JP2003302107A - Geothermal heat exchange apparatus - Google Patents

Geothermal heat exchange apparatus

Info

Publication number
JP2003302107A
JP2003302107A JP2002109879A JP2002109879A JP2003302107A JP 2003302107 A JP2003302107 A JP 2003302107A JP 2002109879 A JP2002109879 A JP 2002109879A JP 2002109879 A JP2002109879 A JP 2002109879A JP 2003302107 A JP2003302107 A JP 2003302107A
Authority
JP
Japan
Prior art keywords
heat
heat medium
heat exchange
underground
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002109879A
Other languages
Japanese (ja)
Inventor
Akimi Suzawa
昭己 洲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Kankyo Gijutsu KK
Original Assignee
Misawa Kankyo Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Kankyo Gijutsu KK filed Critical Misawa Kankyo Gijutsu KK
Priority to JP2002109879A priority Critical patent/JP2003302107A/en
Priority to CN03120734A priority patent/CN1451932A/en
Publication of JP2003302107A publication Critical patent/JP2003302107A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat exchange apparatus capable of efficiently collecting geothermal power. <P>SOLUTION: A heat exchanger 1 for collecting geothermal power by heat exchange is vertically laid underground. The geothermal power collected by the heat exchanger 1 is transferred to a radiating pipe 2 through a circulating path 3 and is emitted from the radiating pipe 2 for snow melting or the like. In this apparatus, the circulating path 3 is provided with two heating medium circulating pumps 4 one of which is a backup, an expansion tank 5 for absorbing a volume change of the heating medium, and a pressure detector 6 for detecting a pressure lower limit due to leakage of the heating medium or the like and stopping the circulating pumps 4. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】 本発明は、融雪、空調、給
湯、温水プール、植物栽培、あるいは動物飼育等を、地
中熱を利用して行うことのできる地中熱交換装置に関す
るものである。 【0002】 【従来の技術】 従来から、地下水(温水)を汲み上げ
て、融雪、空調、給湯、温水プール、植物栽培あるいは
動物飼育等に利用することが考えられているが、大量の
地下水を汲み上げると地盤沈下を引き起こすことから、
現在では殆ど実施されていない。 【0003】 また、近年では、地中熱採取用の熱交換
器を地中に埋設し、その熱交換器に熱媒を送って地中熱
との間で間接熱交換させ、その採取した熱を利用して融
雪等を行う装置が考えられている。 【0004】 【発明が解決しようとする課題】 しかし、この従来の
装置には改善すべき点があり、これまで、充分効率的に
地中熱を採取できるものがないのが現状である。 【0005】本発明は、こうした点に鑑み創案されたも
ので、地中熱を効率的に採取することのできる地中熱交
換装置を提供することを課題とする。 【0006】 【課題を解決するための手段】 図1乃至図3を参照し
て説明する。本発明に係る地中熱交換装置は、熱交換に
よって地中熱を採取する熱交換器1を地中に垂直に埋設
し、前記熱交換器1で採取した地中熱を循環路3を介し
て放熱管2に送り、当該放熱管2で放出させて融雪等を
行う地中熱交換装置において、前記循環路3に、一基を
予備とした二基の熱媒循環ポンプ4と、熱媒の容積変化
を吸収する膨張タンク5と、熱媒の漏れ等による圧力下
限値を検知して前記循環ポンプ4を停止させる圧力検知
器6を設けてなる。 【0007】 【発明の実施の形態】 本発明に係る地中熱交換装置の
実施形態を、図1および図2に示す。この装置は、下端
部を塞いだ外管1a内に内管1bを同心状に挿入組付け
し、その外管1aと内管1bとの間に間隙路1cを形成
した同心二重管式の熱交換器1を地中に垂直に埋設して
いる。そして、内筒の上端部から熱媒(不凍液)を送
り、その下端部で反転させて、間隙路1cに侵入させ上
昇させることによって地中熱を採取させる。続いて、そ
の地中熱を循環路3を介して路面の直下に設けた放熱管
2に送り、その放熱管2で放出させて融雪を行うもので
ある。 【0008】こうした構成の装置において、さらに、循
環路3に、一基を予備とした二基の熱媒循環ポンプ4
と、熱媒の容積変化を吸収する膨張タンク5と、熱媒の
漏れ等による圧力下限値を検知して前記循環ポンプ4を
停止させる圧力検知器6を設けている。 【0009】本実施形態における熱交換器1は、地中5
0m〜100mの深さに複数本埋設しており、また、相
互の熱干渉を避けるために、少なくとも5mの間隔を開
けている。また、外管1aは直径90mmの硬質ポリエ
チレン製とし、内管1bは直径56mmの同じく硬質ポ
リエチレン製とし、毎分20〜25リットルの液媒を送
り込んでいる。 【0010】放熱管2は、複数本を一つのヘッダー11
に連結しており、それぞれをヘアピンカーブ状に屈曲形
成し、路面の直下に埋設している。 【0011】熱媒循環路3は往路3aと復路3bを有
し、その往路3aに熱媒循環ポンプ4を設けている。こ
の熱媒循環ポンプ4は、4〜6本の熱交換器1に対して
二基を並列に設けるものとし、その内の一基を予備とし
ている。一基を予備としているので、通常駆動している
熱媒循環ポンプ4が故障しても、予備を駆動させること
によって、本装置を停止させることなく連続的に運転す
ることができる。 【0012】また、この熱媒循環路3には、流量計7、
エアー抜き弁8、逃がし弁9、圧力計10、膨張タンク
5および圧力検知器6を設けている。流量計7は、循環
する熱媒の流量を計測するものであり、圧力計10は熱
媒循環路3内の圧力を計測するものである。膨張タンク
5は、温度変化に伴う熱媒循環路3内における熱媒の容
積変化を吸収する。また、圧力検知器6は、熱媒循環路
3が損傷するなどして熱媒の圧力が下限値に達した際に
信号を発して、熱媒循環ポンプ4を停止させるはたらき
をする。 【0013】この地中熱交換装置の作用について説明す
る。まず、熱媒循環ポンプ4を駆動すると、熱媒は熱媒
循環路3の往路3aを通って、熱交換器1の内管1b上
端部に供給される。この熱媒は、内筒を下方に進んだ
後、その下端部で反転して間隙路1cに侵入し、そのま
ま上方に送られる。この間隙路1cを通過する間に、熱
交換によって地中熱を採取する。 【0014】熱交換器1で地中熱を採取した熱媒は、熱
媒循環路3の復路3bを通って、ヘッダー11に送ら
れ、そこから各放熱管2に分配される。そして、各放熱
管2で地中熱を放出し、その熱によって路面の雪を融か
す。 【0015】この間、温度変化によって熱媒の容積が変
化した際は、その容積変化を膨張タンク5で吸収し、熱
媒を円滑に循環させる。また、熱媒が漏れてその圧力が
下限値に達すると、その旨の信号を発信して熱媒循環ポ
ンプ4を停止させ、熱媒のそれ以上の漏れを防止する。 【0016】なお、放熱管2は、同心二重管式のものに
限定されず、図3に示すU字式のものを使用することも
できる。これは、管本体1dの中央を隔壁1eで区切
り、液媒を一方の通路から送り込み、他方の通路から排
出するものである。 【0017】また、循環ポンプ4は、商用電源の他に、
太陽熱発電装置や内燃機関発電装置によって稼動するこ
とができる。太陽光発電装置は、図4に示すように、ソ
ーラーパネル12で太陽光を吸収し、蓄電池ボックス1
3内の蓄電池15に、充電必要時に作動する制御基板1
4を介して蓄電し、コントローラー16によって必要量
の電力を循環ポンプ4へ供給する。 【0018】 【発明の効果】 本発明に係る地中熱交換器1は、熱媒
循環ポンプ4を二基設け、その内の一基を予備としてい
るので、通常駆動している熱媒循環ポンプ4が故障して
も、本装置を停止させることなく運転することができ
る。従って、地中熱を効率的に採取して、融雪等を効果
的に行うことができる。 【0019】また、膨張タンク5を設けているので、温
度変化によって熱媒の容積が変化した際は、その容積変
化を吸収することができ、よって、熱媒を常に円滑に循
環させて、地中熱を効率的に採取することができる。さ
らに、圧力検知器6を設けているので、熱媒が漏れた場
合、圧力が下限値に達すると、その旨の信号を発して熱
媒循環ポンプ4を停止させる。従って、熱媒のそれ以上
の漏れを防止することができ、地中熱を効率的に採取で
きる。 【0020】なお、本発明は地中熱を利用するので、地
盤沈下を発生させることがない。また、地中熱は地中に
無限に存在し、無害であるので、融雪、空調、給湯、温
水プール、植物栽培、あるいは動物飼育等を、廉価な運
転コストで行うことができると共に、大気汚染等の環境
問題を誘発することもない。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can carry out snow melting, air conditioning, hot water supply, a heated pool, plant cultivation, animal breeding, etc., by using ground heat. It relates to an underground heat exchange device. Conventionally, it has been considered to pump groundwater (hot water) and use it for snowmelt, air conditioning, hot water supply, hot water pool, plant cultivation or animal breeding, etc. And cause land subsidence,
It is rarely implemented at present. In recent years, a heat exchanger for extracting geothermal heat has been buried underground, and a heat medium has been sent to the heat exchanger to indirectly exchange heat with the ground heat, thereby obtaining the collected heat. A device that melts snow and the like by using a device has been considered. [0004] However, there is a point to be improved in this conventional device, and there is no device that can extract geothermal heat efficiently enough so far. [0005] The present invention has been made in view of the above points, and it is an object of the present invention to provide an underground heat exchange device capable of efficiently extracting underground heat. A description will be given with reference to FIGS. 1 to 3. The underground heat exchange device according to the present invention embeds a heat exchanger 1 that extracts underground heat by heat exchange vertically underground, and transfers the underground heat collected by the heat exchanger 1 through a circulation path 3. In the underground heat exchange device which sends the heat to the heat radiating pipe 2 and releases the heat from the heat radiating pipe 2 to melt snow or the like, the circulation path 3 includes two heat medium circulation pumps 4 having And a pressure detector 6 that detects the lower limit of pressure due to heat medium leakage or the like and stops the circulating pump 4. FIG. 1 and FIG. 2 show an embodiment of an underground heat exchange device according to the present invention. This apparatus has a concentric double pipe type in which an inner pipe 1b is inserted and assembled concentrically in an outer pipe 1a whose lower end is closed, and a gap 1c is formed between the outer pipe 1a and the inner pipe 1b. The heat exchanger 1 is buried vertically in the ground. Then, a heat medium (antifreeze) is sent from the upper end of the inner cylinder, is inverted at the lower end, enters the gap 1c, and is raised to collect ground heat. Subsequently, the underground heat is sent to the heat radiating pipe 2 provided directly below the road surface via the circulation path 3 and is released by the heat radiating pipe 2 to melt snow. In the apparatus having such a configuration, two heat medium circulating pumps 4 having one spare are further provided in the circulation path 3.
And an expansion tank 5 for absorbing a change in the volume of the heat medium, and a pressure detector 6 for detecting the lower limit of pressure due to leakage of the heat medium and stopping the circulation pump 4. The heat exchanger 1 according to the present embodiment has an underground 5
A plurality of them are buried at a depth of 0 m to 100 m, and are spaced at least 5 m in order to avoid mutual thermal interference. The outer tube 1a is made of hard polyethylene having a diameter of 90 mm, and the inner tube 1b is also made of hard polyethylene having a diameter of 56 mm, and feeds a liquid medium at a rate of 20 to 25 liters per minute. The heat radiating pipe 2 is composed of a plurality of heat radiating tubes 2,
And each is bent into a hairpin curve shape and buried immediately below the road surface. The heat medium circulation path 3 has a forward path 3a and a return path 3b, and a heat medium circulation pump 4 is provided in the forward path 3a. This heat medium circulation pump 4 is provided with two units in parallel with respect to four to six heat exchangers 1, and one of them is used as a spare. Since one unit is used as a spare, even if the heat medium circulating pump 4 that is normally driven fails, by driving the spare, the present apparatus can be continuously operated without stopping. In addition, a flow meter 7,
An air vent valve 8, a relief valve 9, a pressure gauge 10, an expansion tank 5, and a pressure detector 6 are provided. The flow meter 7 measures the flow rate of the circulating heat medium, and the pressure gauge 10 measures the pressure in the heat medium circulation path 3. The expansion tank 5 absorbs a change in volume of the heat medium in the heat medium circulation path 3 due to a change in temperature. Further, the pressure detector 6 serves to stop the heat medium circulation pump 4 by issuing a signal when the pressure of the heat medium reaches the lower limit value due to damage of the heat medium circulation path 3 or the like. The operation of the underground heat exchange device will be described. First, when the heat medium circulation pump 4 is driven, the heat medium is supplied to the upper end of the inner pipe 1 b of the heat exchanger 1 through the outward path 3 a of the heat medium circulation path 3. After the heat medium travels downward in the inner cylinder, the heat medium reverses at the lower end thereof, enters the gap 1c, and is sent upward as it is. While passing through the gap 1c, the underground heat is collected by heat exchange. The heat medium from which the underground heat has been collected by the heat exchanger 1 passes through the return path 3b of the heat medium circulation path 3 and is sent to the header 11, from which it is distributed to the heat radiation tubes 2. Then, the underground heat is released from each of the heat radiating tubes 2, and the heat melts the snow on the road surface. During this time, when the volume of the heat medium changes due to a temperature change, the change in volume is absorbed by the expansion tank 5 and the heat medium is smoothly circulated. When the heat medium leaks and its pressure reaches the lower limit, a signal to that effect is transmitted and the heat medium circulation pump 4 is stopped to prevent the heat medium from leaking further. The heat radiating tube 2 is not limited to the concentric double tube type, but may be a U-shaped type shown in FIG. In this method, the center of the pipe main body 1d is divided by a partition wall 1e, and the liquid medium is fed from one passage and discharged from the other passage. The circulating pump 4 includes a commercial power source,
It can be operated by a solar thermal power generator or an internal combustion engine power generator. As shown in FIG. 4, the solar power generation device absorbs sunlight with a solar panel 12 and
The control board 1 that operates when charging is required is stored in the storage battery 15 in
The electric power is stored through the controller 4 and the controller 16 supplies a required amount of electric power to the circulation pump 4. The underground heat exchanger 1 according to the present invention is provided with two heat medium circulating pumps 4 and one of them is used as a spare. Even if 4 fails, the apparatus can be operated without stopping. Therefore, underground heat can be efficiently collected and snow melting can be performed effectively. Further, since the expansion tank 5 is provided, when the volume of the heat medium changes due to a change in temperature, the change in the volume can be absorbed. Medium heat can be efficiently collected. Furthermore, since the pressure detector 6 is provided, when the heat medium leaks, when the pressure reaches the lower limit, a signal to that effect is issued and the heat medium circulation pump 4 is stopped. Therefore, further leakage of the heat medium can be prevented, and ground heat can be efficiently collected. Since the present invention utilizes underground heat, no land subsidence occurs. In addition, geothermal heat exists indefinitely in the ground and is harmless. It does not induce environmental problems such as

【図面の簡単な説明】 【図1】 本発明の実施形態を示す構成図である。 【図2】 図1に示す実施形態における熱交換器を示す
もので、(a)は正面断面図、(b)は平面断面図であ
る。 【図3】 本発明の他の実施形態における熱交換器を示
すもので、(a)は正面断面図、(b)は平面断面図で
ある。 【図4】 本発明に係る装置の循環ポンプを稼動する太
陽熱発電装置のフローチャートである。 【符号の説明】 1 熱交換器 1a 外管 1b 内管 1c 間隙路 1d 管本体 1e 隔壁 2 放熱管 3 循環路 3a 往路 3b 復路 4 熱媒循環ポンプ 5 膨張タンク 6 圧力検知器 7 流量計 8 エアー抜き弁 9 逃がし弁 10 圧力計 11 ヘッダー 12 ソーラーパネル 13 蓄電池ボックス 14 制御基板 15 蓄電池 16 コントローラー
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of the present invention. FIGS. 2A and 2B show a heat exchanger in the embodiment shown in FIG. 1, wherein FIG. 2A is a front sectional view and FIG. 3A and 3B show a heat exchanger according to another embodiment of the present invention, wherein FIG. 3A is a front sectional view and FIG. 3B is a plan sectional view. FIG. 4 is a flowchart of a solar thermal power generation device that operates a circulation pump of the device according to the present invention. [Description of Signs] 1 Heat exchanger 1a Outer pipe 1b Inner pipe 1c Gap path 1d Pipe main body 1e Partition wall 2 Heat radiating pipe 3 Circulation path 3a Outbound path 3b Inbound path 4 Heat medium circulation pump 5 Expansion tank 6 Pressure detector 7 Flow meter 8 Air Extraction valve 9 Release valve 10 Pressure gauge 11 Header 12 Solar panel 13 Battery box 14 Control board 15 Battery 16 Controller

【手続補正書】 【提出日】平成15年2月24日(2003.2.2
4) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0013 【補正方法】変更 【補正内容】 【0013】この地中熱交換装置の作用について説明す
る。まず、熱媒循環ポンプ4を駆動すると、熱媒は熱媒
循環路3の往路3aを通って、熱交換器1の内管1b上
端部に供給される。この熱媒は、内管1bを下方に進ん
だ後、その下端部で反転して間隙路1cに侵入し、その
まま上方に送られる。この間隙路1cを通過する間に、
熱交換によって地中熱を採取する。 【手続補正2】 【補正対象書類名】図面 【補正対象項目名】図1 【補正方法】変更 【補正内容】 【図1】
[Procedure amendment] [Date of submission] February 24, 2003 (2003.2.2
4) [Procedure amendment 1] [Document name to be amended] Description [Item name to be amended] 0013 [Correction method] Change [Contents of amendment] The operation of this underground heat exchanger will be described. First, when the heat medium circulation pump 4 is driven, the heat medium is supplied to the upper end of the inner pipe 1 b of the heat exchanger 1 through the outward path 3 a of the heat medium circulation path 3. This heat medium, after traveling down the inner tube 1b , is inverted at the lower end and enters the gap 1c, and is sent upward as it is. While passing through this gap 1c,
Geothermal heat is collected by heat exchange. [Procedure amendment 2] [Document name to be amended] Drawing [Item name to be amended] Fig. 1 [Correction method] Change [Content of amendment] [Fig. 1]

Claims (1)

【特許請求の範囲】 【請求項1】 内部を循環させる熱媒で地中熱を採取す
る熱交換器(1)を地中に垂直に埋設し、 前記熱交換器(1)で採取した地中熱を循環路(3)を
介して放熱管(2)に送り、該放熱管(2)で放出させ
て融雪等を行う地中熱交換装置において、 前記循環路(3)に、一基を予備とした二基の熱媒循環
ポンプ(4)と、熱媒の容積変化を吸収する膨張タンク
(5)と、熱媒の漏れ等による圧力下限値を検知して前
記循環ポンプ(4)を停止させる圧力検知器(6)を設
けてなる地中熱交換装置。
Claims 1. A heat exchanger (1) for extracting geothermal heat with a heat medium circulating in the inside thereof is vertically buried in the ground, and the ground sampled by the heat exchanger (1). An underground heat exchange device that sends medium heat to a heat radiating pipe (2) through a circulation path (3) and discharges the heat by the heat radiating pipe (2) to melt snow or the like. Two heat medium circulating pumps (4), which are used as spares, an expansion tank (5) for absorbing a change in the volume of the heat medium, and a circulating pump (4) for detecting a pressure lower limit value due to heat medium leakage or the like. Underground heat exchange device provided with a pressure detector (6) for stopping the operation.
JP2002109879A 2002-04-12 2002-04-12 Geothermal heat exchange apparatus Pending JP2003302107A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002109879A JP2003302107A (en) 2002-04-12 2002-04-12 Geothermal heat exchange apparatus
CN03120734A CN1451932A (en) 2002-04-12 2003-03-18 Geothermal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109879A JP2003302107A (en) 2002-04-12 2002-04-12 Geothermal heat exchange apparatus

Publications (1)

Publication Number Publication Date
JP2003302107A true JP2003302107A (en) 2003-10-24

Family

ID=29243210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109879A Pending JP2003302107A (en) 2002-04-12 2002-04-12 Geothermal heat exchange apparatus

Country Status (2)

Country Link
JP (1) JP2003302107A (en)
CN (1) CN1451932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421960A1 (en) * 2017-06-26 2019-01-02 Jansen AG Pressure indicator
KR102189532B1 (en) * 2020-07-29 2020-12-14 (주)이너지테크놀러지스 Geothermal supply system capable of preventing leakage of geothermal heat fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2398977B1 (en) * 2011-01-31 2014-02-10 Sapje, S.L. AUTONOMOUS GEOTHERMAL TRANSFER SYSTEM BETWEEN SUBSUELOS.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421960A1 (en) * 2017-06-26 2019-01-02 Jansen AG Pressure indicator
KR102189532B1 (en) * 2020-07-29 2020-12-14 (주)이너지테크놀러지스 Geothermal supply system capable of preventing leakage of geothermal heat fluid

Also Published As

Publication number Publication date
CN1451932A (en) 2003-10-29

Similar Documents

Publication Publication Date Title
JP2001147056A (en) Soil heat utilization system by foundation pillar
JP2003301434A (en) Thawing device utilizing terrestrial heat
JP2005207718A (en) Snow melting device utilizing soil heat
KR101061494B1 (en) Heat exchange system using an earth heat
CN209893671U (en) High-efficient geothermal utilization system based on closed loop heat medium pipe
CN106940032A (en) A kind of single well type deep geothermal heat utilizes direct combustion type heat pump heat distribution system
JP2003301409A (en) Terrestrial heat-utilizing snow-melting device
JP2003302107A (en) Geothermal heat exchange apparatus
JP2007071439A (en) Triple u-shaped tube type underground heat exchanger
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
CN107191344A (en) Gravity heat engine and electricity generation system
JP2003306918A (en) Method for controlling underground-heat utilizing snow- melting device
JP2958614B2 (en) Heat medium circulation unit for underground heat exchanger
JP2003302122A (en) Geothermal unit
JP3134147B2 (en) Control method of geothermal snow melting system
JP2003306903A (en) Underground-heat radiating pipe
CN110397466B (en) Mine working face cooling system
CN206874453U (en) A kind of waste heat recovery system of air compressor
JP2003307352A (en) Underground heat exchanger
JP2003302121A (en) Air conditioner using natural energy and method for installing the same
JPH061606Y2 (en) Underground heat exchanger
CN110410145B (en) Mine working face cooling system
CN205690491U (en) A kind of air source heat pump floor board heating apparatus
JPH0960983A (en) Underground heat exchanger
JP2003307355A (en) Heat radiation pipe device utilizing underground heat