captured image is loaded into a computer, the binarization processing of the captured image is performed by the computer, and the ratio of the projected area of the adhered particles to the area of the entire captured image is obtained. A simple method for evaluating a duct cleaning effect, which comprises evaluating a duct cleaning effect by comparing a projected area ratio with a projected area ratio of adhered particles after duct cleaning.
【請求項3】前記粘着テープは有色テープを使用すると
ともに、顕微鏡撮影時に斜め上方360°方向から光を
照射することにより、前記コンピュータにおける二値化
処理時に画像前処理を実質的に不要とした請求項1、2
いずれかに記載のダクト内汚染の診断方法またはダクト
清掃効果の簡易評価方法。
3. The colored tape is used as the adhesive tape, and by irradiating light from an obliquely upward 360 ° direction during microscopic photography, image pre-processing is substantially unnecessary during binarization processing in the computer. Claims 1 and 2
A method for diagnosing contamination in a duct or a simple method for evaluating a duct cleaning effect according to any one of items.
JP2002107339A 2002-04-10 2002-04-10 Method for diagnosing duct contamination Expired - Fee Related JP3607258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002107339A JP3607258B2 (en) 2002-04-10 2002-04-10 Method for diagnosing duct contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002107339A JP3607258B2 (en) 2002-04-10 2002-04-10 Method for diagnosing duct contamination

Publications (2)

Publication Number Publication Date
JP2003302333A true JP2003302333A (en) 2003-10-24
JP3607258B2 JP3607258B2 (en) 2005-01-05

Family

ID=29391373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002107339A Expired - Fee Related JP3607258B2 (en) 2002-04-10 2002-04-10 Method for diagnosing duct contamination

Country Status (1)

Country Link
JP (1) JP3607258B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056444A1 (en) * 2006-11-06 2008-05-15 Yamaguchi University Dust measuring method and dust measuring device
JP2014044135A (en) * 2012-08-28 2014-03-13 Ntt-At Creative Corp Method of measuring object to be detected
JP2016142722A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Fine particle sampling method, and fine particle analysis method
CN107044926A (en) * 2017-03-16 2017-08-15 林文华 Realize the novel high speed particle diameter on-line testing analysis system of space plane
JP2022537719A (en) * 2019-06-28 2022-08-29 アンドリッツ オサケ ユキチュア Determination of fractional particle group share of 1 or more in recovery boiler flue gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056444A1 (en) * 2006-11-06 2008-05-15 Yamaguchi University Dust measuring method and dust measuring device
JPWO2008056444A1 (en) * 2006-11-06 2010-02-25 国立大学法人山口大学 Dust measuring method and dust measuring device
JP5207185B2 (en) * 2006-11-06 2013-06-12 国立大学法人山口大学 Dust measuring method and dust measuring device
JP2014044135A (en) * 2012-08-28 2014-03-13 Ntt-At Creative Corp Method of measuring object to be detected
JP2016142722A (en) * 2015-02-05 2016-08-08 新日鐵住金株式会社 Fine particle sampling method, and fine particle analysis method
CN107044926A (en) * 2017-03-16 2017-08-15 林文华 Realize the novel high speed particle diameter on-line testing analysis system of space plane
JP2022537719A (en) * 2019-06-28 2022-08-29 アンドリッツ オサケ ユキチュア Determination of fractional particle group share of 1 or more in recovery boiler flue gas

Also Published As

Publication number Publication date
JP3607258B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US10281382B2 (en) Measuring volume and constituents of cells
JP3749933B2 (en) Method for rapid quantification of microbial growth
EP0635126B1 (en) Detection of microorganisms and determination of their sensitivity to antibiotics
US5660998A (en) Method for the rapid detection of microorganisms in samples
Schuler et al. Sensitization and chronic beryllium disease at a primary manufacturing facility, part 3: exposure-response among short-term workers
JP2005509140A (en) A robust method for detecting and quantifying stains in histological specimens based on a physical model of stain absorption
JP2023090960A (en) Learning device, inspection device, learning method, and inspection method
CA3007159C (en) System and method for real time assay monitoring
US20120040330A1 (en) Biological and chemical collection and detection
US11531032B2 (en) Methods for measuring analyte and/or protein in biological samples
JP7418274B2 (en) Foreign matter inspection system, foreign matter inspection method, program and semiconductor manufacturing equipment
JP2003302333A (en) Diagnostic method for in-duct contamination and simple evaluation method for duct cleaning effect
Yoon et al. Improved modified pressure imaging and software for egg micro-crack detection and egg quality grading
WO2020018186A1 (en) Methods and systems of characterizing and counting microbiological colonies
CN110672609A (en) Automatic ferrographic analysis system based on image recognition
CN105973910A (en) Structure and texture characteristic-based lamp tube quality detection and flaw classification method and system thereof
JP2004279317A (en) Painting management system
JPH0744707A (en) Bacterium inspection device and inspection method
JP4477173B2 (en) Microorganism measuring method and apparatus
Shi et al. Automatic recognition and evaluation of micro-contaminant particles on ultra-smooth optical substrates using image analysis method
JP7141537B2 (en) particle quantifier
JP2004004006A (en) Microorganism inspection system
JP4344862B2 (en) Method and apparatus for automatic detection of observation object
Meider et al. Faster Evaluation of Contaminated Surfaces for Mould Inspections by Tape Sampling
CN104794684B (en) A kind of automatic plaque measurement method based on Virus plaque image

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Ref document number: 3607258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees