JP2003301283A - Method for manufacturing thin film of porous metal- oxide semiconductor - Google Patents

Method for manufacturing thin film of porous metal- oxide semiconductor

Info

Publication number
JP2003301283A
JP2003301283A JP2002111305A JP2002111305A JP2003301283A JP 2003301283 A JP2003301283 A JP 2003301283A JP 2002111305 A JP2002111305 A JP 2002111305A JP 2002111305 A JP2002111305 A JP 2002111305A JP 2003301283 A JP2003301283 A JP 2003301283A
Authority
JP
Japan
Prior art keywords
porous
substrate
film
oxide semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111305A
Other languages
Japanese (ja)
Inventor
Tokiaki Shiratori
世明 白鳥
Hiroaki Imai
宏明 今井
Shinobu Takenaka
忍 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2002111305A priority Critical patent/JP2003301283A/en
Publication of JP2003301283A publication Critical patent/JP2003301283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a method for forming a thin film of a porous metal-oxide semiconductor on a substrate, which has pore sizes of a nano-scale, a controlled fine structure, a large specific surface area, and has a uniform and desired thickness even with a large area. <P>SOLUTION: This method for manufacturing the thin film of the porous metal-oxide semiconductor like a replica of alternately adsorbed films with a nano-pore-size structure on the substrate, comprises forming the alternately adsorbed films having the porous nano-pore-size structure consisting of composite organic substances on the substrate, restructuring it to a porous structure having macropores by pure water treatment, forming metal-oxide particles on the alternately adsorbed films having the porous structure and in the pore structure penetrating to the surface of the substrate with a chemical deposition method from a solution, and then burning down the alternately adsorbed films. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質酸化物半導
体薄膜、特に、光触媒、有機色素が結合された酸化物半
導体色素結合電極、ガスセンサなどに適する多孔質酸化
物半導体薄膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a porous oxide semiconductor thin film, particularly a porous oxide semiconductor thin film suitable for a photocatalyst, an oxide semiconductor dye-bonding electrode having an organic dye bound thereto, a gas sensor and the like.

【0002】[0002]

【従来の技術】多孔質の金属酸化物半導体材料として
は、Ti,Nb,Zn,Sn,Zr,Y,La,Ta等
の遷移金属の酸化物や、SrTiO3 ,CaTiO3
どのペロブスカイト系酸化物などが知られている。
2. Description of the Related Art Porous metal oxide semiconductor materials include oxides of transition metals such as Ti, Nb, Zn, Sn, Zr, Y, La and Ta, and perovskite oxides such as SrTiO 3 and CaTiO 3. Things are known.

【0003】これらの多孔質金属酸化物半導体層の形成
方法としては、スキージ法、スクリーンプリンティング
法、スピンコート法、スパッタリング法、ゾルゲル法、
または微粒子スラリーを塗布して粒子を焼結する方法、
化学溶液析出法などが用いられている。
As methods for forming these porous metal oxide semiconductor layers, squeegee method, screen printing method, spin coating method, sputtering method, sol-gel method,
Or a method of applying fine particle slurry and sintering the particles,
A chemical solution deposition method or the like is used.

【0004】多孔質金属酸化物半導体薄膜は、以前から
ガスセンサとして使用されてきたが、最近、酸化チタン
光触媒が注目され、酸化チタン多孔質薄膜光触媒が開発
されている。また、有機色素で増感された金属酸化物半
導体電極(有機色素増感型酸化物半導体電極という)を
含む湿式の太陽電池が知られている。
The porous metal oxide semiconductor thin film has been used as a gas sensor for a long time, but recently, a titanium oxide photocatalyst has attracted attention and a titanium oxide porous thin film photocatalyst has been developed. A wet solar cell including a metal oxide semiconductor electrode sensitized with an organic dye (referred to as an organic dye-sensitized oxide semiconductor electrode) is also known.

【0005】この湿式の太陽電池は、透明導電性膜上に
多孔質の二酸化チタン膜を形成し、この表面に増感色素
としてRuジピリジル錯体を吸着させ、ヨウ素を電子メ
ディエーターとする色素増感型の湿式太陽電池が代表的
的なものとして知られている(Graztel et.al.Nature,3
53,(1991)p737)。
In this wet type solar cell, a porous titanium dioxide film is formed on a transparent conductive film, a Ru dipyridyl complex is adsorbed on this surface as a sensitizing dye, and iodine is used as an electron mediator. Wet solar cells are known as typical ones (Graztel et.al. Nature, 3
53, (1991) p737).

【0006】このような色素増感型の太陽電池は、フッ
素が添加された酸化錫(FTO)を被覆した透明ガラス基板
の表面に酸化チタンなどの金属酸化物の粒子を分散した
ゾルをドクターブレード法などによって塗布し、500
℃程度の温度で焼成して電極を形成する方法が代表的な
方法である。
In such a dye-sensitized solar cell, a sol in which particles of a metal oxide such as titanium oxide are dispersed on the surface of a transparent glass substrate coated with tin oxide (FTO) to which fluorine is added is doctor blade. Method, etc., 500
A typical method is to form an electrode by firing at a temperature of about ° C.

【0007】その他、例えば、特開2000−3190
18号公報には、結晶酸化チタン及びアモルファス型過
酸化チタンゾルを成分に含む塗布液を基体に塗布し、加
熱焼結により多孔質酸化チタン薄膜を形成した光電変換
素子が開示されている。特開2001−283944号
公報には、粒子を焼結する方法により多孔質金属酸化物
半導体層を形成した有機色素増感型酸化物半導体電極が
開示されている。また、特開2001−325998号
公報には、基材の表面に粒子を分散したゾルをコートし
て粒子層を形成した後に、金属のフッ化物溶液又はフッ
化錯体溶液と粒子膜を接触させて粒子の表面に微細構造
を有する金属酸化物膜を形成する方法が開示されてい
る。
Others, for example, Japanese Patent Laid-Open No. 2000-3190.
Japanese Unexamined Patent Publication No. 18 discloses a photoelectric conversion element in which a coating solution containing crystalline titanium oxide and amorphous titanium peroxide sol as components is applied to a substrate and a porous titanium oxide thin film is formed by heating and sintering. Japanese Unexamined Patent Publication No. 2001-283944 discloses an organic dye-sensitized oxide semiconductor electrode in which a porous metal oxide semiconductor layer is formed by a method of sintering particles. Further, in JP-A-2001-325998, a sol in which particles are dispersed is coated on the surface of a base material to form a particle layer, and then a metal fluoride solution or a fluoride complex solution is brought into contact with a particle film. A method of forming a metal oxide film having a fine structure on the surface of particles is disclosed.

【0008】[0008]

【発明が解決しようとする課題】従来用いられている多
孔質金属酸化物半導体層の形成方法の内、スキージ法、
スクリーンプリンティング法、スピンコート法では、大
面積に均一に塗布することが困難である。スパッタリン
グ法は、真空装置が必要なため、大面積化が困難、製造
コストが高いなどの欠点がある。また、ゾルゲル法で直
接電極を作製する方法は、多孔質化する点に問題があ
る。さらに、微粒子スラリーを塗布する場合は、高表面
積化が困難である。化学溶液析出法はウエットプロセス
であり、大面積に均一に薄膜を作製できる方法である。
しかし、Gratzelセルに好適とされる10μm程
度の膜厚条件を満たすことが困難である。
Among the conventional methods of forming a porous metal oxide semiconductor layer, the squeegee method,
With the screen printing method and the spin coating method, it is difficult to uniformly coat a large area. Since the sputtering method requires a vacuum device, it has drawbacks such as difficulty in increasing the area and high manufacturing cost. Further, the method of directly producing an electrode by the sol-gel method has a problem in that it is made porous. Furthermore, when applying a fine particle slurry, it is difficult to increase the surface area. The chemical solution deposition method is a wet process and is a method capable of uniformly forming a thin film on a large area.
However, it is difficult to satisfy the film thickness condition of about 10 μm, which is suitable for the Gratzel cell.

【0009】さらに、多孔質金属酸化物半導体層は酸化
チタンのような半導体材料から構成されているために、
導電性が不十分であり、電極面積が大きくなると内部抵
抗が大きくなって大きな電流を取り出すことが困難にな
るという問題がある。特に、有機色素増感型酸化物半導
体電極の場合は、励起した色素から電子が金属酸化物半
導体層に素早く注入されても、金属酸化物半導体層が電
子の移動を妨げ、透明導電性膜に到達するまでの内部抵
抗として作用してしまう問題がある。
Furthermore, since the porous metal oxide semiconductor layer is composed of a semiconductor material such as titanium oxide,
There is a problem that the conductivity is insufficient, and if the electrode area increases, the internal resistance increases and it becomes difficult to extract a large current. In particular, in the case of an organic dye-sensitized oxide semiconductor electrode, even if electrons are rapidly injected from the excited dye into the metal oxide semiconductor layer, the metal oxide semiconductor layer hinders the movement of electrons, resulting in a transparent conductive film. There is a problem that it acts as an internal resistance until reaching.

【0010】そこで、上記の課題を解決し、細孔径サイ
ズがナノスケールで、微細構造が制御された比表面積の
大きい多孔質金属酸化物半導体薄膜を基体上に大面積で
も均一に所望の膜厚に作製できる方法の開発が求められ
ている。
In view of the above problems, a porous metal oxide semiconductor thin film having a pore size of nanoscale and a controlled fine structure and a large specific surface area can be formed on a substrate to solve the above-mentioned problems evenly over a large area. There is a demand for the development of a method that can be used for manufacturing.

【0011】[0011]

【課題を解決するための手段】本発明者らは、複合有機
物からなる多孔質ナノ細孔径構造の交互吸着膜の形成法
を利用することにより上記課題を解決した多孔質金属酸
化物半導薄膜を製造できることを見出した。
Means for Solving the Problems The present inventors have solved the above problems by utilizing a method for forming an alternating adsorption film having a porous nanopore diameter structure composed of a composite organic substance, and thus solving the above problems. It has been found that can be manufactured.

【0012】すなわち、本発明は、基体上に複合有機物
からなる多孔質ナノ細孔径構造の交互吸着膜を形成し、
純水処理によりマクロ孔を有する多孔質構造に再組織化
した後、該多孔質構造の交互吸着膜上および基体表面ま
で貫通しているその孔構造内に化学溶液析出法により金
属酸化物粒子を形成し、次いで、交互吸着膜を焼失させ
ることにより基体上にナノ細孔径構造の交互吸着膜のレ
プリカ状の多孔質金属酸化物半導体薄膜を形成すること
を特徴とする多孔質金属酸化物半導体薄膜の製造方法で
ある。
That is, according to the present invention, an alternating adsorption film having a porous nanopore diameter structure composed of a composite organic substance is formed on a substrate,
After reorganization into a porous structure having macropores by pure water treatment, metal oxide particles are formed by a chemical solution deposition method in the pore structure penetrating on the alternate adsorption film of the porous structure and to the substrate surface. A porous metal oxide semiconductor thin film, which is formed and then burned off to form a replica-like porous metal oxide semiconductor thin film of the alternate adsorption film having a nanopore diameter structure on the substrate. Is a manufacturing method.

【0013】また、本発明は、透明導電性基体に複合有
機物からなる多孔質ナノ細孔径構造の交互吸着膜を形成
し、純水処理によりマクロ孔を有する多孔質構造に再組
織化した後、該多孔質構造の交互吸着膜上および基体表
面まで貫通しているその孔構造内に化学溶液析出法によ
り金属酸化物粒子を形成し、次いで、交互吸着膜を焼失
させることにより基体上にナノ細孔径構造の交互吸着膜
のレプリカ状の多孔質金属酸化物半導体薄膜を形成する
ことを特徴とする酸化物半導体色素結合電極の製造方法
である。
Further, according to the present invention, an alternating adsorption film having a porous nanopore diameter structure composed of a composite organic substance is formed on a transparent conductive substrate, and after reorganization into a porous structure having macropores by pure water treatment, Nanoparticles are formed on the substrate by forming metal oxide particles on the alternating adsorption film having the porous structure and in the pore structure penetrating to the surface of the substrate by the chemical solution deposition method, and then burning the alternating adsorption film. A method for producing an oxide semiconductor dye-bonded electrode, which comprises forming a replica-like porous metal oxide semiconductor thin film of an alternate adsorption film having a pore size structure.

【0014】[0014]

【発明の実施の形態】本発明者らは、先に、細孔径がナ
ノスケールであり、微細構造制御された交互吸着(Laye
r-by-Layer Electrostatic Self-Assembly)膜の製法を
開発した(応用物理,第69巻,第5号,第553〜5
57頁,2000年、特開2001−62286号公
報)。この製法によれば、正の電解質ポリマー(カチオ
ン)の水溶液と、負の電解質ポリマー(アニオン)の水
溶液とを別々の容器に用意し、これらの容器に、初期表
面電荷を与えた基板(被成膜材料)を交互に浸すことに
より、基板上に多層構造を有する複合有機超薄膜(交互
吸着膜)が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have previously proposed that the nano-scale pore size and microstructure-controlled alternate adsorption (Laye).
We have developed a manufacturing method for r-by-Layer Electrostatic Self-Assembly film (Applied Physics, Vol. 69, No. 5, 553-5).
57, 2000, JP 2001-62286 A). According to this method, an aqueous solution of a positive electrolyte polymer (cation) and an aqueous solution of a negative electrolyte polymer (anion) are prepared in separate containers, and these containers are provided with a substrate (deposition film) to which an initial surface charge is applied. By alternately dipping the film material), a composite organic ultrathin film (alternating adsorption film) having a multilayer structure can be obtained on the substrate.

【0015】例えば、被成膜材料としてガラス基板を用
いた場合、このガラス基板の表面を親水処理して表面に
OH- 基を導入して、初期表面電荷として負の電荷を与
える。そして、表面が負に帯電したこの基板を、正の電
解質ポリマー水溶液に浸せば、クーロン力により、少な
くとも表面電荷が中和されるまで正の電解質ポリマーが
表面に吸着し、1層の超薄膜が形成される。こうして形
成された超薄膜の表面部分は、正に帯電していることに
なる。そこで、今度はこの基板を負の電解質ポリマー水
溶液に浸せば、クーロン力により負の電解質ポリマーが
吸着し、1層の超薄膜が形成されることになる。
For example, when a glass substrate is used as the film-forming material, the surface of the glass substrate is subjected to hydrophilic treatment to introduce an OH group to the surface to give a negative charge as an initial surface charge. Then, when this substrate whose surface is negatively charged is dipped in a positive electrolyte polymer aqueous solution, the positive electrolyte polymer is adsorbed on the surface by Coulomb force until at least the surface charge is neutralized, and a single layer of ultrathin film is formed. It is formed. The surface portion of the ultrathin film thus formed is positively charged. Therefore, this time, if this substrate is dipped in the negative electrolyte polymer aqueous solution, the negative electrolyte polymer is adsorbed by the Coulomb force, and one layer of ultrathin film is formed.

【0016】このようにして、基板を2つの容器の水溶
液に交互に浸すことにより、正の電解質ポリマーからな
る超薄膜層と負の電解質ポリマーからなる超薄膜層とを
交互に成膜することができ、正電荷として、PPV前駆
体、ポリピロール・ポリアニリン(ドープ状態)、PA
Hなど、負電荷としてPAA,TPA,SPSなどを組
み合せた多層構造をもった複合有機薄膜を形成すること
ができる。この方法により、例えば、PPV/PAAの
組み合わせによる有機発光素子、PAH/PPAの組み
合わせによるケミカルフイルタを作成できる。
In this manner, by alternately immersing the substrate in the aqueous solution in the two containers, the ultrathin film layer made of the positive electrolyte polymer and the ultrathin film layer made of the negative electrolyte polymer can be alternately formed. As a positive charge, PPV precursor, polypyrrole / polyaniline (doped state), PA
It is possible to form a composite organic thin film having a multilayer structure in which H, etc., such as PAA, TPA, SPS, etc. are combined as negative charges. By this method, for example, an organic light-emitting element with a combination of PPV / PAA and a chemical filter with a combination of PAH / PPA can be produced.

【0017】図1は、一般的な交互吸着膜の製造原理を
示す概念図である。ここでは、被成膜材料として、例え
ば、ガラスやシリコンなどの基板10を用意し、その表
面に交互吸着膜を形成する基本原理を示す。まず、第1
の容器20に、正の電解質ポリマー(カチオン)の水溶
液を用意し、第2の容器30に、負の電解質ポリマー
(アニオン)の水溶液を用意する。
FIG. 1 is a conceptual diagram showing the principle of manufacturing a general alternating adsorption film. Here, a basic principle of preparing a substrate 10 such as glass or silicon as a film forming material and forming an alternate adsorption film on the surface thereof will be described. First, the first
An aqueous solution of a positive electrolyte polymer (cation) is prepared in the container 20, and an aqueous solution of a negative electrolyte polymer (anion) is prepared in the second container 30.

【0018】そして、被成膜材料となる基板10の表面
を親水処理して表面にOH- 基を導入して、初期表面電
荷として負の電荷を与えた基板を準備する。図1(a) の
円内は、このようにして、基板10の表面が負に帯電し
た状態を示す概念図である。続いて、この負に帯電した
基板10を第1の容器20内に入れると、基板10の表
面に正の電解質ポリマーが接触し、クーロン力により吸
着することになる。図1(b) の円内は、正の電解質ポリ
マーが吸着した状態を示す概念図である。
Then, the surface of the substrate 10 to be the film forming material is subjected to hydrophilic treatment to introduce an OH group into the surface to prepare a substrate having a negative charge as an initial surface charge. The circle in FIG. 1 (a) is a conceptual diagram showing the state where the surface of the substrate 10 is negatively charged in this way. Subsequently, when the negatively charged substrate 10 is put into the first container 20, the positive electrolyte polymer comes into contact with the surface of the substrate 10 and is adsorbed by the Coulomb force. The circle in FIG. 1 (b) is a conceptual diagram showing a state in which a positive electrolyte polymer is adsorbed.

【0019】ここで、この基板10を第2の容器30内
に入れると、今度は、基板10の表面に負の電解質ポリ
マーが接触し、クーロン力により吸着することになる。
図1(c) の円内は、負の電解質ポリマーが吸着した状態
を示す概念図である。
When the substrate 10 is placed in the second container 30, the negative electrolyte polymer comes into contact with the surface of the substrate 10 and is adsorbed by the Coulomb force.
The circle in FIG. 1 (c) is a conceptual diagram showing a state in which the negative electrolyte polymer is adsorbed.

【0020】このように、基板10を第1の容器20と
第2の容器30とに交互に浸漬させてゆけば、基板10
の表面には、正の電界質ポリマーからなる層と負の電解
質ポリマーからなる層とが交互に成膜されて累積してい
くことになり、最終的に多層構造をもった交互吸着膜が
形成される。
In this way, if the substrate 10 is alternately immersed in the first container 20 and the second container 30, the substrate 10
On the surface of, the layers made of positive electrolyte polymer and the layers made of negative electrolyte polymer are alternately deposited and accumulated, and finally an alternate adsorption film having a multilayer structure is formed. To be done.

【0021】本発明の方法においては、まず、上記の交
互吸着膜の形成方法を用いて、基体に交互吸着膜を形成
する。有機色素増感型酸化物半導体電極の場合には、I
TOやFTO(SnO2 :F)などの透明導電性膜を形
成したガラス基板を用いる。
In the method of the present invention, first, the alternate adsorption film is formed on the substrate by using the above-described alternate adsorption film forming method. In the case of an organic dye-sensitized oxide semiconductor electrode, I
A glass substrate having a transparent conductive film such as TO and FTO (SnO 2 : F) is used.

【0022】次に、形成した交互吸着膜を希塩酸浸漬処
理することにより膜の構造を変化させて多孔質化させ
る。希塩酸のpHは2.4〜2.6が好ましく、2.5
が最適である。希硝酸、希酢酸では多孔質化しない。
Next, the alternating adsorption film thus formed is subjected to a dilute hydrochloric acid immersion treatment to change the structure of the film to make it porous. The pH of dilute hydrochloric acid is preferably 2.4 to 2.6, and 2.5.
Is the best. Dilute nitric acid and dilute acetic acid do not make it porous.

【0023】この後、さらに純水に浸漬すると膜厚、孔
径、表面構造、屈折率などが変化し、多孔質膜が形成さ
れることになり、孔径50〜400nm程度のシリンジ
状のマクロ孔を有する多孔質構造に再組織化される。こ
の構造変化には解離定数が密接に関係している。希塩酸
によってPAAがプロトン化され、結合(COO−N
)が切れることによって多孔質化する。その後、
純水(pH=5〜6)に浸漬すると再び脱プロトン化さ
れ再結合し再び構造変化していると考えられる。温度は
室温でよく、浸漬時間は20秒程度以下でよい。酸化物
膜と基体との接合のためにナノ細孔は基体表面まで孔が
貫通していることが重要であり、高密度で細孔が存在し
ていることが望ましい。
After that, when it is further immersed in pure water, the film thickness, pore diameter, surface structure, refractive index, etc. are changed to form a porous membrane, and a syringe-like macropore having a pore diameter of about 50 to 400 nm is formed. Are reorganized into a porous structure having. The dissociation constant is closely related to this structural change. PAA is protonated by dilute hydrochloric acid to form a bond (COO -- N
H 3 + ) is broken to make it porous. afterwards,
It is considered that when it is immersed in pure water (pH = 5 to 6), it is deprotonated again, recombined and structurally changed again. The temperature may be room temperature, and the immersion time may be about 20 seconds or less. It is important that the nanopores penetrate to the surface of the substrate in order to bond the oxide film and the substrate, and it is desirable that the pores exist at a high density.

【0024】次に、多孔質構造に再組織化した交互吸着
膜を形成した基体を化学析出溶液に浸漬する。化学析出
溶液を用いて、TiO 、SiO,SnO,V
などを析出させることができる。TiOを析出さ
せる場合は、NH4 OHでpH1.8〜3.1(結晶性
のよいTiO2 薄膜を得るには<pH2.2)に調整し
たTiF4 前駆体溶液に3〜24時間静置する。溶媒と
して純水を用い、TiF=0.04Mとし、NH
Hを数滴添加し、温度60℃の条件で約2μm程度まで
の膜を形成できる。
Next, the substrate on which the alternating adsorption film reorganized into a porous structure is formed is immersed in a chemical deposition solution. Using a chemical deposition solution, TiO 2 , SiO 2 , SnO 2 , V 2
O 5 and the like can be deposited. When TiO 2 is deposited, it is left standing in a TiF 4 precursor solution adjusted to pH 1.8 to 3.1 (<pH 2.2 for obtaining a TiO 2 thin film having good crystallinity) with NH 4 OH for 3 to 24 hours. Place. Pure water was used as a solvent, TiF 4 was 0.04 M, and NH 4 O was used.
A few drops of H can be added to form a film up to about 2 μm at a temperature of 60 ° C.

【0025】基体を化学析出溶液から取り出した後、乾
燥する。図2は、交互吸着膜上およびその孔構造内に金
属酸化物粒子が形成される状態(a)および交互吸着膜
が焼失し、多孔質金属酸化物薄膜が形成される状態
(b)を示す模式図である。化学溶液析出法によれば、
多孔質構造の交互吸着膜11の基体表面まで貫通してい
る孔内部にも溶液が十分に浸透し、孔内部で金属酸化物
粒子が形成され、図2の(a)に示すように、交互吸着
膜11の膜上およびその孔構造内から基板10の表面に
まで侵入して基板表面に接合された金属酸化物粒子12
の層状構造が形成される。次に、交互吸着膜11が焼失
する温度範囲で金属酸化物粒子を焼成する。
After removing the substrate from the chemical deposition solution, it is dried. FIG. 2 shows a state (a) in which metal oxide particles are formed on the alternate adsorption film and in the pore structure thereof and a state (b) in which the alternate adsorption film is burned down to form a porous metal oxide thin film. It is a schematic diagram. According to the chemical solution deposition method,
The solution sufficiently penetrates into the pores that penetrate to the surface of the substrate of the alternate adsorption film 11 having a porous structure, and metal oxide particles are formed inside the pores. As shown in FIG. Metal oxide particles 12 that have penetrated into the surface of the substrate 10 from above the film of the adsorbed film 11 and within the pore structure thereof and joined to the surface of the substrate
A layered structure of is formed. Next, the metal oxide particles are fired within a temperature range in which the alternate adsorption film 11 is burned out.

【0026】これにより、図2の(b)に概念的に示す
ように、交互吸着膜11が焼失し、細孔13が形成さ
れ、多孔質構造の交互吸着膜11のレプリカとして、金
属酸化物薄膜14が形成され、高表面積の構造が構築で
きる。これにより、ナノスケールの細孔であり、微細構
造が制御された交互吸着膜を鋳型とするレプリカとして
大面積に均一に所望の膜厚の金属酸化物薄膜の作製が可
能になる。この方法により得られた金属酸化物薄膜は、
比表面積が大きく、有機色素増感型酸化物半導体電極と
して使用した場合、電気的には並列つなぎのようになり
内部抵抗が大きくならない。
Thereby, as conceptually shown in FIG. 2B, the alternate adsorption film 11 is burned down to form the pores 13, and the metal oxide is used as a replica of the alternate adsorption film 11 having the porous structure. The thin film 14 is formed and a high surface area structure can be constructed. This makes it possible to produce a metal oxide thin film having a desired film thickness uniformly in a large area as a replica using nano-scale fine pores and an alternating adsorption film having a controlled fine structure as a template. The metal oxide thin film obtained by this method is
When it is used as an organic dye-sensitized oxide semiconductor electrode, it has a large specific surface area and electrically acts like a parallel connection, and the internal resistance does not increase.

【0027】[0027]

【実施例】実施例1 電解質ポリマーのポリカチオンとして、ポリアリルアミ
ンヒドロクロライド(PAH,Aldrich,Mw=
70,000)、ポリアニオンとしてポリアクリル酸
(PAA,Poly Science,Mw=90,0
00)を用いた。PAAをpH3.5、PAHをpH
7.5に調整し、フッ素が添加された酸化錫(FTO)を被
覆した透明ガラス基板上に、溶液濃度を10-2Mで10
層累積した。得られた交互吸着膜の断面TEM像を図3
に示す。
Example 1 As a polycation of an electrolyte polymer, polyallylamine hydrochloride (PAH, Aldrich, Mw =
70,000), polyacrylic acid as a polyanion (PAA, Poly Science, Mw = 90,0)
00) was used. PAA pH 3.5, PAH pH
The solution concentration was adjusted to 7.5 and the solution concentration was 10 -2 M on a transparent glass substrate coated with tin oxide (FTO) to which fluorine was added.
Layer accumulated. A cross-sectional TEM image of the obtained alternate adsorption film is shown in FIG.
Shown in.

【0028】この交互吸着膜をpH2.5の希塩酸に2
分間浸漬した。図4は、希塩酸浸漬処理した後の断面構
造のTEM像を示している。図4から、膜の構造が変化
したことが分かる。次に、純水に20秒間浸漬した。図
5は、純水に浸漬した後の交互吸着膜の断面構造のTE
M像を示している。図5から、直径50〜400nmの
シリンジ状のマクロ孔を有する多孔質構造に再組織化さ
れたことが分かる。
This alternate adsorption film was diluted with dilute hydrochloric acid having a pH of 2.5.
Soaked for a minute. FIG. 4 shows a TEM image of a cross-sectional structure after the dilute hydrochloric acid immersion treatment. It can be seen from FIG. 4 that the structure of the film has changed. Next, it was immersed in pure water for 20 seconds. FIG. 5 shows the TE of the cross-sectional structure of the alternate adsorption film after being immersed in pure water.
The M image is shown. From FIG. 5, it can be seen that the particles are reorganized into a porous structure having syringe-like macropores having a diameter of 50 to 400 nm.

【0029】このようにして作製した薄膜上に、TiF
4 前駆体溶液からTiO2 薄膜を累積した。TiF4
駆体溶液は純水50mlにTiF4 を0.248g溶解
し、1時間攪拌しNH4 OHでpH2.2に調整した溶
液に60℃で10時間浸漬し、TiO2 粒子を析出させ
た。図6は、TiO2 薄膜を形成した表面の多層構造の
SEM像を示している。次に、溶液から基板を取り出
し、650℃に加熱して焼成することにより交互吸着膜
のポリマーを焼失させた。図7は、交互吸着膜を焼成に
より焼失させた表面構造のSEM像を示している。
On the thin film thus prepared, TiF
4 TiO 2 thin films were accumulated from the precursor solution. As the TiF 4 precursor solution, 0.248 g of TiF 4 was dissolved in 50 ml of pure water, stirred for 1 hour, and immersed in a solution adjusted to pH 2.2 with NH 4 OH at 60 ° C. for 10 hours to precipitate TiO 2 particles. . FIG. 6 shows an SEM image of the multilayer structure of the surface on which the TiO 2 thin film is formed. Next, the substrate was taken out of the solution, and heated at 650 ° C. to be baked to burn off the polymer of the alternate adsorption film. FIG. 7 shows an SEM image of the surface structure in which the alternate adsorption film was burned down.

【0030】図6および図7に示されるように、基板の
表面には、交互吸着膜の多孔質構造をトレースしたレプ
リカ状の多孔質TiO2 薄膜が作製された。また、焼成
前後でTiO2の構造が維持されていることも確認でき
た。図8は、TiO2 薄膜をさらに詳しく観察した薄膜
内部の円柱構造のSEM像(a),(b)および層状構
造のSEM像(c),(d)を示している。図8
(a)、図8(b)に示されるように、TiO2 薄膜内
部に特徴的な円柱構造を確認できた。 また、図8
(c)、図8(d)に示されるように、層状構造を確認
できた。
As shown in FIGS. 6 and 7, on the surface of the substrate, a replica-like porous TiO 2 thin film tracing the porous structure of the alternate adsorption film was prepared. It was also confirmed that the structure of TiO 2 was maintained before and after firing. FIG. 8 shows SEM images (a) and (b) of a cylindrical structure and SEM images (c) and (d) of a layered structure inside the thin film obtained by observing the TiO 2 thin film in more detail. Figure 8
As shown in (a) and FIG. 8 (b), a characteristic columnar structure was confirmed inside the TiO 2 thin film. Also, FIG.
As shown in (c) and FIG. 8 (d), a layered structure was confirmed.

【0031】上記の方法により多孔質TiO2 薄膜を形
成した基板をRu色素に12時間浸漬した。ついで、エ
タノールで洗浄後、電解液を滴下し、Pt板で挟んで色
素増感型の太陽電池を作製し、電流−電圧(I−V)特
性および光照射による開放電圧(Voc)を測定した。図
9に、後述の比較例1の測定値と対比して電流−電圧特
性を示す。また、図10に、同じく光照射による開放電
圧を示す。電流密度(Isc)は比較例1に対して約2倍
であり、開放電圧は比較例1に比べて最高値で740m
Vであり、比較例1に比べて約60mV高い結果が得ら
れた。
The substrate on which the porous TiO 2 thin film was formed by the above method was immersed in the Ru dye for 12 hours. Then, after washing with ethanol, the electrolytic solution was dropped and sandwiched between Pt plates to prepare a dye-sensitized solar cell, and current-voltage (IV) characteristics and open-circuit voltage (Voc) due to light irradiation were measured. . FIG. 9 shows current-voltage characteristics in comparison with the measured values of Comparative Example 1 described later. Further, FIG. 10 also shows the open circuit voltage by light irradiation. The current density (Isc) is about twice as high as that of Comparative Example 1, and the open circuit voltage is 740 m at the highest value as compared with Comparative Example 1.
V, which was about 60 mV higher than that of Comparative Example 1.

【0032】比較例1交互吸着膜を形成しないでフッ素
が添加された酸化錫(FTO)を被覆した透明ガラス基板上
に、実施例1と同様な条件でTiO2 薄膜を形成し、色
素増感型の太陽電池を作製し、実施例1と同様に電流−
電圧(I−V)特性および光照射による開放電圧を測定
した。結果を図9および図10に示す。
Comparative Example 1 A TiO 2 thin film was formed under the same conditions as in Example 1 on a transparent glass substrate coated with tin oxide (FTO) to which fluorine was added without forming an alternate adsorption film, and dye sensitization was performed. Type solar cell was prepared, and an electric current was changed in the same manner as in Example 1.
The voltage (IV) characteristic and the open circuit voltage by light irradiation were measured. The results are shown in FIGS. 9 and 10.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的な交互吸着膜の製造原理を示す概念図で
ある。
FIG. 1 is a conceptual diagram showing the manufacturing principle of a general alternating adsorption film.

【図2】交互吸着膜上およびその孔構造内に金属酸化物
粒子が形成される状態(a)および交互吸着膜が焼失
し、多孔質金属酸化物薄膜が形成される状態(b)を示
す模式図である。
FIG. 2 shows a state (a) in which metal oxide particles are formed on the alternate adsorption film and in the pore structure thereof and a state (b) in which the alternate adsorption film is burned down to form a porous metal oxide thin film. It is a schematic diagram.

【図3】実施例1において形成した交互吸着膜の断面構
造のTEM像を示す図面代用写真である。
3 is a drawing-substituting photograph showing a TEM image of a cross-sectional structure of an alternate adsorption film formed in Example 1. FIG.

【図4】実施例1において形成した交互吸着膜を希塩酸
浸漬処理した後の断面構造のTEM像を示す図面代用写
真である。
4 is a drawing-substituting photograph showing a TEM image of a cross-sectional structure after dipping the alternating adsorption film formed in Example 1 in dilute hydrochloric acid.

【図5】実施例1において形成した交互吸着膜を希塩酸
浸漬処理し、さらに純水に浸漬した後の交互吸着膜の断
面構造のTEM像を示す図面代用写真である。
5 is a drawing-substituting photograph showing a TEM image of the cross-sectional structure of the alternate adsorption film formed by dipping the alternate adsorption film formed in Example 1 in dilute hydrochloric acid and further immersing it in pure water.

【図6】実施例1において形成した交互吸着膜を希塩酸
浸漬処理し、純水に浸漬した後、さらに化学溶液析出法
によりTiO2 薄膜を形成した表面の多層構造のSEM
像を示す図面代用写真である。
FIG. 6 is a SEM having a multilayer structure of a surface on which the alternate adsorption film formed in Example 1 was immersed in dilute hydrochloric acid, immersed in pure water, and then a TiO 2 thin film was formed by a chemical solution deposition method.
It is a drawing substitute photograph which shows an image.

【図7】実施例1において形成した交互吸着膜を希塩酸
浸漬処理し、純水に浸漬した後、化学溶液析出法により
TiO2 薄膜を形成し、さらに交互吸着膜を焼成により
焼失させた表面構造のSEM像を示す図面代用写真であ
る。
FIG. 7 is a surface structure in which the alternate adsorption film formed in Example 1 is immersed in dilute hydrochloric acid, immersed in pure water, and then a TiO 2 thin film is formed by a chemical solution deposition method, and the alternate adsorption film is burned off. 3 is a drawing-substituting photograph showing an SEM image of FIG.

【図8】実施例1において形成した交互吸着膜を希塩酸
浸漬処理し、純水に浸漬した後、化学溶液析出法により
TiO2 薄膜を形成し、さらに交互吸着膜を焼成により
焼失させたTiO2 薄膜内部の円柱構造のSEM像
(a),(b)および層状構造のSEM像(c),
(d)を示す図面代用写真である。
[8] The alternate adsorption film formed in Example 1 and dilute hydrochloric acid immersion treatment, was dipped in pure water, a TiO 2 thin film formed by a chemical solution deposition method, TiO 2 obtained by burned by further firing the alternate adsorption film SEM images (a) and (b) of the columnar structure inside the thin film and SEM images (c) of the layered structure,
It is a drawing substitute photograph which shows (d).

【図9】実施例1および比較例1の方法で作製した色素
増感型の太陽電池のI−V特性の測定結果を示すグラフ
である。
FIG. 9 is a graph showing the measurement results of IV characteristics of dye-sensitized solar cells manufactured by the methods of Example 1 and Comparative Example 1.

【図10】実施例1および比較例1の方法で作製した色
素増感型の太陽電池の光照射による開放電圧の測定結果
を示すグラフである。
FIG. 10 is a graph showing the measurement results of open circuit voltage of a dye-sensitized solar cell manufactured by the method of Example 1 and Comparative Example 1 by light irradiation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 忍 横浜市港北区日吉3−14−1 慶應義塾大 学理工学部内 Fターム(参考) 2G046 AA01 BA01 BA09 BB02 BC05 DC14 EA02 EA04 EA09 FE15 FE31 FE35 FE38 FE39 FE44 FE45 4K044 AA12 BA12 BA21 BB02 BB13 BC14 CA53 CA62 5F051 AA07 AA14 BA12 BA13 CB11 FA03 FA06 GA03 5H032 AA06 AS06 AS16 BB02 BB05 EE02 EE16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinobu Takenaka             3-14-1, Hiyoshi, Kohoku Ward, Yokohama City Keio University             Faculty of Science and Engineering F term (reference) 2G046 AA01 BA01 BA09 BB02 BC05                       DC14 EA02 EA04 EA09 FE15                       FE31 FE35 FE38 FE39 FE44                       FE45                 4K044 AA12 BA12 BA21 BB02 BB13                       BC14 CA53 CA62                 5F051 AA07 AA14 BA12 BA13 CB11                       FA03 FA06 GA03                 5H032 AA06 AS06 AS16 BB02 BB05                       EE02 EE16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基体上に複合有機物からなる多孔質ナノ
細孔径構造の交互吸着膜を形成し、純水処理によりマク
ロ孔を有する多孔質構造に再組織化した後、該多孔質構
造の交互吸着膜上および基体表面まで貫通しているその
孔構造内に化学溶液析出法により金属酸化物粒子を形成
し、次いで、交互吸着膜を焼失させることにより基体上
にナノ細孔径構造の交互吸着膜のレプリカ状の多孔質金
属酸化物半導体薄膜を形成することを特徴とする多孔質
金属酸化物半導体薄膜の製造方法。
1. An alternating adsorption film having a porous nanopore diameter structure composed of a composite organic substance is formed on a substrate, and after being reorganized into a porous structure having macropores by a pure water treatment, the alternating porous structure is formed. Alternating adsorption film of nanopore size structure on the substrate by forming metal oxide particles by chemical solution deposition method on the adsorption film and in its pore structure penetrating to the surface of the substrate, and then burning off the alternate adsorption film 1. A method for producing a porous metal oxide semiconductor thin film, which comprises forming a replica-shaped porous metal oxide semiconductor thin film according to claim 1.
【請求項2】 透明導電性基体に複合有機物からなる多
孔質ナノ細孔径構造の交互吸着膜を形成し、純水処理に
よりマクロ孔を有する多孔質構造に再組織化した後、該
多孔質構造の交互吸着膜上および基体表面まで貫通して
いるその孔構造内に化学溶液析出法により金属酸化物粒
子を形成し、次いで、交互吸着膜を焼失させることによ
り基体上にナノ細孔径構造の交互吸着膜のレプリカ状の
多孔質金属酸化物半導体薄膜を形成することを特徴とす
る酸化物半導体色素結合電極の製造方法。
2. An alternating adsorption film having a porous nanopore diameter structure composed of a composite organic substance is formed on a transparent conductive substrate, and the pure structure is reorganized into a porous structure having macropores, and then the porous structure is formed. The metal oxide particles are formed by chemical solution deposition on the alternate adsorption film and in the pore structure that penetrates to the surface of the substrate, and then the alternate adsorption film is burned down to form the alternate nanopore size structure on the substrate. A method for producing an oxide semiconductor dye-bonded electrode, comprising forming a replica-like porous metal oxide semiconductor thin film of an adsorption film.
JP2002111305A 2002-04-12 2002-04-12 Method for manufacturing thin film of porous metal- oxide semiconductor Pending JP2003301283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111305A JP2003301283A (en) 2002-04-12 2002-04-12 Method for manufacturing thin film of porous metal- oxide semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111305A JP2003301283A (en) 2002-04-12 2002-04-12 Method for manufacturing thin film of porous metal- oxide semiconductor

Publications (1)

Publication Number Publication Date
JP2003301283A true JP2003301283A (en) 2003-10-24

Family

ID=29394176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111305A Pending JP2003301283A (en) 2002-04-12 2002-04-12 Method for manufacturing thin film of porous metal- oxide semiconductor

Country Status (1)

Country Link
JP (1) JP2003301283A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315873A (en) * 2004-04-02 2005-11-10 Nippon Sheet Glass Co Ltd Method of manufacturing gas sensor
JP2007035591A (en) * 2005-07-29 2007-02-08 Sharp Corp Dye-sensitized solar cell and manufacturing method of porous semiconductor layer for dye-sensitized solar cell
JP2008107337A (en) * 2006-09-27 2008-05-08 National Institute Of Advanced Industrial & Technology Gas detector
WO2008146564A1 (en) * 2007-05-22 2008-12-04 Sharp Kabushiki Kaisha Nanorod sensor with single-plane electrodes
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010153185A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Solar cell, and manufacturing method thereof
JP2010217159A (en) * 2009-03-17 2010-09-30 Jiaotong Univ Label-free sensor
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315873A (en) * 2004-04-02 2005-11-10 Nippon Sheet Glass Co Ltd Method of manufacturing gas sensor
JP4734517B2 (en) * 2004-04-02 2011-07-27 新コスモス電機株式会社 Manufacturing method of gas sensor
JP2007035591A (en) * 2005-07-29 2007-02-08 Sharp Corp Dye-sensitized solar cell and manufacturing method of porous semiconductor layer for dye-sensitized solar cell
JP2008107337A (en) * 2006-09-27 2008-05-08 National Institute Of Advanced Industrial & Technology Gas detector
US7759150B2 (en) 2007-05-22 2010-07-20 Sharp Laboratories Of America, Inc. Nanorod sensor with single-plane electrodes
WO2008146564A1 (en) * 2007-05-22 2008-12-04 Sharp Kabushiki Kaisha Nanorod sensor with single-plane electrodes
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP2010153185A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Solar cell, and manufacturing method thereof
JP2010217159A (en) * 2009-03-17 2010-09-30 Jiaotong Univ Label-free sensor
TWI394948B (en) * 2009-03-17 2013-05-01 Univ Nat Chiao Tung Label-free sensor
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
KR101042959B1 (en) Solar cell and manufacturing method thereof
Yang et al. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye‐sensitized solar Cells
US11127539B2 (en) High specific capacitance solid state supercapacitor and method of manufacture
Kim et al. Nanopatterning of Mesoporous Inorganic Oxide Films for Efficient Light Harvesting of Dye‐Sensitized Solar Cells
Zhang et al. Low‐temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface
Magne et al. Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells
Cojocaru et al. Size and shape fine-tuning of SnO 2 nanoparticles for highly efficient and stable dye-sensitized solar cells
Kanta et al. Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application
Guldin et al. Layer‐by‐Layer Formation of Block‐Copolymer‐Derived TiO2 for Solid‐State Dye‐Sensitized Solar Cells
WO2008001488A1 (en) Dye-sensitized solar cell and process for manufacturing the same
Karthick et al. DNA aided formation of aggregated Nb2O5 nanoassemblies as anode material for dye sensitized solar cell (DSSC) and supercapacitor applications
JP2003301283A (en) Method for manufacturing thin film of porous metal- oxide semiconductor
Huang et al. Solution-based synthesis of ultrasmall Nb2O5 nanoparticles for functional thin films in dye-sensitized and perovskite solar cells
Kang et al. Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties
CN113285025A (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
KR20090080205A (en) Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells
Ito et al. Dye-Sensitized Photocells with Meso-Macroporous TiO2 Film Electrodes.
KR20140111916A (en) Method for preparing three-dimensional graphene nano-networks and application thereof
Tsuge et al. Fabrication of porous TiO2 films using a spongy replica prepared by layer-by-layer self-assembly method: Application to dye-sensitized solar cells
Balkan et al. The effect of deposition on electrochemical impedance properties of TiO 2/FTO photoanodes
JP4909740B2 (en) Method for electrolytic engineering of nanoparticulate layers
JP2002075476A (en) Photoelectric conversion film, photoelectric conversion electrode, and photoelectric conversion element
KR101745822B1 (en) Photoelectrode for water splitting having 3D inverse Opal nanostructure and fabrication method thereof
JPH11260427A (en) Transparent semiconductor electrode and photochemical battery by using it
JP4380214B2 (en) Method for producing dye-sensitized solar cell