JP2003294899A - X-ray microscope - Google Patents

X-ray microscope

Info

Publication number
JP2003294899A
JP2003294899A JP2002097219A JP2002097219A JP2003294899A JP 2003294899 A JP2003294899 A JP 2003294899A JP 2002097219 A JP2002097219 A JP 2002097219A JP 2002097219 A JP2002097219 A JP 2002097219A JP 2003294899 A JP2003294899 A JP 2003294899A
Authority
JP
Japan
Prior art keywords
ray
window
sample
container
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097219A
Other languages
Japanese (ja)
Other versions
JP3668776B2 (en
Inventor
Toshikazu Mashima
利和 眞島
Toshihisa Tomie
敏尚 富江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002097219A priority Critical patent/JP3668776B2/en
Publication of JP2003294899A publication Critical patent/JP2003294899A/en
Application granted granted Critical
Publication of JP3668776B2 publication Critical patent/JP3668776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the degradation of the contrast in the central part of an X-ray image in comparison with that obtained in a peripheral part where a water layer is thin, because an X-ray transmission window warps due to the difference in pressure between a vacuum chamber and a sample holder whose pressure is kept at atmospheric pressure, and a water layer accommodating a sample of a microorganism in the central part of the X-ray window is thicker than the peripheral part of it in conventional technologies. <P>SOLUTION: In order to correct the imbalance in the thickness of the water layer causing ununiform X-ray images inside an X-ray microscope window, the warp of the X-ray window is resolved by filling the inside of the vacuum chamber for generating plasma with an inert gas to lessen the difference in the pressure on the X-ray window. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】X線顕微鏡、特に、レーザ生
成プラズマを用いてX線の照射を行う分野であり、試料
周辺の溶媒のX線吸収によりX線像が影響を受けるよう
な技術分野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray microscope, and more particularly to a field of irradiating X-rays using laser-produced plasma, and a technical field in which an X-ray image is affected by X-ray absorption of a solvent around a sample. .

【0002】[0002]

【従来の技術】X線発生用ターゲットにパルスレーザを
照射することでプラズマを生成し、これにより生ずるX
線で試料を露光するX線露光装置は、例えば半導体集積
回路作製時において回路基板上のフォトレジストに微細
回路パタンを転写するときや、電子顕微鏡では不可能
な、生きた微小生物試料の瞬時の状態をX線フラッシュ
撮像するとき等、多方面での応用が図られている。
2. Description of the Related Art Plasma is generated by irradiating an X-ray generating target with a pulsed laser, and X generated by this is generated.
An X-ray exposure apparatus that exposes a sample with a line is used to transfer a minute circuit pattern to a photoresist on a circuit board during the manufacture of a semiconductor integrated circuit, or to capture a living sample of a living organism that is impossible with an electron microscope. It has been applied in various fields such as X-ray flash imaging of the state.

【0003】図1に、従来のX線フラッシュ撮像をなす
装置、いわゆるX線顕微鏡に応用された場合におけるX
線露光装置の代表的な構造例を示す。この構造は、本願
発明者等が特開平8-338900号公報において開示している
X線露光装置である。
FIG. 1 shows a conventional X-ray flash image pickup apparatus, which is an X-ray when applied to a so-called X-ray microscope.
The typical structural example of a line exposure apparatus is shown. This structure is the X-ray exposure apparatus disclosed by the present inventors in Japanese Patent Laid-Open No. 8-338900.

【0004】該装置は、内部に所定容積の中空室、すな
わち内部チェンバー12を画成する真空容器11を有する。
真空容器11の内部チェンバー12は、排気管13を介し、図
示しない排気装置により所望の真空度になるよう、真空
引きをすることができる。真空容器11の壁構造の一部に
は、内部チェンバー12の真空を破ることのないようにレ
ーザ光入射用ガラス窓15が設けられ、外部に備えられた
レーザ光源(図示せず)からのパルスレーザ光14は、収
束レンズを介する等して適宜収束されながら、このレー
ザ光入射用ガラス窓15を介して内部チェンバー12内に入
射し、内部チェンバー12内に所定の姿勢で固定設置され
ているX線発生用ターゲット(標的)17を照射してプラ
ズマを発生させる。
The apparatus has a vacuum chamber 11 which defines a hollow chamber of a predetermined volume, that is, an internal chamber 12, inside.
The internal chamber 12 of the vacuum container 11 can be evacuated through the exhaust pipe 13 by an exhaust device (not shown) so as to have a desired vacuum degree. A glass window 15 for laser light incidence is provided in a part of the wall structure of the vacuum container 11 so as not to break the vacuum of the inner chamber 12, and a pulse from a laser light source (not shown) provided outside is provided. The laser light 14 is appropriately converged through a converging lens or the like, enters the internal chamber 12 through the laser light incident glass window 15, and is fixedly installed in the internal chamber 12 in a predetermined posture. The X-ray generation target (target) 17 is irradiated to generate plasma.

【0005】このようなレーザ励起プラズマからはX線
が発生し、パルスレーザ光14のパルス時間幅に応じた時
間を単位照射時間として試料20を照射するが、例えば、
当該試料20が微小生物試料20であるような場合、それを
生きたまま観測するには、そのまま真空容器11の内部チ
ェンバー12内に収めることはできない。微少生物試料20
の周囲環境は一般に真空であってはならず、多くの場
合、大気圧環境でなければならない。
X-rays are generated from such laser-excited plasma, and the sample 20 is irradiated with a unit irradiation time of a time corresponding to the pulse time width of the pulsed laser light 14.
In the case where the sample 20 is the microbiological sample 20, it cannot be stored in the internal chamber 12 of the vacuum container 11 as it is in order to observe it as it is. Microbiological sample 20
The ambient environment of the must generally not be a vacuum and often must be an atmospheric environment.

【0006】このため、真空容器11の一部を構成する内
蓋30に、X線は、透過するが、真空を保持するX線透過
窓16を形成する。この窓16は、シリコン基板に窒化シリ
コン膜を形成し、該膜とは反対面から所定の寸法でシリ
コン基板をエッチングにより削除する作成することによ
り、窒化シリコン膜で構成されている。
For this reason, an X-ray transmission window 16 is formed in the inner lid 30 which constitutes a part of the vacuum container 11 for transmitting X-rays but holding a vacuum. This window 16 is formed of a silicon nitride film by forming a silicon nitride film on the silicon substrate and removing the silicon substrate by etching from a surface opposite to the film by a predetermined dimension.

【0007】[0007]

【発明が解決しようとする課題】上記のように、密着型
X線顕微鏡は、レーザパルス光を集光しプラズマを発生
させるための真空チェンバーと、シリコン基板等の表面
に形成されたPMMAなどのX線感光材の薄膜上に載せ
られた生物試料を入れた試料ホルダー、および上記真空
チェンバーと試料設置個所とを隔て、圧力隔壁として働
くとともに、X線透過能をもつ窒化シリコン薄膜などで
構成されたX線透過窓から構成されている。
As described above, the contact X-ray microscope includes a vacuum chamber for collecting laser pulse light to generate plasma and a PMMA etc. formed on the surface of a silicon substrate or the like. It is composed of a sample holder containing a biological sample placed on a thin film of an X-ray photosensitive material, and a silicon nitride thin film having X-ray transmissivity as well as acting as a pressure partition wall separating the vacuum chamber and the sample installation place. X-ray transmission window.

【0008】しかしながら、図2に示すように、従来の
技術においては、真空チェンバーと大気圧に保たれた試
料ホルダーとの圧力差のためにX線窓がたわみ、X線窓
の中央部分と周辺部分とを比較すると中央部分では微生
物試料を収容する水の層の厚みが周辺部分よりも厚くな
る。使用している軟X線は、酸素にも吸収されるので、
水の層が厚いとX線照射を行って得られるX線像は、水
分子を構成する酸素による吸収がバイアスとして背景に
現れたものとなり、水の層の薄い周辺部分で得られたX
線像と比較するとコントラストの低下したものとなるの
で、X線窓の内部全体で均一なX線像が得られない。
However, as shown in FIG. 2, in the conventional technique, the X-ray window bends due to the pressure difference between the vacuum chamber and the sample holder kept at atmospheric pressure, and the central portion and the periphery of the X-ray window. In comparison with the portion, the thickness of the water layer containing the microbial sample is thicker in the central portion than in the peripheral portion. Since the soft X-rays used are also absorbed by oxygen,
When the water layer is thick, the X-ray image obtained by performing X-ray irradiation shows the absorption due to oxygen constituting water molecules as a bias in the background, and the X-ray image obtained in the thin peripheral portion of the water layer.
Since the contrast is lower than that of the X-ray image, a uniform X-ray image cannot be obtained in the entire inside of the X-ray window.

【0009】[0009]

【課題を解決するための手段】X線顕微鏡窓の内部でX
線像が不均一になる原因となっている水層の厚みの不均
衡を是正するために、プラズマ生成用真空チェンバー内
部の圧力を上昇させ、X線窓にかかる圧力差を小さくし
て、X線窓のたわみを解消することにより、X線窓の下
部の水の層の厚みを均一にする。このための方策とし
て、真空チェンバー内部にヘリウムガスなど軟X線に対
する吸収が少ない気体を導入し、圧力差を解消する。導
入する気体は、X線窓にたわみが現れない程度の気圧差
で試料のX像を得るために必要なX線量を確保できるも
のであれば種類を問わない。
[Means for Solving the Problem] Inside the X-ray microscope window, X
In order to correct the imbalance in the thickness of the water layer which causes the non-uniformity of the line image, the pressure inside the vacuum chamber for plasma generation is increased to reduce the pressure difference applied to the X-ray window, By eliminating the deflection of the X-ray window, the thickness of the water layer under the X-ray window is made uniform. As a measure for this, a gas having a small absorption for soft X-rays such as helium gas is introduced into the vacuum chamber to eliminate the pressure difference. The gas to be introduced may be of any type as long as it can secure the X-ray dose necessary for obtaining the X-image of the sample with a pressure difference that does not cause the deflection in the X-ray window.

【0010】[0010]

【実施例1】(先に内蓋内に試料を収め外蓋をしたの
ち、真空容器に入れる方式)装置の内蓋30に気密性を
保持できるようにX線透過窓16を取り付けたのち、標
的17(0.5mm厚のイットリウム板)を取り付け
た。卓上に置いた試料台上部にX線感光膜21を載せ、
次いで試料20(液体培地に懸濁した大腸菌)を適量と
りX線感光膜上に乗せた。試料台とX線感光膜21及び
試料20を、上述のX線透過窓16と標的17を取り付
けた内蓋30の内部に納め、外蓋31を被せ、内蓋30
と外蓋を図には表示されていないネジを用いてとめ一体
化する。試料台固定ネジを用いてX線透過窓16と試料
20及びX線感光膜21を密着させる。この状態を保持
したまま、試料20を収め外蓋31と一体化された内蓋
30を、真空容器11に装着したのち、図には表示され
ていない油回転型真空ポンプで真空容器内を排気した。
Example 1 (a method in which a sample is first placed in an inner lid and then the outer lid is placed in a vacuum container) An X-ray transmission window 16 is attached to an inner lid 30 of the apparatus so that airtightness can be maintained. Target 17 (0.5 mm thick yttrium plate) was attached. Place the X-ray photosensitive film 21 on top of the sample table placed on the table,
Then, an appropriate amount of Sample 20 (Escherichia coli suspended in a liquid medium) was taken and placed on the X-ray photosensitive film. The sample stage, the X-ray photosensitive film 21, and the sample 20 are housed inside the inner lid 30 to which the X-ray transmission window 16 and the target 17 are attached, covered with the outer lid 31, and the inner lid 30.
And the outer lid with screws (not shown) to integrate them. The X-ray transmission window 16 and the sample 20 and the X-ray photosensitive film 21 are brought into close contact with each other using the sample stage fixing screw. While maintaining this state, the inner lid 30 accommodating the sample 20 and integrated with the outer lid 31 is attached to the vacuum container 11, and then the interior of the vacuum container is evacuated by an oil rotary vacuum pump (not shown). did.

【0011】このとき真空容器11の上部に設けた光学
顕微鏡用試料観察窓を通して内蓋30に取り付けられた
X線透過窓16の形状を観察すると真空容器11内外の
圧力差により、X線透過窓16は真空容器の内部に向か
って凸に撓んでいた。
At this time, when the shape of the X-ray transmission window 16 attached to the inner lid 30 is observed through the sample observation window for the optical microscope provided on the upper portion of the vacuum container 11, the X-ray transmission window is generated due to the pressure difference inside and outside the vacuum container 11. 16 was convexly bent toward the inside of the vacuum container.

【0012】この状態において真空容器11の内部にヘ
リウムガスを導入し、真空容器11内の圧力をほぼ大気
圧と等しくした。このときX線透過窓16の形状を観察
すると撓みはなく平坦に保持されていた。
In this state, helium gas was introduced into the vacuum container 11 so that the pressure inside the vacuum container 11 was substantially equal to the atmospheric pressure. At this time, when the shape of the X-ray transmission window 16 was observed, it was held flat without any bending.

【0013】その後、図には表示されていないヤグレー
ザから放射されたパルスレーザ光(第二高調波)14を
レーザ光入射用ガラス窓15より導入し、厚さ0.1m
mのイットリウム板でできた標的17に照射した。この
レーザ照射により、プラズマが発生し、該プラズマの発
生に伴って軟X線が発生した。この軟X線を、X線透過
窓16を通して微生物試料(培養液中の大腸菌)20に
照射した。
After that, pulsed laser light (second harmonic) 14 emitted from a yag laser not shown in the figure is introduced through a glass window 15 for laser light incidence, and the thickness is 0.1 m.
Irradiation was performed on a target 17 made of an yttrium plate of m. Plasma was generated by this laser irradiation, and soft X-rays were generated along with the generation of the plasma. This soft X-ray was applied to a microbial sample (E. coli in the culture solution) 20 through the X-ray transmission window 16.

【0014】試料を透過した透過X線をX線感光膜であ
るPMMA膜21により感光した。その結果、従来にお
いては、露光されたX線窓の中心部と周辺部においてX
線像を比較すると、周辺部ではレリーフ状に形成される
X線像の高さが高く、中央部ではX線像の高さが低くな
り、X線像に濃淡差がみられたが、本願発明の装置によ
るX線像においては、こうした濃淡差が見られずX線像
の高さはほぼ均一であった。
The transmitted X-rays transmitted through the sample were exposed by the PMMA film 21, which is an X-ray photosensitive film. As a result, in the conventional case, the X and
Comparing the X-ray images, the height of the X-ray image formed in a relief shape was high in the peripheral portion, and the height of the X-ray image was low in the central portion. In the X-ray image obtained by the apparatus of the invention, such a difference in gradation was not observed, and the height of the X-ray image was almost uniform.

【0015】[0015]

【実施例2】(先に真空容器に内蓋を取り付けておき、
後から試料を挿入する方式で、試料をセットして直ちに
X線露光ができるのが特徴である方式)装置の内蓋30
に気密性を保持できるようにX線透過窓16を取り付け
た後、標的17(0.1mm厚のイットリウム板)を取
り付け、内蓋30を真空容器11に装着しネジを用いて
内蓋を真空容器に固定した。図には表示されていない油
回転型真空ポンプで真空容器内を排気した。このとき真
空容器11の上部に設けた光学顕微鏡用試料観察窓18
を通して内蓋30に取り付けられたX線透過窓16の形
状を観察すると真空容器11内外の圧力差により、X線
透過窓16は真空容器の内部に向かって凸にたわんでい
た。
Second Embodiment (First, an inner lid is attached to the vacuum container,
Inner lid 30 of the apparatus characterized in that the sample can be inserted later and X-ray exposure can be performed immediately after setting the sample.
After attaching the X-ray transmission window 16 so that the airtightness can be maintained, the target 17 (0.1 mm thick yttrium plate) is attached, the inner lid 30 is attached to the vacuum container 11, and the inner lid is vacuumed using screws. It was fixed in the container. The inside of the vacuum vessel was evacuated by an oil rotary vacuum pump not shown in the figure. At this time, the sample observation window 18 for the optical microscope provided on the upper portion of the vacuum container 11
When the shape of the X-ray transmission window 16 attached to the inner lid 30 was observed through, the X-ray transmission window 16 was bent inward toward the inside of the vacuum container due to the pressure difference between the inside and outside of the vacuum container 11.

【0016】この状態で真空容器11の内部にヘリウム
ガスを導入し、真空容器11内の圧力をほぼ大気圧と等
しくした。このときX線透過窓16の形状を観察すると
たわみはなく平坦に保持されていた。
In this state, helium gas was introduced into the vacuum container 11 so that the pressure inside the vacuum container 11 was substantially equal to the atmospheric pressure. At this time, when the shape of the X-ray transmission window 16 was observed, it was held flat without any bending.

【0017】X線感光膜(PMMA膜)21上に載せた
試料20(PMMA膜上で培養した神経細胞)を試料台
に載せ、ヘリウムの導入によりX線透過窓16が平坦に
保持された状態の内蓋30の内部に入れた。外部から力
を加えて試料台を保持することによりX線透過窓16と
試料20とを密着させた。この状態で、図には示されて
いないYAGレーザから出されたレーザパルス光14
(YAGレーザ第二高調波)をレーザ光入射用ガラス窓
15から真空容器11内部に導入した。レーザパルス光
14は、図には表示されていない光学レンズを用いてイ
ットリウム板(厚み0.5mm)で作られたプラズマ発
生用標的17上に集光され、プラズマがつくられた。こ
のプラズマから発生したX線は、X線透過窓16を透過
したのち試料20を露光し、X線透過窓16内部に存在
した各元素の当該X線吸収率と存在密度を反映したX像
がX線感光膜21上に記録される。
A state in which the sample 20 (neurons cultured on the PMMA film) placed on the X-ray photosensitive film (PMMA film) 21 is placed on the sample stand, and the X-ray transmission window 16 is held flat by the introduction of helium. The inner lid 30 was placed inside. The X-ray transmission window 16 and the sample 20 were brought into close contact with each other by applying a force from the outside to hold the sample table. In this state, laser pulse light 14 emitted from a YAG laser not shown in the figure
(YAG laser second harmonic) was introduced into the vacuum vessel 11 through the laser light incident glass window 15. The laser pulsed light 14 was focused on a target 17 for plasma generation made of an yttrium plate (thickness 0.5 mm) using an optical lens not shown in the figure, and plasma was generated. The X-ray generated from this plasma passes through the X-ray transmission window 16 and then exposes the sample 20, and an X-image that reflects the X-ray absorption rate and the abundance density of each element present inside the X-ray transmission window 16 is obtained. It is recorded on the X-ray photosensitive film 21.

【0018】X線露光を行ったPMMA膜から試料残滓
を取り除いた後、有機溶媒で現像処理を行い、PMMA
膜上にレリーフ状に形成されたX線像を得た。原子間力
顕微鏡を用いてこのX線像を観察し、試料のX線像の拡
大像を得た。
After removing the sample residue from the PMMA film subjected to X-ray exposure, development processing was performed with an organic solvent to obtain PMMA.
An X-ray image formed in a relief pattern on the film was obtained. This X-ray image was observed using an atomic force microscope, and an enlarged image of the X-ray image of the sample was obtained.

【0019】この方法で得られたX線像を検討した結
果、従来においては、X線を露光されたX線窓の中心部
と周辺部において比較すると、周辺部ではレリーフ状に
形成されるX線像の高さが高く、中央部ではX線像の高
さが低くなり、X線像に濃淡差がみられたが、本願発明
の装置によるX線像においては、こうした濃淡差が見ら
れずX線像の高さはほぼ均一であった。
As a result of examining the X-ray image obtained by this method, conventionally, when comparing the central portion and the peripheral portion of the X-ray window exposed with X-rays, the X-rays formed in a relief shape in the peripheral portion. The height of the X-ray image was high, and the height of the X-ray image was low at the central portion, and a grayscale difference was observed in the X-ray image. However, such a grayscale difference was observed in the X-ray image by the apparatus of the present invention. The height of the X-ray image was almost uniform.

【0020】上記実施例1及び2においては、生物試料
は、水中にあるものについて説明したが、空気中の試料
についても全く同様に観察することが出来る。
In the above-mentioned Examples 1 and 2, the biological sample was described as being in water, but a sample in air can be observed in exactly the same manner.

【0021】[0021]

【発明の効果】この発明により、密着型X線顕微鏡の使
用上問題となっていたX線窓の内部でのX線像の不均一
さが解消される。従来は、200ミクロン角程度のX窓
であっても中央部分と周辺部分とではX線像のコントラ
ストにむらが生じたが、この方法によればX線窓を1ミ
リ角に広げてもX線窓内部の画像は均一であり、X線顕
微鏡の利便性が改善される。同様な効果は、密着型X線
顕微鏡のみならずX線窓を用いるX線顕微鏡一般で有用
である。
According to the present invention, the non-uniformity of the X-ray image inside the X-ray window, which has been a problem in using the contact X-ray microscope, can be eliminated. Conventionally, even if the X window is about 200 μm square, the contrast of the X-ray image is uneven between the central portion and the peripheral portion. However, according to this method, even if the X-ray window is widened to 1 mm square, the X-ray image becomes uneven. The image inside the line window is uniform, which improves the convenience of the X-ray microscope. The same effect is useful not only in the contact X-ray microscope but also in general X-ray microscopes using an X-ray window.

【図面の簡単な説明】[Brief description of drawings]

【図1】 密着型X線顕微鏡の概念図FIG. 1 Conceptual diagram of a contact X-ray microscope

【図2】 従来の密着型X線顕微鏡におけるX線透過膜
の状況概念図。X線源となるプラズマを発生させる真空
チェンバー内を真空ポンプで排気しているので、大気圧
に保たれた試料ホルダーとの間で圧力隔壁としても機能
しているX線透過膜が圧力差のために歪んでいる。
FIG. 2 is a conceptual diagram of a state of an X-ray transparent film in a conventional contact X-ray microscope. Since the inside of the vacuum chamber that generates the plasma that serves as the X-ray source is evacuated by the vacuum pump, the X-ray permeable film that also functions as a pressure partition between the sample holder kept at atmospheric pressure causes a pressure difference. Because it is distorted.

【図3】 本願発明のX線顕微鏡におけるX線透過膜の
状況概念図。プラズマを発生させる真空チェンバー内に
ヘリウムガスなどを導入し、チャンバ内外の圧力の平衡
がはかられているために、X線透過膜は、平坦になって
いる。
FIG. 3 is a conceptual view of the state of an X-ray transparent film in the X-ray microscope of the present invention. Since the helium gas or the like is introduced into the vacuum chamber for generating plasma and the pressure inside and outside the chamber is balanced, the X-ray transparent film is flat.

【符号の説明】[Explanation of symbols]

11……真空容器 12……内部チャンバ 13……排気管 14……レーザ光 15……レーザ光入射用ガラス窓 16……X線透過窓 17……プラズマ発生用標的 18……光学顕微鏡用試料観察ガラス窓 20……試料 21……X線感光膜(PMMA膜) 30……内蓋 31……外蓋 11 ... Vacuum container 12 ... Internal chamber 13 ... Exhaust pipe 14 ... Laser light 15 ... Glass window for laser light incidence 16 ... X-ray transparent window 17 ... Target for plasma generation 18 ... Sample observation glass window for optical microscope 20 …… Sample 21 ... X-ray photosensitive film (PMMA film) 30 ... Inner lid 31 ... Outer lid

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 AA10 BA11 CA01 DA09 FA14 FA15 GA01 GA06 HA12 HA13 JA14 KA12 LA01 2H097 BA00 CA15 GB00 LA10 5F046 GA14 GB04 GC03    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G001 AA01 AA10 BA11 CA01 DA09                       FA14 FA15 GA01 GA06 HA12                       HA13 JA14 KA12 LA01                 2H097 BA00 CA15 GB00 LA10                 5F046 GA14 GB04 GC03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内にX線源を有し、該容器外の
X線被照射試料に該容器の一部に薄膜で形成されたX線
照射用の窓を通してX線を照射するX線顕微鏡におい
て、該容器内にX線吸収の低いガスを充填することによ
り、該容器内外の圧力を平衡させ、該薄膜が平坦に形成
されていることを特徴とするX線顕微鏡。
1. An X-ray having an X-ray source in a closed container, and irradiating an X-ray irradiated sample outside the container with X-rays through an X-ray irradiation window formed in a thin film on a part of the container. In an X-ray microscope, a gas having a low X-ray absorption is filled in the container to balance the pressure inside and outside the container, and the thin film is formed flat.
【請求項2】 上記窓は、窒化シリコン薄膜により形成
されていることを特徴とする請求項1記載のX線顕微
鏡。
2. The X-ray microscope according to claim 1, wherein the window is formed of a silicon nitride thin film.
【請求項3】 上記X線は、レーザ生成プラズマにより
発生するX線であることを特徴とする請求項1記載のX
線顕微鏡。
3. The X-ray according to claim 1, wherein the X-ray is an X-ray generated by laser-produced plasma.
Line microscope.
【請求項4】 上記容器には、該容器の一部にレーザ入
射用の窓を設けると共に、レーザ照射によりプラズマを
発生するターゲットを備えていることを特徴とする請求
項3記載のX線顕微鏡。
4. The X-ray microscope according to claim 3, wherein the container is provided with a window for laser incidence in a part of the container and a target for generating plasma by laser irradiation. .
【請求項5】 大気圧に保持された生物試料をX線感光
材料上に保持し、上記窓に対抗して配置してあることを
特徴とする請求項1記載のX線顕微鏡。
5. The X-ray microscope according to claim 1, wherein the biological sample held at atmospheric pressure is held on the X-ray sensitive material and is arranged so as to face the window.
【請求項6】 上記窓と上記試料とは、上記窓の面に垂
直方向に相対移動可能であることを特徴とする請求項5
記載のX線顕微鏡。
6. The window and the sample are movable relative to each other in a direction perpendicular to the surface of the window.
The X-ray microscope described.
JP2002097219A 2002-03-29 2002-03-29 X-ray microscope Expired - Lifetime JP3668776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097219A JP3668776B2 (en) 2002-03-29 2002-03-29 X-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097219A JP3668776B2 (en) 2002-03-29 2002-03-29 X-ray microscope

Publications (2)

Publication Number Publication Date
JP2003294899A true JP2003294899A (en) 2003-10-15
JP3668776B2 JP3668776B2 (en) 2005-07-06

Family

ID=29239888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097219A Expired - Lifetime JP3668776B2 (en) 2002-03-29 2002-03-29 X-ray microscope

Country Status (1)

Country Link
JP (1) JP3668776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007766A (en) * 2009-05-22 2011-01-13 National Institute Of Advanced Industrial Science & Technology Sample support member for x-ray microscope, sample-housing cell, x-ray microscope, and method for observing x-ray microscopic image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170215B2 (en) * 2012-10-25 2015-10-27 Hexagon Metrology, Inc. Apparatus and method of imaging a heterogeneous object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007766A (en) * 2009-05-22 2011-01-13 National Institute Of Advanced Industrial Science & Technology Sample support member for x-ray microscope, sample-housing cell, x-ray microscope, and method for observing x-ray microscopic image

Also Published As

Publication number Publication date
JP3668776B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
Oghbaey et al. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography
US5222113A (en) X-ray microscope
EP0751533A1 (en) X-ray microscope
JP2001512568A (en) Soft X-ray microscope
EP0314502A2 (en) An X-ray image observing device
JP2003294899A (en) X-ray microscope
Cheng et al. Soft X-ray contact microscopy
TW393589B (en) Observing / forming method with focused ion beam and apparatus therefor
Rosser et al. Soft X‐ray contact microscopy with nanosecond exposure times
JPH07113680B2 (en) Sample container for microscope observation
Richardson et al. Pulsed X-ray microscopy of biological specimens with laser plasma sources
Cheng et al. X-ray shadow projection microscopy and microtomography
Fletcher et al. Soft x-ray contact microscopy using laser-generated plasma sources
Cheng et al. X-ray microradiography and shadow projection x-ray microscopy
Cheng et al. Recent advances in contact imaging of biological materials
JPS63298200A (en) Specimen vessel for soft roentgen ray microscope observation
JP2003294900A (en) X-ray microscope
JP2890579B2 (en) Sample holder for X-ray microscope
JPH075375A (en) Living body sample vessel for x-ray observation
JP2890580B2 (en) Sample capsule for X-ray microscope
Cefalas et al. Nanostructured imaging of biological specimens in vivo with laser plasma X-ray contact microscopy
JPH0784100A (en) Sample container for x-ray microscope
JP2546419B2 (en) Laser CVD equipment
Argitis et al. Single-pulse high-resolution x-ray contact microscopy with an advanced epoxy novolac resist
JP2000019300A (en) X-ray microscope of contact type

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Ref document number: 3668776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term