JP2003301455A - Method for designing composite wall - Google Patents

Method for designing composite wall

Info

Publication number
JP2003301455A
JP2003301455A JP2002105191A JP2002105191A JP2003301455A JP 2003301455 A JP2003301455 A JP 2003301455A JP 2002105191 A JP2002105191 A JP 2002105191A JP 2002105191 A JP2002105191 A JP 2002105191A JP 2003301455 A JP2003301455 A JP 2003301455A
Authority
JP
Japan
Prior art keywords
wall
composite
main
synthetic
shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002105191A
Other languages
Japanese (ja)
Other versions
JP4028746B2 (en
JP2003301455A5 (en
Inventor
Tatsuya Tomidokoro
達哉 冨所
Junji Sayama
順二 佐山
Masahiro Yoshimoto
正浩 吉本
Mitsuo Kurihara
美津雄 栗原
Yukihiro Naito
幸弘 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2002105191A priority Critical patent/JP4028746B2/en
Publication of JP2003301455A publication Critical patent/JP2003301455A/en
Publication of JP2003301455A5 publication Critical patent/JP2003301455A5/ja
Application granted granted Critical
Publication of JP4028746B2 publication Critical patent/JP4028746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To enable highly reliable checking. <P>SOLUTION: In a design method, after an earth retaining wall 10 is designed in step S10-S13, a composite wall 14 is designed in steps S14-S19. When the composite wall 14 is designed, a load in permanent erection is set in the step S14, and a structural calculation for the composite wall 14 is performed according to the setting of the load in the following step S15. Next, a gradual decrease rate of secondary sectional moment of inertia is set in the step S16; after that, the distribution of section force between the wall 10 and a permanently erected wall 12 is determined in the step S17; and the performance of the composite wall 14 is checked in the step S18. When the performance is checked in the step S18, a generated shear force Qs, which is assigned to the wall 10, and a generated shear force Qc, which is assigned to the wall 12, are computed according to the gradual decrease rate and the distribution of the section force; the composite wall 14 is separated into the walls 10 and 12; it is confirmed that the shear force Qs does not reach shearing strength Qsd of the wall 10; and it is confirmed that the shear force Qc does not reach shearing strength Qcd of the wall 12. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、合成壁の設計方
法に関し、特に、土留め用の仮設壁と本設壁とを一体化
させる合成壁の設計方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing a synthetic wall, and more particularly to a method for designing a synthetic wall in which a temporary wall for earth retaining and a main wall are integrated.

【0002】[0002]

【従来の技術】地下構造物を構築する際に、通常、地盤
中に仮設用の土留め壁を形成して、その内部を掘削した
後に、土留め壁の内方に構造物が構築される。図9に
は、従来から土木の分野で用いられている地中壁の構築
状態を示している。
2. Description of the Related Art When constructing an underground structure, a temporary earth retaining wall is usually formed in the ground, the inside of the earth retaining wall is excavated, and then the structure is constructed inside the earth retaining wall. . FIG. 9 shows a construction state of an underground wall conventionally used in the field of civil engineering.

【0003】同図に示した例では、H形鋼を芯材1とし
て構築されたソイルセメント壁2からなる土留め壁3の
内側に、鉄筋コンクリート製の本設壁4が構築されてい
る。
In the example shown in the figure, a reinforced concrete main wall 4 is constructed inside a soil retaining wall 3 consisting of a soil cement wall 2 constructed with an H-shaped steel as a core material 1.

【0004】このような合成壁5を構築する際には、従
来、土木分野では、H形鋼を芯材1とする土留め壁3
は、あくまでも仮設構造物なので、本設壁4を設計する
際には、その存在を無視して設計されていた。
Conventionally, in constructing such a composite wall 5, in the field of civil engineering, an earth retaining wall 3 having an H-shaped steel as a core material 1 is used.
Since it is a temporary structure to the last, it was designed by ignoring its existence when designing the main wall 4.

【0005】一方、建築分野では、ビルの地下室にH形
鋼を芯材とした仮設壁を構築した際に、これを本体の一
部として利用した実績があり、土木の分野でも、仮設壁
を本設壁として利用することが検討されていて、これが
実用化される段階にある。
On the other hand, in the field of construction, there is a track record of using this as a part of the main body when constructing a temporary wall with H-shaped steel as a core material in the basement of a building. It is being considered for use as a permanent wall, and this is in the stage of practical application.

【0006】このような技術思想に基づいて、合成壁を
設計する際には、一般的に、図10に示すような手順
で、その設計を行うものと思われる。同図に示した手順
では、まず、ステップS1〜S4で土留め壁3の設計が
行われ、この後に、合成壁5の設計がステップS5〜S
8までで行われる。
When designing a composite wall based on such a technical idea, it is generally considered that the design is performed according to the procedure shown in FIG. In the procedure shown in the figure, first, the earth retaining wall 3 is designed in steps S1 to S4, and then the synthetic wall 5 is designed in steps S5 to S4.
It will be held up to 8.

【0007】土留め壁3の設計では、ステップS1で、
仮設時の荷重の設定が行われ、これに基づいて、続くス
テップS2で、土留め壁3の仮設時の構造計算を行い、
得られた計算結果と土留め壁3の性能照査をステップS
3で行う。
In designing the earth retaining wall 3, in step S1,
The load at the time of temporary installation is set, and based on this, in the subsequent step S2, the structural calculation of the earth retaining wall 3 at the time of temporary installation is performed,
Step S to check the obtained calculation result and the performance of the retaining wall 3.
Do in 3.

【0008】この性能照査で土留め壁3の性能が条件を
満足していなければ、ステップS4で、土留め壁3の仕
様を変更して仮定し、再び、ステップS2に戻り、構造
計算を行い、さらに、得られた計算結果と土留め壁3の
性能照査をステップS3で行い、このようなステップを
順次繰り返すことにより、 土留め壁3の性能が条件
を満足すると、土留め壁3の構築仕様が決定する。
If the performance of the earth retaining wall 3 does not satisfy the conditions in this performance check, the specifications of the earth retaining wall 3 are changed and assumed in step S4, and the process returns to step S2 to calculate the structure. In addition, the obtained calculation result and the performance of the retaining wall 3 are checked in step S3, and when the performance of the retaining wall 3 satisfies the conditions by sequentially repeating such steps, the retaining wall 3 is constructed. The specifications are decided.

【0009】一方、合成壁5の設計では、ステップS5
で、本設時の荷重の設定が行われ、これに基づいて、続
くステップS6で、合成壁5の構造計算(曲げモーメン
ト、軸力、せん断力)を行い、得られた計算結果と合成
壁5の性能照査をステップS7で行う。
On the other hand, in the design of the synthetic wall 5, step S5
Then, the load at the time of permanent installation is set, and based on this, in the subsequent step S6, the structural calculation (bending moment, axial force, shearing force) of the composite wall 5 is performed, and the obtained calculation result and the composite wall The performance check of No. 5 is performed in step S7.

【0010】この性能照査で合成壁5の性能が条件を満
足していなければ、ステップS8で、合成壁5の仕様を
変更して仮定し、再び、ステップS6に戻って構造計算
を行い、さらに、得られた計算結果と合成壁5の性能照
査をステップS7で行い、このようなステップを順次繰
り返すことにより、合成壁5の性能が条件を満足する
と、合成壁5の構築仕様が決定することになる。ところ
が、このような従来の合成壁の設計方法には、以下に説
明する課題があつた。
If the performance of the composite wall 5 does not satisfy the condition in this performance check, the specification of the composite wall 5 is changed and assumed in step S8, and the process returns to step S6 to perform the structural calculation. When the performance of the composite wall 5 satisfies the conditions by performing the obtained calculation result and the performance check of the composite wall 5 in step S7 and sequentially repeating such steps, the construction specification of the composite wall 5 is determined. become. However, such a conventional synthetic wall designing method has the following problems.

【0011】[0011]

【発明が解決しようとする課題】すなわち、図10に示
した手順の設計方法では、例えば、せん断の照査は、合
成壁5の全体に対して行われ、具体的には、設計荷重に
対して算定される合成壁5の発生せん断力Qが、その耐
力Qdに到達していないことを確認することで行われる。
That is, in the designing method of the procedure shown in FIG. 10, for example, the shear check is performed on the entire synthetic wall 5, and more specifically, on the design load. It is performed by confirming that the calculated shearing force Q of the composite wall 5 has not reached the proof stress Qd.

【0012】ところが、この場合の合成壁5のせん断耐
力Qdは、H形鋼からなる芯材1と鉄筋コンクリート製の
本設壁4とが、完全に剛結合していて、完全に一体化し
ていることを前提にしていた。
However, in the shear strength Qd of the synthetic wall 5 in this case, the core material 1 made of H-shaped steel and the main wall 4 made of reinforced concrete are completely rigidly connected and are completely integrated. I was assuming that.

【0013】しかし、本発明者らの知得によると、H形
鋼からなる芯材1と鉄筋コンクリート製の本設壁4との
せん断耐力は、当然のことながら、同じ値ではなく、鉄
筋コンクリートの方がH形鋼よりも小さくなっていて、
このような設計方法では、鉄筋コンクリート壁の部分的
なせん断破壊に対応しておらず、照査の信頼性に問題が
ある。
However, according to the knowledge of the present inventors, the shear strength of the core material 1 made of H-shaped steel and the main wall 4 made of reinforced concrete is, of course, not the same value. Is smaller than the H-section steel,
Such a design method does not deal with partial shear failure of the reinforced concrete wall, and has a problem in reliability of verification.

【0014】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、鉄
筋コンクリート壁の部分的なせん断破壊に対応すること
ができる信頼性の高い照査が可能になる合成壁の設計方
法を提供することにある。
The present invention has been made in view of such conventional problems, and an object thereof is a highly reliable inspection capable of coping with partial shear failure of a reinforced concrete wall. It is to provide a method of designing a synthetic wall that enables

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、仮設用の土留め壁と本設壁とを一体化さ
せる合成壁の設計方法において、設計時の設計荷重に対
して、前記合成壁の発生せん断力を算定し、その後、前
記合成壁のせん断耐力を照査する際に、前記合成壁を前
記土留め壁と前記本設壁とに分けて、発生せん断力のう
ち、前記土留め壁の分担するせん断力が、当該土留め壁
のせん断耐力に到達しないこと、および、発生せん断力
のうち、前記本設壁の分担するせん断力が、当該本設壁
のせん断耐力に到達しないことの双方を確認するように
した。
In order to achieve the above object, the present invention provides a synthetic wall designing method in which a temporary earth retaining wall and a main building wall are integrated with each other, with respect to a design load at the time of designing. Then, the generated shear force of the synthetic wall is calculated, and then, when the shear strength of the synthetic wall is checked, the synthetic wall is divided into the earth retaining wall and the permanent wall, and among the generated shear force. , The shear force shared by the earth retaining wall does not reach the shear strength of the soil retaining wall, and, of the generated shear forces, the shear force shared by the main wall is the shear strength of the main wall. I'm trying to make sure both are not reached.

【0016】このように構成した合成壁の設計方法によ
れば、後述する試験結果からも明らかなように、鉄筋コ
ンクリート壁の部分的なせん断破壊に対応することがで
きる信頼性の高い照査が可能になる。
According to the method of designing a synthetic wall constructed as described above, as is clear from the test results described later, it is possible to carry out highly reliable verification capable of coping with partial shear failure of a reinforced concrete wall. Become.

【0017】本発明の設計方法では、合成壁の性能照査
を行う前に、合成壁の断面二次モーメントのてい減率を
設定した後に、前記土留め壁と本設壁との断面力の分配
を決定することができる。
In the designing method of the present invention, before the performance of the composite wall is checked, the reduction rate of the second moment of area of the composite wall is set, and then the distribution of the sectional force between the earth retaining wall and the main wall is distributed. Can be determined.

【0018】また、本発明の設計方法では、前記合成壁
は、H形鋼を芯材とするソイルセメント壁で形成した前
記土留め壁と、鉄筋コンクリートで形成した前記本設壁
とを備え、前記本設壁の分担する発生せん断力Qcと前記
土留め壁の分担する発生せん断力Qsとを、以下の式に基
づいて演算することができる。 Qc={(1−Js/ψJ’)×Dl+(EcJc/EsψJ’)×Hu}×Q/(Dl+Hu) ・・・(1) Qs={(Js/ψJ’)×Dl十(1−EcJc/E sψJ’)×Hu}×Q/(Dl+Hu ) ・・・(2) ψ=J/J’ ・・・(3) J=Js+ Ec/Es×Jc+(Dl+Hu)/〔{(π/(1x×bu×k)+1/(E c ×Ac)+1/(Es As))×Es } ・・・(4) J' =Js+ Ec/Es×Jc+(Dl+Hu)×Ec Ac/[{1+(Ec Ac)/(Es As) }×Es] ・・・(5) ここに、 Q:合成壁の発生せん断力 ψ:合成壁の断面二次モーメントてい減率 J:合成壁の断面二次モーメント(鋼換算) J’:完全合成(k→∞)の合成壁の断面二次モーメント
(鋼換算) k:合成壁接合面のせん断剛性 Jc:本設壁の断面二次モーメント Js:H形鋼の断面二次モーメント Ec:コンクリートのヤング係数 Es:H形鋼のヤング係数 Ac:本設壁の断面積(1y×h) As:H形鋼の断面積 1x:合成壁の支間長 1y:合成壁の有効幅(通常は、H形鋼の配置間隔) bu:H形鋼のフランジ幅 h:本設壁の厚さ Dl:本設壁の重心から合成壁接合面までの間の長さ Hu:H形鋼の重心から合成壁接合面までの間の長さ π:円周率 とする。
Further, in the designing method of the present invention, the synthetic wall includes the earth retaining wall formed of a soil cement wall having H-shaped steel as a core material, and the main wall formed of reinforced concrete, The generated shear force Qc shared by the main wall and the generated shear force Qs shared by the earth retaining wall can be calculated based on the following equations. Qc = {(1−Js / ψJ ′) × Dl + (EcJc / EsψJ ′) × Hu} × Q / (Dl + Hu) (1) Qs = {(Js / ψJ ′) × Dl ten (1−EcJc / E s ψJ ') × Hu} × Q / (Dl + Hu) (2) ψ = J / J' ・ ・ ・ (3) J = Js + Ec / Es × Jc + (Dl + Hu) 2 / [{(π 2 / (1x 2 × bu × k ) + 1 / (E c × Ac) + 1 / (Es As)) × Es} ··· (4) J '= Js + Ec / Es × Jc + (Dl + Hu) 2 × Ec Ac / [{1+ (Ec Ac) / (Es As)} × Es] (5) Where: Q: Shear force of synthetic wall ψ: Cross sectional second moment of synthetic wall Decrease J: Synthetic wall Moment of inertia of section (converted to steel) J ': Moment of inertia of section of a composite wall of complete synthesis (k → ∞) (converted to steel) k: Shear rigidity of joint surface of composite wall Jc: Moment of inertia of section of main wall Js : Moment of inertia of section of H-section steel Ec: Young's modulus of concrete Es: Young's modulus of H-section steel Ac: Section area of main wall (1y × h) As: Cross-sectional area of H-section steel 1x: Span length of composite wall 1y: Effective width of composite wall (usually the spacing between H-section steels) bu: Flange width of H-section steel h: Main installation Thickness of wall Dl: Length from center of gravity of main wall to joint surface of composite wall Hu: Length from center of gravity of H-shaped steel to joint surface of composite wall π: Circular ratio.

【0019】[0019]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について、添付図面に基づいて詳細に説明する。図1
から図8は、本発明にかかる合成壁の設計方法の一実施
例を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Figure 1
8 to 8 show one embodiment of the method for designing a synthetic wall according to the present invention.

【0020】本実施例の合成壁の設計方法では、図1に
示すように、仮設用の土留め壁10と本設壁12とを一
体化させる合成壁14を横築する際に、本設時の設計荷
重に対して、合成壁14の発生せん断力を算定し、その
後、合成壁14のせん断耐力を照査する際に、合成壁1
4を土留め壁10と本設壁12とに分けて、土留め壁1
0の分担する発生せん断力Qsが、当該土留め壁10のせ
ん断耐力Qsdに到達しないこと、およぴ、本設壁12の
分担する発生せん断力Qcが、当該本設壁のせん断耐力Qc
dに到達しないことの双方を確認する基本的な構成とし
ている。
In the method for designing a synthetic wall of this embodiment, as shown in FIG. 1, when a synthetic wall 14 for integrally integrating a temporary earth retaining wall 10 and a main construction wall 12 is installed horizontally, When the shearing force of the synthetic wall 14 is calculated with respect to the design load at the time, and then the shearing strength of the synthetic wall 14 is checked, the synthetic wall 1
4 is divided into a retaining wall 10 and a permanent wall 12, and retaining wall 1
The generated shear force Qs of 0 does not reach the shear strength Qsd of the earth retaining wall 10, and the generated shear force Qc of the main wall 12 is the shear strength Qc of the main wall.
It has a basic configuration that confirms that both of them do not reach d.

【0021】この時の照査は、以下の式で表される。 本設壁12のせん断耐力照査:Qc/Qcd≦1.0 ・・(6) 土留め壁10のせん断耐力照査:Qs/Qsd≦1.0 ・・・(7) 図1に示した例では、仮設用の土留め壁10は、芯材1
0aとソイルセメント体10bとを備え、H形鋼を芯材
10aとして、この芯材10aを内部に埋設したソイル
セメント体10bが、横方向において、相互にオーバラ
ップするように構築されている。
The check at this time is expressed by the following equation. Checking shear strength of main wall 12: Qc / Qcd ≦ 1.0 (6) Checking shear strength of retaining wall: Qs / Qsd ≦ 1.0 (7) In the example shown in FIG. The temporary earth retaining wall 10 is made of the core material 1
0a and the soil cement body 10b, the H-shaped steel is used as the core material 10a, and the soil cement body 10b in which the core material 10a is embedded is constructed so as to overlap each other in the lateral direction.

【0022】このような構成の土留め壁10では、土留
め壁10の分担する発生せん断力Qsは、実質的には、H
形鋼からなる芯材10aの値に相当し、また、せん断耐
力Qsdも同様にH形鋼の値に相当する。
In the earth retaining wall 10 having such a structure, the generated shearing force Qs shared by the earth retaining wall 10 is substantially H
This corresponds to the value of the core material 10a made of shaped steel, and the shear strength Qsd also corresponds to the value of H-shaped steel.

【0023】また、本設壁12は、本実施例の場合に
は、鉄筋12aとこれが埋設されたコンクリート体12
bとを備えた鉄筋コンクリートから構築されていて、本
設壁12の分担する発生せん断力Qcおよびせん断耐力Qc
dは、同様に、鉄筋コンクリート製の壁の値に相当す
る。
In the case of this embodiment, the main wall 12 is made up of the reinforcing bar 12a and the concrete body 12 in which the reinforcing bar 12a is embedded.
It is constructed from reinforced concrete with b, and the generated shear force Qc and shear strength Qc shared by the main wall 12 are shared.
d likewise corresponds to the value of a reinforced concrete wall.

【0024】なお、図1に符号16で示した部材は、H
形鋼からなる芯材10aの表面に片端が固定された状態
で本設壁12に埋め込まれた、土留め壁10と本設壁1
2との間を一体的に結合させるシアコネクタである。
The member indicated by reference numeral 16 in FIG.
Earth retaining wall 10 and main wall 1 embedded in main wall 12 with one end fixed to the surface of core 10a made of shaped steel.
It is a shear connector that integrally connects the two.

【0025】図2,3は、本発明にかかる設計方法の基
本概念を示すものであり、これらの図に示した符号は、
以下の内容になっている。 1x:合成壁12の支間長、1y:合成壁の有効幅(通常
は、H形鋼の配置間隔)、bu:H形鋼のフランジ幅、h:
本設壁12の厚さ、Cc:本設壁12の重心、Cs:H形鋼
の重心、Dl:本設壁12の重心Ccから合成壁接合面ま
での間の長さ、Hu:H形鋼の重心Csから合成壁接合面ま
での間の長さ このような寸法構造の合成壁14においては、図3に示
すような、発生せん断力Q(Qs+Qc)が本設壁12側か
ら作用した際には、H形鋼からなる芯材10aと、鉄筋
コンクリート製の本設壁12とは、シアコネクタ16で
連結されているものの、両者は、完全に一体化されてお
らず、両者間には、ズレが発生し、それぞれ異なる挙動
をとり、歪分布は、図3に示すようになるものと考えら
れる。
2 and 3 show the basic concept of the designing method according to the present invention, and the symbols shown in these figures are:
It has the following contents. 1x: span length of the composite wall 12, 1y: effective width of the composite wall (usually the H-section steel arrangement interval), bu: H-section flange width, h:
Thickness of main wall 12, Cc: center of gravity of main wall 12, Cs: center of gravity of H-shaped steel, Dl: length from center of gravity Cc of main wall 12 to composite wall joint surface, Hu: H type Length between center of gravity Cs of steel and joint surface of composite wall In the composite wall 14 having such a dimensional structure, the generated shear force Q (Qs + Qc) acts from the main wall 12 side as shown in FIG. At this time, the core material 10a made of H-shaped steel and the main wall 12 made of reinforced concrete are connected by the shear connector 16, but they are not completely integrated and there is a gap between them. It is considered that the strain distributions are different from each other and have different behaviors, and the strain distribution becomes as shown in FIG.

【0026】ところが、前述した従来の設計方法では、
図11に示すように、合成壁5の芯材1と鉄筋コンクリ
ート製の本設壁4とが、ズレが発生することなく完全に
一体化されていて、せん断外力Qが本設壁12側から作
用した際には、これらが一体的として変形するとの概念
に基づいている。
However, in the conventional design method described above,
As shown in FIG. 11, the core material 1 of the synthetic wall 5 and the main wall 4 made of reinforced concrete are completely integrated without any displacement, and the external shear force Q acts from the main wall 12 side. When this is done, it is based on the concept that these transform as a unit.

【0027】そこで、本発明者らは、このような基本概
念を確認すべく実証実験を試みた。この実証実験では、
図4に示した寸法形状の供試体を合計5本作製した。各
供試体の詳細な内容を以下の表1に示している。
Therefore, the inventors of the present invention tried a verification experiment to confirm such a basic concept. In this demonstration experiment,
A total of 5 test pieces having the dimensions and shapes shown in FIG. 4 were produced. The detailed contents of each sample are shown in Table 1 below.

【0028】[0028]

【表1】 実証実験は、供試体をその下側から4750mmスパン
長で支持し、支持点の中心部の上方から荷重Pを載荷し
て、供試体がせん断破壊するまでのせん断力を測定し
た。
[Table 1] In the verification experiment, the specimen was supported with a span length of 4750 mm from the lower side, a load P was applied from above the center of the supporting point, and the shearing force until the specimen fractured due to shearing was measured.

【0029】5個の供試体は、シアコネクタ16に相当
する部材にスタッドボルトを用い、これをH形鋼の本設
壁側表面(フランジ)のみに溶接し、両者間の合成度合
いとして、スタッドボルトを3列で84本用いた場合を
合成度1.0(供試体No.5)とし、合成度が4段階
になるように設定した。
In the five test pieces, stud bolts were used as members corresponding to the shear connector 16, and these were welded only to the surface (flange) of the H-shaped steel on the main wall side. When 84 bolts were used in 3 rows, the degree of synthesis was 1.0 (specimen No. 5), and the degree of synthesis was set to 4 stages.

【0030】図5〜図7は、試験結果をグラフ表示した
ものである.図5は、合成壁のせん断耐力Qdと、破壊時
の合成壁の発生せん断力Qmaxとの関係を示している。図
6は、鉄筋コンクリート壁のせん断耐力Qcdと、破壊時
の鉄筋コンクリート壁が分担する発生せん断力Qcmaxと
の関係を示している。図7は、H形鋼のせん断耐力Qsd
と、破壊時のH形鋼が分担する発生せん断力Qsmaxとの
関係を示している。各図において折れ線で示したグラフ
がせん断照査結果(Q/Qd),(Qcmax/Qcd),(Qsmax
/Qs d)を示していて、×印が鉄筋コンクリート壁の部
分せん断破壊を、また、黒丸印が曲げ破壊をそれぞれ示
している。
5 to 7 are graphs showing the test results. FIG. 5 shows the relationship between the shear strength Qd of the composite wall and the generated shear force Qmax of the composite wall at the time of failure. FIG. 6 shows the relationship between the shear strength Qcd of the reinforced concrete wall and the generated shear force Qcmax shared by the reinforced concrete wall at the time of failure. Figure 7 shows the shear strength Qsd of H-section steel.
And the generated shearing force Qsmax shared by the H-section steel at the time of fracture. The graphs shown by the polygonal lines in each figure are the results of shear check (Q / Qd), (Qcmax / Qcd), (Qsmax
/ Qs d), where the crosses indicate partial shear failure of the reinforced concrete wall, and the black circles indicate bending failure.

【0031】この試験結果から明らかなように、まず、
図5においては、せん断照査結果(Q/Qd)が1.0以
下であるにも係わらず、No.2,3,5の供試体にせ
ん断破壊が認められ、この破壊モードは、鉄筋コンクリ
ート壁の部分的なせん断破壊であった。
As is clear from the test results, first,
In FIG. 5, although the result of shearing inspection (Q / Qd) is 1.0 or less, No. Shear failure was observed in 2, 3 and 5 specimens, and this failure mode was partial shear failure of the reinforced concrete wall.

【0032】このことから、いえることは、従来の設計
方法では、H形鋼と鉄筋コンクリート壁とが完全な合成
にあると仮定して設計するが、この状態に非常に近い形
態を具現化した供試体5においても、合成壁の発生せん
断力 Qmaxが、せん断耐力Qdを超えていないのにも係わ
らず、鉄筋コンクリート壁のせん断破壊が認められ、従
来の設計方法では、合成壁の破壊モード(鉄筋コンクリ
ート壁の部分的なせん断破壊)は、予測できないことが
判った。
From this, it can be said that the conventional design method assumes that the H-section steel and the reinforced concrete wall are in a perfect composite, but the design that embodies a form very close to this state is realized. Even in Specimen 5, although the generated shear force Qmax of the composite wall does not exceed the shear strength Qd, shear failure of the reinforced concrete wall was recognized. In the conventional design method, the failure mode of the composite wall (reinforced concrete wall It has been found that the partial shear failure of () is unpredictable.

【0033】一方、図6に示す鉄筋コンクリート壁のせ
ん断照査(Qcmax/Qcd)と、図7に示すH形鋼のせん断
照査(Qsmax/Qsd)とをそれぞれ個別に行う場合には、
これらの値が1.0を超えないまでは、コンクリート壁
のせん断破壊が起こらないことが判る。
On the other hand, when the shear check (Qcmax / Qcd) of the reinforced concrete wall shown in FIG. 6 and the shear check of the H-section steel (Qsmax / Qsd) shown in FIG.
It can be seen that shear failure of the concrete wall does not occur until these values do not exceed 1.0.

【0034】すなわち、図6においては、供試体No.
2,3,5に鉄筋コンクリート壁にせん断破壊が発生し
ているが、これらの供試体の場合には、せん断照査(Qc
max/Qcd)が1.0を超えている。
That is, as shown in FIG.
Shear failure has occurred in reinforced concrete walls in 2, 3 and 5, but in the case of these specimens, shear test (Qc
max / Qcd) exceeds 1.0.

【0035】また、図7においては、供試体No.2,
3,5に鉄筋コンクリート壁にせん断破壊が発生してい
るが、全ての供試体は、せん断照査(Qsmax/Qsd)が
1.0を超えていない。
Further, in FIG. 7, the specimen No. Two
Shear failure occurred in the reinforced concrete walls in Nos. 3 and 5, but all the specimens had shear test (Qsmax / Qsd).
It does not exceed 1.0.

【0036】従って、合成壁のせん断耐力を照査する際
に、銑筋コンクリート壁とH形鋼とに分けてせん断照査
を行い、これらがともに限界値を超えないような照査を
行うと、コンクリートの部分的なせん断破壊が起こら
ず、高い信頼性の基で照査が行えることを確認した。
Accordingly, when the shear strength of the composite wall is checked, the shear check is performed separately for the reinforced concrete wall and the H-shaped steel, and if both check values do not exceed the limit values, the concrete It was confirmed that the partial shear fracture did not occur and the inspection could be performed with high reliability.

【0037】なお、上述した実証試験では、Qsdは、H
形鋼の設計せん断耐力を用い、Qcdには、鉄筋コンクリ
ート壁の設計せん断耐力を用いた。また、Qcdおよび Qs
d の算定には、コンクリート標準示方書・設計編(土木
学会)や各種合成構造物設計指針・同解説(日本建築学
会)に準拠した。
In the above-mentioned verification test, Qsd is H
The design shear strength of the shaped steel was used, and the design shear strength of the reinforced concrete wall was used for Qcd. Also, Qcd and Qs
The calculation of d was based on the concrete standard specification, design edition (JSCE), various synthetic structure design guidelines, and the same commentary (Architectural Institute of Japan).

【0038】図8は、本発明にかかる設計方法の手順を
より具体的に示したフローチャート図である。同図に示
した手順では、まず、スタートすると従来の設計方法と
同様に、ステップS10〜S13で土留め壁10の設計
が行われ、この後に、合成壁14の設計がステップS1
4〜S19までで行われる。
FIG. 8 is a flow chart showing the procedure of the design method according to the present invention more specifically. In the procedure shown in the figure, first, when starting, the earth retaining wall 10 is designed in steps S10 to S13, and then the composite wall 14 is designed in step S1 as in the conventional design method.
It is performed from 4 to S19.

【0039】土留め壁10の設計では、ステップS10
で、仮設時の荷重の設定が行われ、これに基づいて、続
くステップS11で、土留め壁10の仮設時の構造計算
を行い、得られた計算結果と土留め壁10の性能照査を
ステップS12で行う。
In designing the earth retaining wall 10, step S10 is performed.
Then, the load at the time of temporary installation is set, and based on this, in the subsequent step S11, the structural calculation at the time of temporary installation of the earth retaining wall 10 is performed, and the obtained calculation result and the performance of the earth retaining wall 10 are checked. Performed in S12.

【0040】この性能照査で土留め壁10の性能が条件
を満足していなければ、ステップS13で、土留め壁1
0の仕様を変更して仮定し、再び、ステップS11に戻
り、構造計算を行い、さらに、得られた計昇結果と土留
め壁10の性能照査をステップS12で行い、このよう
なステップを順次繰り返すことにより、土留め壁10の
性能が条件を満足すると、土留め壁3の構築仕様が決定
する。
If the performance of the earth retaining wall 10 does not satisfy the conditions in this performance check, in step S13, the earth retaining wall 1
Assuming that the specification of 0 has been changed, the process returns to step S11 again, structural calculation is performed, and the obtained climbing result and performance check of the retaining wall 10 are performed in step S12, and such steps are sequentially performed. By repeating the above, when the performance of the retaining wall 10 satisfies the condition, the construction specification of the retaining wall 3 is determined.

【0041】一方、合成壁14を設計する際には、ステ
ップS14で、本設時の荷重の設定が行われ、これに基
づいて、続くステップS15で、合成壁14の構造計算
(曲げモーメント,軸力,せん断力)を行う。
On the other hand, when designing the composite wall 14, the load at the time of permanent installation is set in step S14, and based on this, in the subsequent step S15, the structural calculation of the composite wall 14 (bending moment, Axial force, shear force).

【0042】次に、ステップS16で、合成壁の断面二
次モーメントてい減率ψの設定を行い、その後に、ステ
ップS17で、土留め壁10と本設壁12の断面力の分
配を決定し、ついで、合成壁14の性能照査をステップ
S18で行う。
Next, in step S16, the sectional moment of inertia of the composite wall is set to ψ, and after that, in step S17, the distribution of the sectional force between the earth retaining wall 10 and the main wall 12 is determined. Then, the performance check of the composite wall 14 is performed in step S18.

【0043】この場合、ステップS16,17で行われ
るてい減率ψの設定や、断面力の分配は、以下の式3〜
5に基づいて演算される。 ψ=J/J’ ・・・(3) J=Js+ Ec/Es×Jc+(Dl+Hu)/ 〔{(π/(1x×bu×k)+1/(Ec ×Ac)+1/(Es As)}×Es ) ・・・(4) J' =Js+ Ec/Es×Jc+(Dl+Hu)×Ec Ac/[{1+(Ec Ac)/(Es As) }×Es] ・・・(5) ここに、 Q:合成壁の発生せん断力 ψ:合成壁の断面二次モーメントてい減率 J:合成壁の断面二次モーメント(鋼換算) J’:完全合成(k→∞)の合成壁の断面二次モーメント
(鋼換算) k:合成壁接合面のせん断剛性 Jc:本設壁の断面二次モーメント Js:H形鋼の断面二次モーメント Ec:コンクリートのヤング係数 Es:H形鋼のヤング係数 Ac:本設壁の断面積(1y×h) As:H形鋼の断面積 1x:合成壁の支間長 1y:合成壁の有効幅(通常は、H形鋼の配置間隔) bu:H形鋼のフランジ幅 h:本設壁の厚さ Dl:本設壁の重心から合成壁接合面までの間の長さ Hu:H形鋼の重心から合成壁接合面までの間の長さ π:円周率 とする。
In this case, the setting of the deceleration ψ and the distribution of the sectional force performed in steps S16 and S17 can be performed by the following equations 3 to 3.
It is calculated based on 5. ψ = J / J ′ (3) J = Js + Ec / Es × Jc + (Dl + Hu) 2 / [{(π 2 / (1x 2 × bu × k) + 1 / (Ec × Ac) + 1 / (Es As)} × Es) (4) J ′ = Js + Ec / Es × Jc + (Dl + Hu) 2 × Ec Ac / [{1+ (Ec Ac) / (Es As)} × Es] (5) ) Here, Q: Shear force generated by synthetic wall ψ: Second moment of area of inertia of synthetic wall J: Reduction of second moment of area of synthetic wall (steel equivalent) J ': Synthetic wall of completely synthetic (k → ∞) Second moment of area (converted to steel) k: Shear rigidity of joint surface of composite wall Jc: Second moment of area of main wall Js: Second moment of area of H-section steel Ec: Young's modulus of concrete Es: of H-section steel Young's modulus Ac: Cross-sectional area of main wall (1y × h) As: Cross-sectional area of H-section steel 1x: Span length of composite wall 1y: Effective width of composite wall (usually the interval between H-section steels) bu: Flange width of H-section steel h: Thickness of main wall Dl: From center of gravity of main wall Length between synthetic wall joint surface Hu: Length between center of gravity of H-section steel and synthetic wall joint surface π: Circularity.

【0044】ステップS18で性能照査を行う際には、
ステップ16、17で求めたてい減率ψと断面力の分配
に基づいて、以下の式1,2により、土留め壁10のせ
ん断力応答値Qsと、本設壁12のせん断応答値Qcとが演
算される。 Qc={(1−Js/ψJ’)×Dl+(Ec Jc/E s ψJ’)×Hu}×Q/ (Dl +Hu) ・・・(1) Qs={(Js/ψJ’)×Dl+(1−EcJc/E s ψJ’)×Hu}×Q/ (Dl +Hu) ・・・(2) そして、性能照査では、土留め壁10のせん断耐力Qsd
と、当該本設壁のせん断耐力Qcdとを演算し、以下の式
により判定される。本設壁12のせん断耐力照査: Qc/Qc d≦1.0 ・・・(6) 土留め壁10のせん断耐力照査: Qs/Qs d≦1.0 ・・・(7) この性能照査で合成壁14の性能が条件を満足していな
ければ、ステップS19で、合成壁12の仕様を変更
(本設壁12の厚さや鉄筋量など、および、シアコネク
タ16の仕様の変更)して仮定し、再び、ステップS1
5に戻って構造計算を行い、さらに、得られた計算結果
と合成壁14の性能照査をステップS18で行い、この
ようなステップを順次繰り返すことにより、合成壁14
の性能が条件を満足すると、合成壁14の構築仕様が決
定することになる。
When performing the performance check in step S18,
The shear force response value Qs of the earth retaining wall 10 and the shear response value Qc of the main wall 12 are calculated by the following equations 1 and 2 based on the distribution of the deceleration ψ and the sectional force obtained in steps 16 and 17. Is calculated. Qc = {(1−Js / ψJ ′) × Dl + (Ec Jc / Es ψJ ′) × Hu} × Q / (Dl + Hu) (1) Qs = {(Js / ψJ ′) × Dl + ( 1−EcJc / E s ψJ ′) × Hu} × Q / (Dl + Hu) (2) Then, in the performance check, the shear strength Qsd of the earth retaining wall 10
And the shear strength Qcd of the main wall are calculated and determined by the following formula. Checking shear strength of main wall 12: Qc / Qc d ≤ 1.0 ・ ・ ・ (6) Checking shear strength of earth retaining wall 10: Qs / Qs d ≤ 1.0 ・ ・ ・ (7) With this performance check If the performance of the composite wall 14 does not satisfy the conditions, the specification of the composite wall 12 is changed (the thickness and the reinforcing bar amount of the main wall 12, and the specification of the shear connector 16 are changed) in step S19. And again, step S1
5, the structural calculation is performed, the obtained calculation result and the performance of the composite wall 14 are checked in step S18, and such steps are sequentially repeated, whereby the composite wall 14
If the performance of 1 satisfies the condition, the construction specification of the composite wall 14 is determined.

【0045】さて、以上のように構成した合成壁の設計
方法によれば、上述した実証試験の結果からも明らかな
ように、鉄筋コンクリート壁の部分的なせん断破壊に対
応することができる信頼性の高い照査が可能になる。
By the way, according to the method of designing the synthetic wall constructed as described above, as is clear from the results of the above-mentioned verification test, the reliability of the shear failure of the reinforced concrete wall can be coped with partially. High verification is possible.

【0046】[0046]

【発明の効果】以上、詳細に説明したように、本発明に
かかる合成壁の設計方法によれば、鉄筋コンクリート壁
の部分的なせん断破壊に対応することができる信頼性の
高い照査が可能になる。
As described above in detail, according to the method for designing a synthetic wall according to the present invention, it is possible to carry out highly reliable inspection capable of coping with partial shear failure of a reinforced concrete wall. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる設計方法が適用される合成壁の
断面図である。
FIG. 1 is a cross-sectional view of a synthetic wall to which a designing method according to the present invention is applied.

【図2】本発明にかかる設計方法の概念説明図である。FIG. 2 is a conceptual explanatory diagram of a design method according to the present invention.

【図3】本発明にかかる設計方法の概念説明図である。FIG. 3 is a conceptual explanatory diagram of a design method according to the present invention.

【図4】本発明にかかる設計方法の実証実験に用いた供
試体の説明図である。
FIG. 4 is an explanatory diagram of a test piece used in a verification experiment of a design method according to the present invention.

【図5】本発明にかかる設計方法の実証実験の試験結果
を示すグラフである。
FIG. 5 is a graph showing test results of a verification experiment of the design method according to the present invention.

【図6】本発明にかかる設計方法の実証実験の試験結果
を示すグラフである。
FIG. 6 is a graph showing test results of a verification experiment of the design method according to the present invention.

【図7】本発明にかかる設計方法の実証実験の試験結果
を示すグラフである。
FIG. 7 is a graph showing test results of a verification experiment of the design method according to the present invention.

【図8】本発明にかかる合成壁の設計方法の一実施例を
示すフローチャート図である。
FIG. 8 is a flowchart showing an embodiment of a method for designing a synthetic wall according to the present invention.

【図9】従来の設計方法が適用される合成壁の断面図で
ある。
FIG. 9 is a cross-sectional view of a composite wall to which a conventional design method is applied.

【図10】従来の合成壁の設計方法の一例を示すフロー
チャート図である。
FIG. 10 is a flowchart showing an example of a conventional synthetic wall designing method.

【図11】従来の設計方法の概念説明図である。FIG. 11 is a conceptual explanatory diagram of a conventional design method.

【符号の説明】[Explanation of symbols]

10 土留め壁 10a 芯材(H形鋼) 10b ソイルセメント体 12 本設壁(鉄節コンクリート壁) 12a 鉄筋 12b コンクリート体 14 合成壁 16 シアコネクタ 10 earth retaining wall 10a Core material (H-shaped steel) 10b soil cement body 12 main wall (iron section concrete wall) 12a rebar 12b concrete body 14 synthetic walls 16 sheer connector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐山 順二 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 吉本 正浩 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 栗原 美津雄 東京都台東区東上野3丁目3番3号 東電 設計株式会社内 (72)発明者 内藤 幸弘 東京都台東区東上野3丁目3番3号 東電 設計株式会社内 Fターム(参考) 2D049 EA02 EA09 FB03 FB13 GB05 GC11 GE03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junji Sayama             1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo East             Inside Kyoden Electric Co., Ltd. (72) Inventor Masahiro Yoshimoto             1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo East             Inside Kyoden Electric Co., Ltd. (72) Inventor Mitsuo Kurihara             3-3-3 Higashi Ueno, Taito-ku, Tokyo Toden             Design Co., Ltd. (72) Inventor Yukihiro Naito             3-3-3 Higashi Ueno, Taito-ku, Tokyo Toden             Design Co., Ltd. F-term (reference) 2D049 EA02 EA09 FB03 FB13 GB05                       GC11 GE03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 仮設用の土留め壁と本設壁とを一体化さ
せる合成壁の設計方法において、本設時の設計荷重に対
して、前記合成壁の発生せん断力を算定し、その後、前
記合成壁のせん断耐力を照査する際に、前記合成壁を前
記土留め壁と前記本設壁とに分けて、 発生せん断力のうち、前記土留め壁の分担するせん断力
が、当該土留め壁のせん断耐力に到達しないこと、およ
び、発生せん断力のうち、前記本設壁の分担するせん断
力が、当該本設壁のせん断耐力に到達しないことの双方
を確認することを特徴とする合成壁の設計方法。
1. In a method of designing a composite wall in which a temporary earth retaining wall and a main wall are integrated, a shearing force generated by the composite wall is calculated with respect to a design load at the time of main installation, and thereafter, When checking the shear strength of the composite wall, the composite wall is divided into the earth retaining wall and the main wall, and the shearing force shared by the earth retaining wall among the generated shearing force is the earth retaining wall. It is confirmed that both the shear strength of the wall is not reached and that among the generated shear forces, the shear force shared by the main wall does not reach the shear strength of the main wall. How to design a wall.
【請求項2】 前記合成壁の性能照査を行う前に、合成
壁の断面二次モーメントのてい減率を設定した後に、前
記土留め壁と本設壁との断面力の分配を決定することを
特徴とする請求項1記載の合成壁の設計方法。
2. The distribution of the sectional force between the earth retaining wall and the main wall is determined after the reduction rate of the second moment of area of the synthetic wall is set before the performance check of the synthetic wall. The method for designing a synthetic wall according to claim 1, wherein:
【請求項3】 前記合成壁は、H形鋼を芯材とするソイ
ルセメント壁で形成した前記土留め壁と、鉄筋コンクリ
ートで形成した前記本設壁とを備え、前記本設壁の分担
するせん断力Qc と前記土留め壁の分担するせん断力Qs
とを、以下の式に基づいて演算することを特徴とする
請求項1または2記載の合成壁の設計方法。 Qc={(1−Js/ψJ’)×Dl+(EcJc/EsψJ’)×Hu}×Q/(Dl+Hu) ・・・(1) Qs={(Js/ψJ’)×Dl十(1−EcJc/E sψJ’)×Hu}×Q/(Dl+Hu ) ・・・(2) ψ=J/J’ ・・・(3) J=Js+ Ec/Es×Jc+(Dl+Hu)/〔{(π/(1x×bu×k)+1/(E c ×Ac)+1/(Es As))×Es } ・・・(4) J' =Js+ Ec/Es×Jc+(Dl+Hu)×Ec Ac/[{1+(Ec Ac)/(Es As) }×Es] ・・・(5) ここに、 Q:合成壁の発生せん断力 ψ:合成壁の断面二次モーメントてい減率 J:合成壁の断面二次モーメント(鋼換算) J’:完全合成(k→∞)の合成壁の断面二次モーメント
(鋼換算) k:合成壁接合面のせん断剛性 Jc:本設壁の断面二次モーメント Js:H形鋼の断面二次モーメント Ec:コンクリートのヤング係数 Es:H形鋼のヤング係数 Ac:本設壁の断面積(1y×h) As:H形鋼の断面積 1x:合成壁の支間長 1y:合成壁の有効幅(通常は、H形鋼の配置間隔) bu:H形鋼のフランジ幅 h:本設壁の厚さ Dl:本設壁の重心から合成壁接合面までの間の長さ Hu:H形鋼の重心から合成壁接合面までの間の長さ π:円周率 とする。
3. The composite wall comprises the earth retaining wall formed of a soil cement wall having H-shaped steel as a core material, and the main wall formed of reinforced concrete, and shears shared by the main wall are provided. Force Qc and shearing force Qs shared by the retaining wall
The method for designing a synthetic wall according to claim 1 or 2, wherein and are calculated based on the following equation. Qc = {(1−Js / ψJ ′) × Dl + (EcJc / EsψJ ′) × Hu} × Q / (Dl + Hu) (1) Qs = {(Js / ψJ ′) × Dl ten (1−EcJc / E s ψJ ') × Hu} × Q / (Dl + Hu) (2) ψ = J / J' ・ ・ ・ (3) J = Js + Ec / Es × Jc + (Dl + Hu) 2 / [{(π 2 / (1x 2 × bu × k ) + 1 / (E c × Ac) + 1 / (Es As)) × Es} ··· (4) J '= Js + Ec / Es × Jc + (Dl + Hu) 2 × Ec Ac / [{1+ (Ec Ac) / (Es As)} × Es] (5) Where: Q: Shear force of synthetic wall ψ: Cross sectional second moment of synthetic wall Decrease J: Synthetic wall Moment of inertia of section (converted to steel) J ': Moment of inertia of section of a composite wall of complete synthesis (k → ∞) (converted to steel) k: Shear rigidity of joint surface of composite wall Jc: Moment of inertia of section of main wall Js : Moment of inertia of section of H-section steel Ec: Young's modulus of concrete Es: Young's modulus of H-section steel Ac: Section area of main wall (1y × h) As: Cross-sectional area of H-section steel 1x: Span length of composite wall 1y: Effective width of composite wall (usually the spacing between H-section steels) bu: Flange width of H-section steel h: Main installation Thickness of wall Dl: Length from center of gravity of main wall to joint surface of composite wall Hu: Length from center of gravity of H-shaped steel to joint surface of composite wall π: Circular ratio.
JP2002105191A 2002-04-08 2002-04-08 Synthetic wall design method Expired - Fee Related JP4028746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105191A JP4028746B2 (en) 2002-04-08 2002-04-08 Synthetic wall design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105191A JP4028746B2 (en) 2002-04-08 2002-04-08 Synthetic wall design method

Publications (3)

Publication Number Publication Date
JP2003301455A true JP2003301455A (en) 2003-10-24
JP2003301455A5 JP2003301455A5 (en) 2005-07-28
JP4028746B2 JP4028746B2 (en) 2007-12-26

Family

ID=29390003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105191A Expired - Fee Related JP4028746B2 (en) 2002-04-08 2002-04-08 Synthetic wall design method

Country Status (1)

Country Link
JP (1) JP4028746B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363955A (en) * 2011-10-31 2012-02-29 天津一建建筑工程有限公司 Prefabricated transverse H-shaped underground continuous wall joint section structure
CN105951761A (en) * 2016-06-07 2016-09-21 深圳市宏业基基础工程有限公司 Construction method of plum blossom-shaped profile steel cement stirring wall
CN105951743A (en) * 2016-06-07 2016-09-21 深圳市宏业基基础工程有限公司 Plum blossom-shaped profile steel cement stirring wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363955A (en) * 2011-10-31 2012-02-29 天津一建建筑工程有限公司 Prefabricated transverse H-shaped underground continuous wall joint section structure
CN105951761A (en) * 2016-06-07 2016-09-21 深圳市宏业基基础工程有限公司 Construction method of plum blossom-shaped profile steel cement stirring wall
CN105951743A (en) * 2016-06-07 2016-09-21 深圳市宏业基基础工程有限公司 Plum blossom-shaped profile steel cement stirring wall

Also Published As

Publication number Publication date
JP4028746B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP2004285737A (en) Construction method for steel tower foundation using concrete restraining connecting member
US20050050837A1 (en) Meshed (porous) steel pipe/tube used as concrete reinforcement
JP2008223225A (en) Column member, ufc-made precast form and earthquake resisting reinforcement method for column member using the same
Kurobane Connections in tubular structures
Mansouri et al. A new steel panel zone model including axial force for thin to thick column flanges
JP6796335B2 (en) Reinforcing support member for reinforcing bar cage, reinforcing bar cage using this, and structure of reinforcing bar cage
JP2003041708A (en) Member for structure
JP2003301455A (en) Method for designing composite wall
JP2002227188A (en) Ring assembly for reinforced cage and reinforced cage assembling method as well as reinforced cage connecting method
Astaneh-Asl et al. Cyclic tests of steel shear walls
JP2005098059A (en) Shape steel and wall using shape steel
JP2006299737A (en) Structural material, connecting structure and connecting method of structural material
JP2017507260A (en) Reinforcing materials for metalog structures
JP6646206B2 (en) Joint structure of RC members
JP2009091778A (en) Antiseismic reinforcement frame for continuous footing opening
JP4649283B2 (en) Columnar structure, pier or foundation pile using shape steel, and manufacturing method thereof
JP6768477B2 (en) How to build an underground structure
JP2009256890A (en) Building structure and its construction method
JP2003301455A5 (en)
JPH01154944A (en) Post for structure and frame structure
JP5350334B2 (en) Rebuilding method and building structure
JP2018178364A (en) Earthquake reinforcement structure for building and construction method thereof
Shen Seismic performance of steel moment-resisting frames with nonlinear replaceable links
US20240018770A1 (en) Reinforced modular steel-concrete structures
JP6836853B2 (en) Brace joint structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

A621 Written request for application examination

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041130

A621 Written request for application examination

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A131 Notification of reasons for refusal

Effective date: 20070313

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070511

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071012

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees