JP2003299314A - Detecting method for rotor position of rotating electric machine - Google Patents

Detecting method for rotor position of rotating electric machine

Info

Publication number
JP2003299314A
JP2003299314A JP2002098462A JP2002098462A JP2003299314A JP 2003299314 A JP2003299314 A JP 2003299314A JP 2002098462 A JP2002098462 A JP 2002098462A JP 2002098462 A JP2002098462 A JP 2002098462A JP 2003299314 A JP2003299314 A JP 2003299314A
Authority
JP
Japan
Prior art keywords
rotor
stator
adjacent
electric machine
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002098462A
Other languages
Japanese (ja)
Other versions
JP3687622B2 (en
Inventor
Kan Akatsu
観 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002098462A priority Critical patent/JP3687622B2/en
Publication of JP2003299314A publication Critical patent/JP2003299314A/en
Application granted granted Critical
Publication of JP3687622B2 publication Critical patent/JP3687622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for detecting the position of a rotor wherein a conventional position sensor having an encoder is obviated and a rotating electric machine is simplified and reduced in size. <P>SOLUTION: The rotating electric machine comprises a rotor 15 or 16 which is rotatably supported outside and/or inside a stator in the direction of the radius thereof. The rotor has a plurality of permanent magnets 15A and 15B or 16A and 16B away from each other in the circumferential direction. The method is for detecting the position of the rotor 15 or 16 to synchronously control currents flowing to coils 18c of individual electromagnets of the rotating elective machine having the rotor 15 or 16 and smoothly rotate the rotor. Rod members, preferably fastening bolts 19A and 19B, are placed in gaps which originally exist between at least one pair of stator pieces 18A and 18B. The stator pieces are adjacent to each other in the circumferential direction on a side where they adjoin to the rotor 15 or 16. Thus, eddy currents produced in the fastening bolts 19A and 19B by influences of the magnetic fields of the permanent magnets in the rotor when the rotor is rotated are measured as rotor position signals. Thus, conventional encoder-type position sensors are obviated. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ステータピースの
ティースにそれぞれコイルを巻回した複数個の電磁石を
周方向に互いに離間して設けたステータ、及びこのステ
ータの半径方向外側及び内側のうちの少なくとも一方に
隣接して回転自在に軸支しかつ周方向に互いに離間する
複数個の永久磁石を有するロータを有する回転電機の各
電磁石のコイルに流れる電流を同期制御してスムーズな
ロータ回転を生ずるため前記ロータの位置を検出する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator in which a plurality of electromagnets each having a coil wound around a tooth of a stator piece are circumferentially spaced from each other, and a stator outer side and inner side in a radial direction. Smooth rotation of the rotor is achieved by synchronously controlling the currents flowing through the coils of the electromagnets of a rotating electric machine having a rotor having a plurality of permanent magnets that are rotatably supported adjacent to at least one of them and are separated from each other in the circumferential direction. Therefore, the present invention relates to a method for detecting the position of the rotor.

【0002】[0002]

【従来の技術】従来の回転電機におけるロータ位置検出
に関しては特開2000‐14103号公報に記載され
ているものがあり、これは、図1に示すように、例え
ば、回転電機13のステータ14に対して相対回転する
内側ロータ15及び外側ロータ16のそれぞれにレゾル
バ又はエンコーダからなる位置センサ17A及び17B
を設け、これら位置センサのエンコードされたパルスを
カウントすることによってロータの位置を検出してい
た。
2. Description of the Related Art A conventional rotor position detection in a rotary electric machine is disclosed in Japanese Patent Application Laid-Open No. 2000-14103, which is shown in FIG. Position sensors 17A and 17B, which are resolvers or encoders, are provided on the inner rotor 15 and the outer rotor 16 that rotate relative to each other.
Is provided and the position of the rotor is detected by counting the encoded pulses of these position sensors.

【0003】ロータ15又は16に設けた複数個の永久
磁石が発生する磁界に対して、ステータ14における複
数個の電磁コイルに流れる電流を制御して各永久磁石の
近傍の電磁石により発生する磁界が吸引及び反発を生じ
てロータを回転させるが、電磁石に対する永久磁石の相
対位置が分からないと、ステータ14の各電磁石に、ど
のタイミングで、どの位相にして電流を流さなければな
らないかが分からず、ロータ15又は16のスムーズな
回転は得られない。従って、回転電機において、速度制
御の有無に関係なく、ロータのスムーズな回転を得るた
めに、ロータの位置検出が必要である。
With respect to a magnetic field generated by a plurality of permanent magnets provided on the rotor 15 or 16, a magnetic field generated by an electromagnet near each permanent magnet is controlled by controlling a current flowing through a plurality of electromagnetic coils in the stator 14. Although the rotor is rotated by causing attraction and repulsion, if the relative position of the permanent magnet with respect to the electromagnet is not known, it is not known at which timing and in which phase the current should be applied to each electromagnet of the stator 14, Smooth rotation of the rotor 15 or 16 cannot be obtained. Therefore, in the rotating electric machine, it is necessary to detect the position of the rotor in order to obtain smooth rotation of the rotor regardless of the presence or absence of speed control.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のロータ
の位置検出方法においては、ロータの軸端にエンコーダ
等のパルス発信部及びパルス受信部よりなる位置センサ
を付加する必要があるため、位置センサの取付スペース
を確保しなければならず、大型化を招く恐れがあるとい
う問題があった。
However, in the conventional rotor position detecting method, it is necessary to add a position sensor including a pulse transmitting portion and a pulse receiving portion such as an encoder to the shaft end of the rotor. However, there is a problem in that the mounting space must be secured, which may lead to an increase in size.

【0005】更に、ステータの電磁コイルに通電する電
流又は通電により発生する電圧を使用してロータの位置
を推定するセンサレスの検出方法も考えられるが、通常
の1ステータ/1ロータの電動機はともかく、図1に示
すような1ステータ/2ロータの複合ロータ型回転電機
の場合、モデルの記述が複雑になり、位置を推定する演
算時間が増大して高速回転には適さなくなるという問題
がある。
Further, a sensorless detection method in which the position of the rotor is estimated by using the current supplied to the electromagnetic coil of the stator or the voltage generated by the supplied current can be considered, but aside from the usual one-stator / one-rotor electric motor, In the case of a 1-stator / 2-rotor compound rotor type rotary electric machine as shown in FIG. 1, there is a problem that the model description becomes complicated and the calculation time for estimating the position increases, which makes it unsuitable for high-speed rotation.

【0006】従って、本発明の目的は、個別の位置セン
サを必要とせず、またステータの電磁コイルに通電する
電流又は通電により発生する電圧でロータ位置を推定す
るための電気回路及び演算処理を必要としない回転電機
のロータ位置検出方法を得るにある。
Therefore, an object of the present invention is to eliminate the need for a separate position sensor and to provide an electric circuit and an arithmetic process for estimating the rotor position by the current applied to the electromagnetic coil of the stator or the voltage generated by the energization. There is a method of detecting the rotor position of a rotating electric machine that does not.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、請求項1記載の発明による本発明ロータ位置検出方
法は、ロータに隣接するステータピース間に磁性材料の
棒部材を配置し、ロータ回転の際にロータにおける永久
磁石の磁界の影響で前記磁性材料の棒部材に発生する渦
電流に基づいてロータ位置を検出することを特徴とす
る。
To achieve this object, the rotor position detecting method according to the present invention according to the first aspect of the present invention is arranged such that a rod member made of a magnetic material is arranged between stator pieces adjacent to the rotor, and the rotor is rotated. At this time, the rotor position is detected based on the eddy current generated in the rod member made of the magnetic material under the influence of the magnetic field of the permanent magnet in the rotor.

【0008】[0008]

【発明の効果】請求項1記載の本発明によれば、互いに
周方向に隣接する少なくとも1対のステータピース間に
磁性材料の棒部材を配置し、該棒部材に流れる渦電流を
検出することでロータの位置を検出可能としたため、従
来のように軸方向にも半径方向にも寸法を増大させる位
置センサを設ける必要がなく、回転電機を簡略化、小型
化することができる。
According to the first aspect of the present invention, a rod member made of a magnetic material is disposed between at least one pair of stator pieces circumferentially adjacent to each other, and an eddy current flowing in the rod member is detected. Since it is possible to detect the position of the rotor, there is no need to provide a position sensor that increases the dimension in the axial direction and the radial direction as in the related art, and the rotating electric machine can be simplified and downsized.

【0009】請求項2記載の本発明によれば、磁性材料
である棒部材における軸線方向両側端部のうち一方の端
部をアースし、他方の端部をこの棒部材の内部インピー
ダンスよりも低いインピーダンスを接続して電気回路を
形成し、この電気回路に生ずる電流又は電圧をロータ位
置信号として測定する。
According to the second aspect of the present invention, one end of both axial ends of the rod member made of a magnetic material is grounded, and the other end is lower than the internal impedance of the rod member. The impedance is connected to form an electric circuit, and the current or voltage generated in the electric circuit is measured as a rotor position signal.

【0010】請求項3に記載の本発明によれば、ステー
タにおけるm個の相の電磁石で駆動されるロータの永久
磁石の磁極対をn個有する回転電機の場合、ステータの
電磁コイルのうち同位相となる電磁コイルに対応する磁
性材料である棒部材のうちの少なくとも2個、多くとも
n個の棒部材に関する測定ロータ位置信号を平均化して
ロータ位置を検出する。この構成によれば、同位相であ
り本来同一出力となるべき少なくとも2個(最大でn
個)の棒部材の検出信号の誤差やノイズの影響を排除し
てより精度の高いロータ位置検出を行なうことができ
る。
According to the present invention as set forth in claim 3, in the case of a rotating electric machine having n magnetic pole pairs of permanent magnets of a rotor driven by electromagnets of m phases in the stator, the same number of electromagnetic coils of the stator is used. The rotor position is detected by averaging the measured rotor position signals for at least two, and at most n, of the rod members made of magnetic material corresponding to the electromagnetic coils in phase. According to this configuration, at least two (n at the maximum) that should have the same phase and originally have the same output.
It is possible to detect the rotor position with higher accuracy by eliminating the error of the detection signal of each rod member and the influence of noise.

【0011】請求項4に記載の本発明によれば、薄板を
積層させてなるステータピースを軸線方向の両側端部に
配置した1対の保持リングプレートを互いに締結するこ
とによりステータコアを構成し、前記磁性材料の棒部材
を、前記ロータに隣接する側で互いに周方向に隣接する
順次の前記ステータピース間において前記1対の保持リ
ングプレートを互いに締結する周方向に互いに等間隔離
して配置した複数個の締結ボルトにより構成する。この
構成によれば、ステータコアを組み立てるボルトを組立
目的のためだけではなく、ロータ位置検出のための渦電
流誘起媒体としても機能させるので、限定されたスペー
スを有効利用できる。
According to the fourth aspect of the present invention, a stator core is constructed by fastening a pair of holding ring plates, which are stator pieces formed by laminating thin plates at both ends in the axial direction, to each other. A plurality of bar members of the magnetic material are arranged at equal intervals in the circumferential direction for fastening the pair of retaining ring plates to each other between the successive stator pieces circumferentially adjacent to each other on the side adjacent to the rotor. It is composed of individual fastening bolts. According to this configuration, the bolt for assembling the stator core functions not only for the purpose of assembling but also as the eddy current inducing medium for detecting the rotor position, so that the limited space can be effectively used.

【0012】請求項5に記載の本発明によれば、1個の
ステータの半径方向外側及び内側にそれぞれロータを設
ける複合ロータ式回転電機としたが、この場合、回転電
機の効率を極めて向上することができる。
According to the fifth aspect of the present invention, the composite rotor type rotary electric machine is provided with rotors on the outer side and the inner side of one stator in the radial direction. In this case, the efficiency of the rotary electric machine is significantly improved. be able to.

【0013】請求項6に記載の本発明によれば、複合ロ
ータ式回転電機において、前記磁性材料の締結ボルトを
配置する互いに隣接するステータピースのヨーク間のエ
アギャップを半径方向に隣接するロータ側で広く、コイ
ル側で狭くしたため、外側ロータの位置検出に係わる外
側ボルト列のボルトの渦電流と内側ロータの位置検出係
わる内側ボルト列のボルトの渦電流とが干渉し合うこと
を確実に排除することができる。
According to a sixth aspect of the present invention, in a combined rotor type rotary electric machine, the air gaps between the yokes of adjacent stator pieces in which the fastening bolts of the magnetic material are arranged are adjacent to each other in the radial direction. Since it is wide on the coil side and narrow on the coil side, interference between the eddy current of the bolts of the outer bolt row related to the position detection of the outer rotor and the eddy current of the bolt of the inner bolt row related to the position detection of the inner rotor is reliably excluded. be able to.

【0014】[0014]

【発明の実施の形態】次に図面につき本発明の好適な実
施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described with reference to the drawings.

【0015】図2は、1個のステータ14の半径方向内
側及び外側の双方に同軸状に相対回転可能に配置した内
側ロータ15及び外側ロータ16を有する複合ロータ式
回転電機の部分的な断面図であって、内側ロータ15の
1個の磁極対を構成する互いに隣接する2個の永久磁石
15A及び15Bと、外側ロータ16の1個の磁極対を
構成する互いに隣接する2個の永久磁石16A及び16
Bと、ステータ14の互いに隣接する2個のステータピ
ース18A及び18Bと、これらステータピース18A
及び18Bとの間の半径方向に隣接する内側及び外側の
ロータ15、16の近傍に、好適には、互いに隣接する
ステータピースのヨークの対向端部に形成した切欠きに
よって生ずる空間に配置した磁性材料の棒部材としての
締結ボルト19A及び19Bとの関係を示す。
FIG. 2 is a partial cross-sectional view of a combined rotor type rotary electric machine having an inner rotor 15 and an outer rotor 16 coaxially and rotatably arranged on both the inner side and the outer side of one stator 14 in the radial direction. And two permanent magnets 15A and 15B adjacent to each other which form one magnetic pole pair of the inner rotor 15, and two permanent magnets 16A adjacent to each other which form one magnetic pole pair of the outer rotor 16. And 16
B, two adjacent stator pieces 18A and 18B of the stator 14, and these stator pieces 18A
And 18B in the vicinity of the radially adjacent inner and outer rotors 15, 16 and preferably in the space created by the notches formed at the opposite ends of the yokes of the adjacent stator pieces. The relationship between the fastening bolts 19A and 19B as a rod member of the material is shown.

【0016】図2に示すように、このステータ14のス
テータピース18は薄板を積層させてなるものとし、こ
の薄板ステータピースの積層体を軸線方向の両側端部に
配置した1対の保持リングプレートを締結ボルト19
A、19Bにより互いに締結してステータコアを構成す
る。本実施の形態によれば、これら締結ボルト19A、
19Bを磁性部材により構成する。
As shown in FIG. 2, the stator piece 18 of the stator 14 is formed by laminating thin plates, and a pair of holding ring plates in which laminated bodies of the thin plate stator pieces are arranged at both ends in the axial direction. Tighten the bolt 19
A and 19B are fastened together to form a stator core. According to this embodiment, these fastening bolts 19A,
19B is composed of a magnetic member.

【0017】ステータ14に対して半径方向内側に隣接
する内側ロータ15の永久磁石15A,15Bとステー
タピース18A,18Bの対応隣接端部との間に発生す
る漏れ磁束磁路21A、及びステータ14に対して半径
方向外側に隣接する外側ロータ16の永久磁石16A,
16Bとステータピース18A,18Bとの間に発生す
る漏れ磁束磁路21Bにより、これら漏れ磁束磁路21
A,21Bに介在するエアギャップに配置したこのよう
な締結ボルト19A及び19Bには、それぞれその軸線
方向に渦電流が発生する。
The leakage flux magnetic path 21A generated between the permanent magnets 15A and 15B of the inner rotor 15 and the corresponding adjacent ends of the stator pieces 18A and 18B, which are radially inwardly adjacent to the stator 14, and the stator 14 are provided. On the other hand, the permanent magnets 16A of the outer rotor 16 adjacent to the outer side in the radial direction,
The leakage flux magnetic path 21B generated between the stator 16B and the stator pieces 18A, 18B is generated by the leakage flux magnetic path 21B.
Eddy currents are generated in the axial directions of the fastening bolts 19A and 19B arranged in the air gaps interposed between A and 21B.

【0018】締結ボルト19A及び19Bに発生する渦
電流は、ボルトを通過する磁束の変化により生ずるの
で、一組の磁極対をなす2個の永久磁石15A,15B
間及び16A,16B間のギャップの中心位置、即ち、
q軸で渦電流はピーク値をとる。この発生する渦電流の
ピーク値を検出し、検出した位相から予め測っておいた
d軸即ち、永久磁石15A,15B及び16A,16B
の中心位置との位相ずれを差し引くことによってロータ
の永久磁石の位置を割出すことができる。この関係を図
3に示す。
The eddy currents generated in the fastening bolts 19A and 19B are generated by the change in the magnetic flux passing through the bolts, so that the two permanent magnets 15A and 15B forming one magnetic pole pair.
Center position of the gap between 16A and 16B, that is,
The eddy current has a peak value on the q-axis. The peak value of the generated eddy current is detected, and the d-axis measured in advance from the detected phase, that is, the permanent magnets 15A, 15B and 16A, 16B.
The position of the permanent magnet of the rotor can be determined by subtracting the phase shift from the center position of. This relationship is shown in FIG.

【0019】図2に示す複合ロータ式回転電機としての
実施の形態では、磁性材料の締結ボルト19A及び19
Bを配置する互いに隣接するステータピース18A,1
8Bのヨークの対向端部に形成する切欠き(エアギャッ
プ)を、半径方向に隣接するロータ側で広く、コイル1
8C側で狭くすることにより、漏れ磁束磁路21A,2
1B間の干渉を排除し、締結ボルト19A,19Bに発
生する渦電流をノイズなく確実に検出することができる
ようになる。
In the embodiment as the composite rotor type rotating electric machine shown in FIG. 2, fastening bolts 19A and 19 made of magnetic material are used.
Adjacent stator pieces 18A, 1 in which B is arranged
The notch (air gap) formed at the opposite end of the yoke 8B is wide on the rotor side adjacent in the radial direction, and
By narrowing on the 8C side, the leakage magnetic flux magnetic paths 21A, 2
It becomes possible to eliminate interference between 1B and reliably detect eddy currents generated in the fastening bolts 19A and 19B without noise.

【0020】図4は、3相の電磁石としてステータピー
ス1,2,3の組に、互いに隣接する2個のロータの永
久磁石による1組の磁極対N,Sが通過するときの状況
を平面的に展開して示す。
FIG. 4 is a plan view of a situation in which a pair of magnetic poles N and S formed by permanent magnets of two rotors adjacent to each other passes through a set of stator pieces 1, 2 and 3 as a three-phase electromagnet. Expanded and shown.

【0021】図4の(a)に示すように、ロータにおけ
る1個の磁極対のうち、第1の永久磁石のN極が締結ボ
ルト19‐1に近づきつつあるとき、ステータピース1
にはロータにおける第1の永久磁石のN極を吸引するS
極がT字の端部ヨークに発生し、ステータピース2には
第1の永久磁石のN極に対して反発するN極がT字の端
部ヨークに発生する向きに電磁コイルの通電を行なう。
As shown in FIG. 4A, when the N pole of the first permanent magnet of one magnetic pole pair in the rotor is approaching the fastening bolt 19-1, the stator piece 1
S that attracts the N pole of the first permanent magnet in the rotor
A pole is generated in the T-shaped end yoke, and the electromagnetic coil is energized in a direction in which the N pole repulsive to the N pole of the first permanent magnet is generated in the T-shaped end yoke in the stator piece 2. .

【0022】一方、図4の(b)に示すように、ロータ
における第1の永久磁石のN極が締結ボルト19‐1を
通り過ぎたとき、ステータピース1にはロータにおける
第1の永久磁石のN極を反発するN極がT字の端部ヨー
クに発生し、ステータピース2にはロータにおける第2
の永久磁石のS極を反発するS極がT字のヨークに発生
する向きに電磁コイルの通電を行なう。
On the other hand, as shown in FIG. 4 (b), when the N pole of the first permanent magnet of the rotor has passed the fastening bolt 19-1, the stator piece 1 has the first permanent magnet of the rotor. An N pole that repels the N pole is generated in the T-shaped end yoke, and the stator piece 2 has a second pole in the rotor.
The electromagnetic coil is energized in the direction in which the S pole repelling the S pole of the permanent magnet is generated in the T-shaped yoke.

【0023】このようにステータピース1,2に発生す
る磁界の変化により、ステータピース1,2間の締結ボ
ルト19‐1にはボルトの軸線方向(図面の紙面に直交
する方向)の両側端部間で周期的に向きが逆転する渦電
流を生ずることになる。
Due to the change in the magnetic field generated in the stator pieces 1 and 2 in this manner, the fastening bolts 19-1 between the stator pieces 1 and 2 have both end portions in the axial direction of the bolts (direction orthogonal to the plane of the drawing). An eddy current whose direction is periodically reversed between them is generated.

【0024】磁性材料の締結ボルトにおける位置検出用
の検出信号の取出し方としては、図5に示すように、締
結ボルトに発生する渦電流の電位差を検出する方法と、
締結ボルトに流れる渦電流の電流を検出する方法の2通
りが考えられる。
As shown in FIG. 5, a method of detecting the potential difference of the eddy current generated in the fastening bolt is used as a method of extracting the detection signal for detecting the position in the fastening bolt of the magnetic material.
There are two possible methods for detecting the eddy current flowing through the fastening bolt.

【0025】電位差を検出する場合、図5(a)に示す
ように、ボルトの上面及び下面にそれぞれ銅製の電極2
2を埋め込み、各電極の先端を高入力インピーダンスの
OPアンプ23の入力側に接続する。これにより、図3
に示す渦電流パルスに対応する電位差を増幅して検出す
る。
When detecting the potential difference, as shown in FIG. 5 (a), copper electrodes 2 are formed on the upper surface and the lower surface of the bolt, respectively.
2 is embedded and the tip of each electrode is connected to the input side of the OP amplifier 23 having high input impedance. As a result, FIG.
The potential difference corresponding to the eddy current pulse shown in is amplified and detected.

【0026】電流を検出する場合も、図5bに示すよう
に、やはり、OPアンプ23を使用するが、締結ボルト
の内部インピーダンスよりも小さいインピーダンスを有
する低い抵抗(電流検出抵抗)24をOPアンプの前段
に並列接続し、このOPアンプ23の前段の抵抗24に
電流が流れるようにし、抵抗24の両側に発生する電位
差を後段のOPアンプ23で増幅して検出する。
When detecting a current, as shown in FIG. 5b, the OP amplifier 23 is also used, but a low resistance (current detection resistance) 24 having an impedance smaller than the internal impedance of the fastening bolt is used. It is connected in parallel to the front stage so that a current flows through the resistor 24 in the front stage of the OP amplifier 23, and the potential difference generated on both sides of the resistor 24 is amplified and detected by the OP amplifier 23 in the rear stage.

【0027】ボルトに流れる渦電流は、図3に示すよう
に、電気角1周期で変化するため、例えば、外側ロータ
の永久磁石を4極対(隣接する2個の永久磁石対が周方
向に4個ある)とし、各磁極対を3相駆動する(1個の
磁極対にステータの3個の電磁コイルが対応する)場合
(ロータの永久磁石は合計2×4=8個、ステータの電
磁コイルは合計3×4=12個ある)、ステータの外側
周縁及び内側周縁において順次隣接するステータピース
間における12個のデッドスペースのすべてにそれぞれ
磁性材料の棒部材を配置しても、隣接するロータの永久
磁石の影響で磁性材料の棒部材に発生する渦電流に関し
て3個の電磁石は異なる位相となるが、残りの9個の電
磁石は先の3個の電磁石において繰り返しとなる。従っ
て、12個の磁性材料である棒部材のうち、1個の棒部
材からの検出を行うだけで済む。または12個の同一の重
量及び同一容積の棒部材における1個だけを磁性材料と
し、この1個の磁性材料の棒部材からの検出を行なうだ
けで済む。
As shown in FIG. 3, the eddy current flowing through the bolt changes with one electrical angle cycle, so that, for example, the permanent magnets of the outer rotor are arranged in four pole pairs (two adjacent permanent magnet pairs are arranged in the circumferential direction). There are four), and each magnetic pole pair is driven in three phases (one magnetic pole pair corresponds to three electromagnetic coils of the stator) (2 x 4 = 8 total permanent magnets of the rotor, The total number of coils is 3 × 4 = 12), and even if bar members made of magnetic material are arranged in all of the 12 dead spaces between the stator pieces that are successively adjacent to each other on the outer peripheral edge and the inner peripheral edge of the stator, the adjacent rotors are adjacent to each other. The three electromagnets have different phases with respect to the eddy currents generated in the rod member made of the magnetic material due to the effect of the permanent magnets, but the remaining nine electromagnets are repeated in the previous three electromagnets. Therefore, of the twelve bar members made of magnetic material, only one bar member needs to be detected. Alternatively, only one of the twelve bar members having the same weight and the same volume is used as the magnetic material, and the detection of the one magnetic material from the bar member is sufficient.

【0028】図6(a)に示すように、N極とS極が3
相ステータに対向するロータの磁極対が4組存在する回
転電機の場合、磁性材料の棒部材又は締結ボルト1〜1
2の渦電流に関するロータ位置検出は、同一位相の締結
ボルト1,4,7,10ではすべて同じ出力になるはず
であり、3相を含む締結ボルト[1,2,3],[4,
5,6],[7,8,9],[10,11,12]の組の各
締結ボルトは順次に位相が120゜づつずれている。
As shown in FIG. 6A, the N pole and the S pole are 3
In the case of a rotary electric machine having four rotor magnetic pole pairs facing the phase stator, a rod member or fastening bolts 1 to 1 made of a magnetic material.
Rotor position detection related to the eddy current of 2 should all be the same output for the fastening bolts 1, 4, 7, 10 of the same phase, and the fastening bolts [1, 2, 3], [4, including three phases
The phases of the respective fastening bolts of the set 5, 5, 6], [7, 8, 9], [10, 11, 12] are sequentially shifted by 120 °.

【0029】これら締結ボルト[1〜12]のうちの1個
の締結ボルトにおけるロータ位置検出だけでもよいが、
製造公差やノイズの影響を排除するため、図5に示す方
法によって同一位相となる締結ボルト[1,4,7,1
0]に関する渦電流に関連する検出をそれぞれ行ない、
測定ロータ位置信号を平均化してロータ位置を検出する
と好適である(図6(b)参照)。
Although only the rotor position of one of the fastening bolts [1-12] may be detected,
To eliminate the effects of manufacturing tolerances and noise, the fastening bolts [1, 4, 7, 1] that have the same phase by the method shown in FIG.
0] for eddy current related detection,
It is preferable to average the measured rotor position signals to detect the rotor position (see FIG. 6B).

【0030】図示の実施の形態ではロータが2つの回転
電機を示したが、ロータが1つの回転電機にも適用でき
る。また、図示の好適な実施の形態では磁性材料の棒部
材として締結ボルトを示したが、単に磁性材料の棒部材
を配置してよもよい。
In the illustrated embodiment, the rotating electric machine has two rotors, but it can be applied to a rotating electric machine having one rotor. Further, although the fastening bolt is shown as the rod member made of the magnetic material in the illustrated preferred embodiment, the rod member made of the magnetic material may be simply arranged.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ロータ位置を検出するため位置センサを有す
る従来の回転電機の一部断面とする側面図である。
FIG. 1 is a partial cross-sectional side view of a conventional rotating electric machine having a position sensor for detecting a rotor position.

【図2】 本発明によるロータ位置検出方法の好適な実
施の形態を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating a preferred embodiment of a rotor position detecting method according to the present invention.

【図3】 磁性材料の棒部材(締結ボルト)を流れる渦
電流の変化を示すグラフである。
FIG. 3 is a graph showing changes in eddy current flowing through a rod member (fastening bolt) made of a magnetic material.

【図4】 3相の電磁石におけるステータピース1,
2,3の組に、互いに隣接する2個のロータの永久磁石
による1組の磁極対N,Sが通過するときの状況を平面
的に展開して示す説明図である。
FIG. 4 is a stator piece 1 of a three-phase electromagnet.
It is explanatory drawing which expand | deploys planarly and shows the condition when 1 set of magnetic pole pairs N and S by the permanent magnets of 2 rotors adjacent to each other passes through 2 and 3 sets.

【図5】 (a)は磁性材料の棒部材としての締結ボル
トに発生する渦電流の電位差を検出する方法、(b)は
締結ボルトに流れる渦電流の電流を検出する方法を示す
説明図である。
5A is an explanatory diagram showing a method for detecting a potential difference of an eddy current generated in a fastening bolt as a rod member made of a magnetic material, and FIG. 5B is a diagram showing a method for detecting a current of an eddy current flowing in the fastening bolt. is there.

【図6】 (a)は、4個の磁極対(合計8個)の永久
磁石を有するロータと、これに対応する3相電磁コイル
を有するステータピース間に配置した磁性材料の棒部材
又は締結ボルトとの関係を示す説明図、(b)は同一位
相となる磁性材料の棒部材又は締結ボルトを測定して測
定値を平均化する方法の説明図である。
FIG. 6 (a) is a rod member or a fastening member made of a magnetic material arranged between a rotor having permanent magnets of four magnetic pole pairs (a total of eight) and a stator piece having a corresponding three-phase electromagnetic coil. FIG. 4B is an explanatory diagram showing a relationship with a bolt, and FIG. 6B is an explanatory diagram of a method of measuring a bar member or a fastening bolt made of a magnetic material having the same phase and averaging the measured values.

【符号の説明】[Explanation of symbols]

1〜12 ステータピース間における順次の磁性材料の棒
部材(締結ボルト) 13 回転電機 14 ステータ 15 内側ロータ 16 外側ロータ 17 位置センサ 18 ステータピース 18C コイル 18D 切欠き 19 締結ボルト(磁性材料の棒部材) 20 保持リング又はプレート 21 漏れ磁束磁路 22 電極 23 OPアンプ 24 低い抵抗(電流検出抵抗)
1-12 Sequential magnetic rod members (fastening bolts) between stator pieces 13 Rotating electric machine 14 Stator 15 Inner rotor 16 Outer rotor 17 Position sensor 18 Stator piece 18C Coil 18D Notch 19 Fastening bolts (magnetic material rod member) 20 Retaining ring or plate 21 Leakage magnetic flux magnetic path 22 Electrode 23 OP amplifier 24 Low resistance (current detection resistance)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ステータピースのティースにそれぞれコ
イルを巻回した複数個の電磁石を周方向に互いに離間し
て設けたステータ、及びこのステータの半径方向外側及
び内側のうちの少なくとも一方に隣接して回転自在に軸
支しかつ周方向に互いに離間する複数個の永久磁石を有
するロータを有する回転電機の前記ロータの位置を検出
する方法において、前記ロータに隣接する前記ステータ
ピース間に磁性材料の棒部材を配置し、ロータ回転の際
に前記ロータにおける永久磁石の磁界の影響で前記磁性
材料の棒部材に発生する渦電流に基づいてロータ位置を
検出することを特徴とする回転電機のロータ位置検出方
法。
1. A stator in which a plurality of electromagnets each having a coil wound around a tooth of a stator piece are circumferentially separated from each other, and adjacent to at least one of an outer side and an inner side of the stator in a radial direction. In a method for detecting the position of the rotor of a rotating electric machine having a rotor having a plurality of permanent magnets that are rotatably supported and spaced from each other in the circumferential direction, a rod of magnetic material is provided between the stator pieces adjacent to the rotor. Rotor position detection of a rotating electric machine, characterized in that members are arranged and the rotor position is detected based on an eddy current generated in a rod member of the magnetic material under the influence of a magnetic field of a permanent magnet in the rotor during rotor rotation. Method.
【請求項2】 前記棒材料における軸線方向両側端部の
うち一方の端部をアースし、他方の端部をこの棒部材の
内部インピーダンスよりも低いインピーダンスを接続し
て電気回路を形成し、この電気回路に生ずる電流又は電
圧をロータ位置信号として測定することによって前記渦
電流測定を行なう請求項1記載の方法。
2. An electric circuit is formed by grounding one end of both axial end portions of the rod material and connecting the other end to an impedance lower than the internal impedance of the rod member. The method of claim 1, wherein the eddy current measurement is performed by measuring the current or voltage produced in the electrical circuit as the rotor position signal.
【請求項3】 ステータにおけるm個の相の電磁石で駆
動されるロータの永久磁石の磁極対をn個有する回転電
機の場合、ステータの電磁コイルのうち同位相となる電
磁コイルに対応する前記棒部材のうちの少なくとも2
個、多くともn個の棒部材に関する測定ロータ位置信号
を平均化してロータ位置を検出する請求項1又は2記載
の方法。
3. In the case of a rotary electric machine having n magnetic pole pairs of permanent magnets of a rotor driven by electromagnets of m phases in a stator, the rods corresponding to the electromagnetic coils of the same phase among the electromagnetic coils of the stator. At least two of the members
3. A method as claimed in claim 1 or 2 in which the measured rotor position signals for the at most n bar members are averaged to detect the rotor position.
【請求項4】 薄板を積層させてなるステータピースを
軸線方向の両側端部に配置した1対の保持リングプレー
トを互いに締結することによりステータコアを構成し、
前記磁性材料の棒部材を、前記ロータに隣接する側で互
いに周方向に隣接する順次の前記ステータピース間にお
いて前記1対の保持リングプレートを互いに締結する周
方向に互いに等間隔離して配置した複数個の締結ボルト
により構成した請求項1乃至3のうちのいずれか一項に
記載の方法。
4. A stator core is constructed by fastening a pair of retaining ring plates, each having a stator piece formed by laminating thin plates at both ends in the axial direction, together.
A plurality of bar members of the magnetic material are arranged at equal intervals in the circumferential direction for fastening the pair of retaining ring plates to each other between the successive stator pieces circumferentially adjacent to each other on the side adjacent to the rotor. The method according to any one of claims 1 to 3, wherein the method is constituted by individual fastening bolts.
【請求項5】 前記回転電機を、前記ステータの半径方
向外側及び内側の双方で同一軸線の周りに回転可能な外
側ロータ及び内側ロータを有する同期電動機とした請求
項4記載の方法。
5. The method according to claim 4, wherein the rotating electric machine is a synchronous electric motor having an outer rotor and an inner rotor rotatable about the same axis both radially outside and inside the stator.
【請求項6】 前記磁性材料の締結ボルトを配置する互
いに隣接するステータピースのヨーク間のエアギャップ
を半径方向に隣接するロータ側で広く、コイル側で狭く
した請求項5記載の方法。
6. The method according to claim 5, wherein the air gap between the yokes of adjacent stator pieces in which the fastening bolts of the magnetic material are arranged is wide on the rotor side and narrow on the coil side which are adjacent in the radial direction.
JP2002098462A 2002-04-01 2002-04-01 Method for detecting rotor position of rotating electrical machine Expired - Fee Related JP3687622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098462A JP3687622B2 (en) 2002-04-01 2002-04-01 Method for detecting rotor position of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098462A JP3687622B2 (en) 2002-04-01 2002-04-01 Method for detecting rotor position of rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2003299314A true JP2003299314A (en) 2003-10-17
JP3687622B2 JP3687622B2 (en) 2005-08-24

Family

ID=29387948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098462A Expired - Fee Related JP3687622B2 (en) 2002-04-01 2002-04-01 Method for detecting rotor position of rotating electrical machine

Country Status (1)

Country Link
JP (1) JP3687622B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008471A1 (en) * 2013-07-16 2015-01-22 日本ムーグ株式会社 Linear actuator and rocking control device for railroad car
CN107525495A (en) * 2017-07-24 2017-12-29 张胜利 A kind of method for entering row distance monitoring with forced centering mode
WO2020107884A1 (en) * 2018-11-29 2020-06-04 南京懂玫驱动技术有限公司 Resolver circuit for electric bicycle
CN112833924A (en) * 2021-01-07 2021-05-25 济南轲盛自动化科技有限公司 Reflective encoder with automatic denoising function and denoising method
CN114629302A (en) * 2020-08-31 2022-06-14 广东美的智能科技有限公司 Motor and servo control system with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008471A1 (en) * 2013-07-16 2015-01-22 日本ムーグ株式会社 Linear actuator and rocking control device for railroad car
JPWO2015008471A1 (en) * 2013-07-16 2017-03-02 日本ムーグ株式会社 Linear actuator and swing control device for railway vehicle
KR101800318B1 (en) * 2013-07-16 2017-11-22 무그 재팬 리미티드 Linear Actuator and Rocking Control Device for Railroad Car
US9941767B2 (en) 2013-07-16 2018-04-10 Moog Japan Ltd. Linear actuator and rocking controller for railway vehicle
CN107525495A (en) * 2017-07-24 2017-12-29 张胜利 A kind of method for entering row distance monitoring with forced centering mode
WO2020107884A1 (en) * 2018-11-29 2020-06-04 南京懂玫驱动技术有限公司 Resolver circuit for electric bicycle
CN114629302A (en) * 2020-08-31 2022-06-14 广东美的智能科技有限公司 Motor and servo control system with same
CN114629302B (en) * 2020-08-31 2024-03-19 广东美的智能科技有限公司 Motor and servo control system with same
CN112833924A (en) * 2021-01-07 2021-05-25 济南轲盛自动化科技有限公司 Reflective encoder with automatic denoising function and denoising method

Also Published As

Publication number Publication date
JP3687622B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
KR101192827B1 (en) Motor with magnetic sensors
JP2010193609A (en) Rotor of permanent magnet-type rotary electric machine and manufacturing method thereof
JP5388678B2 (en) Rotating device
CN110199467B (en) Method for operating main reducer unit clutch
CN105703510A (en) Axial magnetic field printed circuit board permanent magnet brushless DC motor
JP4103018B2 (en) Servomotor
KR20180022594A (en) Electronically commutated electric motor with two rotor cores
JP2000287427A (en) Brushless motor
JP2000333407A (en) Wheel motor
WO2017168751A1 (en) Sensor magnet, rotor, electric motor, and air conditioner
JP4233950B2 (en) Brushless motor
JP2003299314A (en) Detecting method for rotor position of rotating electric machine
JP4591682B2 (en) Permanent magnet synchronous motor with magnetic encoder
US7049723B2 (en) DC motor
JP3171293B2 (en) Brushless motor
JP4197258B2 (en) Stepper motor
KR20100138163A (en) Detecting device for sensing the rotor position and brushless motor having the same
JP6588830B2 (en) Rotating electric machine
JP5452530B2 (en) Magnetic inductor type rotary motor
KR102268881B1 (en) Electric motor with radial coil
JP2005057854A (en) Brushless motor
JP4092471B2 (en) Rotor magnetic pole position detector for rotating electrical machine
US20200028411A1 (en) Electric Motor
JPS5836160A (en) 6-pole 4-phase brushless motor
JP4034389B2 (en) 3-phase hybrid stepping motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees