JP2003294754A - Support body for fluorescence detection - Google Patents

Support body for fluorescence detection

Info

Publication number
JP2003294754A
JP2003294754A JP2002093308A JP2002093308A JP2003294754A JP 2003294754 A JP2003294754 A JP 2003294754A JP 2002093308 A JP2002093308 A JP 2002093308A JP 2002093308 A JP2002093308 A JP 2002093308A JP 2003294754 A JP2003294754 A JP 2003294754A
Authority
JP
Japan
Prior art keywords
support
thin film
fluorescence
incident light
fluorescence detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002093308A
Other languages
Japanese (ja)
Other versions
JP4121762B2 (en
Inventor
Jun Funazaki
純 船崎
Etsuo Shinohara
悦夫 篠原
Yoko Ohashi
陽子 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2002093308A priority Critical patent/JP4121762B2/en
Publication of JP2003294754A publication Critical patent/JP2003294754A/en
Application granted granted Critical
Publication of JP4121762B2 publication Critical patent/JP4121762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support body structure capable of efficiently detecting fluorescence without intensifying excitation light nor changing detection optical systems such as a photoelectron multiplier. <P>SOLUTION: Specimens labelled by means of fluorescent pigment excited by incident light of wavelength λ are immobilized. A thin film comprising at least one layer is formed on a surface of a base material for structuring a fluorescence detection support body for detecting fluorescence from the fluorescent pigment by irradiating it with the incident light, so that the optical film thickness nd (n for flexibility, d for film thickness) of the thin film falls within a range of an odd number of times of λ/4±λ/10. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光標識した試料
を検出するための、蛍光検出用支持体に関する。
TECHNICAL FIELD The present invention relates to a fluorescent detection support for detecting a fluorescently labeled sample.

【0002】[0002]

【従来の技術】近年、生体物質の高感度な検出技術が盛
んに報告されつつあり、特に遺伝子のようなナノスケー
ルの被検試料についての研究も可能になってきている。
例えば、検出すべき遺伝子についての発現頻度を検出す
る手法として、核酸プローブアレイによる解析が行われ
ている。核酸ハイブリダイゼーション反応による検出を
行う支持体として、従来はナイロン膜を用いて、DNA
の+電荷を利用してプローブDNAを基板上に固相化し
ていた(特願平10−311164号公報)。ハイブリ
ダイゼーション反応後の検出は、化学発光やラジオアイ
ソトープにて行っている。
2. Description of the Related Art In recent years, techniques for highly sensitive detection of biological substances have been actively reported, and in particular, studies on nanoscale test samples such as genes have become possible.
For example, analysis by a nucleic acid probe array is performed as a method of detecting the expression frequency of a gene to be detected. Conventionally, a nylon membrane has been used as a support for detection by nucleic acid hybridization reaction,
The probe DNA was immobilized on the substrate by utilizing the + charge of the above (Japanese Patent Application No. 10-311164). The detection after the hybridization reaction is performed by chemiluminescence or radioisotope.

【0003】近年は、マイクロアレイ技術により一定規
格のスライドグラス(約7.5cm×2.5cm)を用
いて、多種類のプローブDNAを高密度に固相化する方
法(特願平11−189360号公報)と、フォトリソ
グラフィー技術により半導体基板にDNAプローブを合
成する方法とが知られている。これらのマイクロアレイ
技術を用いることにより、ナイロン膜では1つのスポッ
トが3mm〜5mmであったが、ガラス基板では100
μm〜300μmの極微小なスポットが可能になってお
り、高密度化が図れる。またナイロン膜と異なり、ガラ
スやシリコン基板は蛍光が少ないためハイブリダイゼー
ション結果を蛍光検出により行うことが可能になってい
る。
In recent years, a method of immobilizing various kinds of probe DNAs at a high density using a slide glass (about 7.5 cm × 2.5 cm) of a certain standard by the microarray technology (Japanese Patent Application No. 11-189360). Gazette) and a method of synthesizing a DNA probe on a semiconductor substrate by a photolithography technique. By using these microarray techniques, one spot was 3 mm to 5 mm in the nylon film, but 100 spots in the glass substrate.
Ultra-fine spots of μm to 300 μm are possible, and high density can be achieved. Further, unlike the nylon film, since the glass or silicon substrate has little fluorescence, it is possible to detect the hybridization result by fluorescence detection.

【0004】[0004]

【発明が解決しようとする課題】上述したように近年、
DNAの解析においては多数の異なったDNAプローブ
を、ガラスなどの固相基板上に100μm〜300μm
の極微小なスポットサイズで高密度に固定し、その上に
標識DNAをハイブリダイズさせ、各々のプローブから
のシグナルを自動検出器で検出し、そのデータをコンピ
ュータで大量解析している。しかしながら、これには次
のような問題がある。
As described above, in recent years,
In the analysis of DNA, a large number of different DNA probes are put on a solid substrate such as glass in a range of 100 μm to 300 μm.
Is immobilized at a high density with a very small spot size, labeled DNA is hybridized on it, the signal from each probe is detected by an automatic detector, and the data is analyzed in large quantities by a computer. However, this has the following problems.

【0005】ガラスやシリコン基板においては、ナイロ
ン膜と比較し、反応し得る表面積が少ないため、プロー
ブDNA固相化量が少ない。一方、遺伝子の発現頻度な
どの測定においては、発現頻度の低い遺伝子は非常に弱
い蛍光強度しか得られない。そのため、高精度の測定を
行うためにはより高感度の検出が望ましいが、共焦点光
学系と光電子倍増管を組み合わせた現技術では、限界に
近い高感度化を計っても不十分な場合がある。また、従
来マイクロアレイ用蛍光検出基板として市販されている
ガラス基板は、その感度を向上させるために特別な表面
研磨処理等を施しているため、比較的高価である。
Compared with a nylon film, a glass or silicon substrate has a smaller surface area capable of reacting, so that the amount of immobilized probe DNA is smaller. On the other hand, in measuring the expression frequency of a gene, a gene with a low expression frequency can obtain a very weak fluorescence intensity. Therefore, higher-sensitivity detection is desirable for high-accuracy measurement, but current technology that combines a confocal optical system and a photomultiplier tube may not be enough to achieve near-limit high sensitivity. is there. Further, a glass substrate which has been commercially available as a fluorescence detection substrate for a microarray in the related art is relatively expensive because it is subjected to a special surface polishing treatment or the like to improve its sensitivity.

【0006】従って、本発明は、励起光の増強や光電子
倍増管などの検出光学系を変えることなく、効率的な蛍
光検出が可能であり、かつ低価格で製造できる支持体構
造を提供しようとするものである。
Therefore, the present invention intends to provide a support structure which enables efficient fluorescence detection without changing the detection light system such as enhancement of excitation light or photomultiplier tube and which can be manufactured at low cost. To do.

【0007】[0007]

【課題を解決するための手段】本発明の蛍光検出用支持
体は、波長λの入射光により励起される蛍光色素で標識
した試料を固定し、前記入射光の照射により前記蛍光色
素からの蛍光を検出するための蛍光検出用支持体であっ
て、基材の表面に少なくとも1層からなる薄膜が形成さ
れており、薄膜の光学的膜厚nd(nは屈折率、dは膜
厚を表す)がλ/4の奇数倍±λ/10の範囲であるこ
とを特徴とする。
The support for fluorescence detection of the present invention is such that a sample labeled with a fluorescent dye that is excited by incident light of wavelength λ is fixed, and the fluorescence from the fluorescent dye is irradiated by irradiation of the incident light. Which is a support for detecting fluorescence, in which a thin film composed of at least one layer is formed on the surface of a base material, and an optical film thickness nd (n is a refractive index, d is a film thickness) of the thin film. ) Is an odd multiple of λ / 4 ± λ / 10.

【0008】薄膜の入射光の透過率は90%以上である
ことが好ましく、具体的には薄膜は、1層または多層の
絶縁性被膜であることが好ましい。
The transmittance of incident light of the thin film is preferably 90% or more, and specifically, the thin film is preferably a single-layer or multi-layer insulating coating.

【0009】基材の屈折率は薄膜より大きくかつ入射光
に対する反射率は80%以上であることが好ましく、具
体的には基材は、シリコン、アルミニウム、クロム、お
よび金からなる群の中から選ばれる少なくとも1種の金
属または半導体で形成されることが好ましい。また、基
材の表面は溝構造を有していてもよい。
The base material preferably has a refractive index higher than that of the thin film and a reflectance to incident light of 80% or more. Specifically, the base material is selected from the group consisting of silicon, aluminum, chromium and gold. It is preferably formed of at least one metal or semiconductor selected. Further, the surface of the base material may have a groove structure.

【0010】[0010]

【発明の実施の形態】本発明者らは、蛍光標識した試料
を多層膜構造の支持体上に固定し、蛍光検出を行うと、
特定の膜厚において蛍光強度が増強されることを見出し
た。その理由は明確でないが、入射光と膜厚の関係を見
ると反射光強度が最低の条件で高い蛍光強度を示すこと
が明らかとなった。本発明はこの知見に基づく。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors, when a fluorescently labeled sample is immobilized on a support having a multilayer film structure and fluorescence is detected,
It was found that the fluorescence intensity is enhanced at a specific film thickness. Although the reason for this is not clear, it was revealed from the relationship between the incident light and the film thickness that a high fluorescence intensity is exhibited under the condition where the reflected light intensity is the lowest. The present invention is based on this finding.

【0011】以下、本発明の実施の形態を図面を参照し
て説明するが、これらは本発明を限定するものではな
く、本発明の主旨に沿って、種々の置換、付加等の変更
ができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but these are not intended to limit the present invention, and various substitutions, additions, and other changes can be made in accordance with the gist of the present invention. .

【0012】図1は、本発明の支持体の一実施の形態を
示した模式図(図1a)、およびその支持体を用いて蛍
光励起を行った場合の原理図(図1b)を示す。図1a
は、基材1に薄膜2が形成され、その上に蛍光色素で標
識した試料3が固定されている様子を示している。
FIG. 1 shows a schematic diagram (FIG. 1a) showing an embodiment of a support of the present invention, and a principle diagram (FIG. 1b) when fluorescence excitation is performed using the support. Figure 1a
Shows that a thin film 2 is formed on a substrate 1 and a sample 3 labeled with a fluorescent dye is fixed on the thin film 2.

【0013】ここで、上述したように、反射強度が最低
の条件では高い蛍光強度が得られることが分かっている
が、その原理は次のようであると考えられる。図1b
は、図1aの支持体に励起光を照射し、蛍光の励起を行
った様子を示している。蛍光の励起光(入射光4)を支
持体に入射すると、入射光4の波長λに対し膜厚dと屈
折率nの積がλ/4の奇数倍に相当する条件では、基材
1の表面と薄膜2の表面の間で多重反射5が起きている
と想定される。このとき、入射光4は薄膜2内に閉じ込
められ、かつ干渉作用により互いに強め合い、試料3に
照射される。従って、支持体において反射された入射光
4が効率的に利用され、より高強度の蛍光6が得られる
ものと想定される。即ち、同一の検出光学系を使って
も、高感化が期待できる。
Here, as described above, it has been known that a high fluorescence intensity can be obtained under the condition of the lowest reflection intensity, but the principle is considered as follows. Figure 1b
Shows that the support of FIG. 1a was irradiated with excitation light to excite fluorescence. When the excitation light of fluorescence (incident light 4) is incident on the support, under the condition that the product of the film thickness d and the refractive index n is an odd multiple of λ / 4 with respect to the wavelength λ of the incident light 4, It is assumed that multiple reflections 5 occur between the surface and the surface of the thin film 2. At this time, the incident lights 4 are confined in the thin film 2 and are mutually strengthened by the interference action, and the sample 3 is irradiated with the incident lights 4. Therefore, it is assumed that the incident light 4 reflected by the support is efficiently used and the higher intensity fluorescence 6 is obtained. That is, even if the same detection optical system is used, high sensitivity can be expected.

【0014】本発明の支持体の寸法は特に制限は無い
が、例えばストリップ状の支持体であれば、その汎用性
から、一定規格のスライドグラス(約7.5cm×2.
5cm)の寸法であることが好ましい。
The size of the support of the present invention is not particularly limited. For example, in the case of a strip-shaped support, a slide glass of a certain standard (about 7.5 cm × 2.
It is preferably 5 cm).

【0015】本発明の支持体を構成する薄膜は、蛍光物
質から放出された蛍光のクエンチングを防止するために
絶縁性被膜を用いることが好ましい。薄膜の入射光の透
過率は、80%以上であることが好ましい。具体的な例
としては、シリコン酸化膜、酸化アルミ等を用いること
が可能であり、また、透明性が高く、蛍光を発しないも
のであればプラスチック薄膜を用いることもできるが、
これらに限定されない。薄膜は、通常の薄膜の形成に用
いられる方法により形成され、例えば熱酸化により形成
される。膜厚は、反射光強度が最低の条件となるように
調整する。即ち、薄膜の光学的膜厚nd(nは素材の屈
折率、dは薄膜の厚さである)が、入射光λに対しλ/
4の奇数倍±λ/10の範囲となるように調整する。ま
た、膜厚は1mm以下であることが好ましい。
The thin film constituting the support of the present invention preferably uses an insulating coating in order to prevent quenching of fluorescence emitted from the fluorescent substance. The transmittance of incident light of the thin film is preferably 80% or more. As a specific example, a silicon oxide film, aluminum oxide, or the like can be used, and a plastic thin film can be used as long as it has high transparency and does not emit fluorescence.
It is not limited to these. The thin film is formed by a method used for forming an ordinary thin film, for example, thermal oxidation. The film thickness is adjusted so that the intensity of reflected light becomes the minimum condition. That is, the optical film thickness nd of the thin film (n is the refractive index of the material, d is the thickness of the thin film) is λ /
It is adjusted so that the range is an odd multiple of 4 ± λ / 10. The film thickness is preferably 1 mm or less.

【0016】薄膜は、基材の表面の少なくとも一部に形
成され、全表面に形成されても良い。例えば、本発明の
支持体をDNAアレイに使用しようとする場合は、DN
Aプローブが固相される部分に局部的に形成されても良
い。厳密には表面に固定した固定対象物も光学的膜厚に
含めて考慮することが好ましいが、現実的には膜厚制御
が困難であり、また、固定対象物(DNAプローブ)の
厚さは高々数十nm程度であるので、膜厚範囲の許容範
囲としてみなすことができる。ここで、固定対象物とし
てDNAプローブを例として示したが、本発明の支持体
に使用できる固定対象物は、蛍光標識ができるものであ
れば特に限定されず、例えば遺伝子を含む核酸、抗原、
抗体、酵素を含むタンパク質、アレルゲン、ホルモンを
含む生理活性物質、または細胞等を用いることができ
る。なお、固定する対象物がDNA等の核酸以外であっ
ても、ある程度の光透過性を有している限り、任意の厚
さおよび密度でもって固定対象物を固定化することがで
きる。
The thin film is formed on at least a part of the surface of the base material, and may be formed on the entire surface. For example, if the support of the present invention is to be used in a DNA array, DN
The A probe may be locally formed in the portion where the solid phase is fixed. Strictly speaking, it is preferable to consider the fixed object fixed on the surface by including it in the optical film thickness, but it is difficult to control the film thickness in reality, and the thickness of the fixed object (DNA probe) is Since it is about several tens of nm at most, it can be regarded as an allowable range of the film thickness range. Here, the DNA probe is shown as an example of the immobilization target, but the immobilization target that can be used for the support of the present invention is not particularly limited as long as it can be fluorescently labeled, and for example, a nucleic acid containing a gene, an antigen,
Antibodies, proteins containing enzymes, allergens, physiologically active substances containing hormones, cells, etc. can be used. Even if the object to be immobilized is other than nucleic acid such as DNA, the object to be immobilized can be immobilized with any thickness and density as long as it has a certain degree of light transmittance.

【0017】さらに、本発明の応用例として、光学的膜
厚nd(屈折率と膜厚の積)が入射光の波長λに対しλ
/4の奇数倍±λ/10の範囲にあるような複数の異な
る膜厚部分を設けた1以上の支持体を用いれば、膜厚毎
に異なる固定対象物を固定化したり、膜厚毎に異なる反
応用試薬および/または被検試料と反応させることによ
り、多項目の検査を高い処理能力で検査できる可能性が
ある。
Further, as an application example of the present invention, the optical film thickness nd (product of refractive index and film thickness) is λ with respect to the wavelength λ of incident light.
By using one or more supports provided with a plurality of different film thickness portions in the range of an odd multiple of / 4 ± λ / 10, an object to be fixed different for each film thickness can be fixed or each film thickness can be fixed. By reacting with different reaction reagents and / or different test samples, it is possible to test multiple items with high throughput.

【0018】本発明の支持体を構成する基材としては、
薄膜を形成する表面において入射光を反射するものであ
れば、任意の材質のものを使用することができる。ま
た、光吸収特性を有するものでも本質的には本発明に適
用できる。場合によっては透過光を利用できるように光
透過性を有するものであってもよいが、光反射性である
方が、上述したように基材上の薄膜中で多重反射が起こ
って蛍光強度を増強できるので好ましい。即ち、基材表
面における入射光の反射率が、80%以上であることが
好ましく、反射率の高いものを使用することがより好ま
しい。具体的な例としては、シリコンなどの表面研磨半
導体、またはアルミニウム、クロム、金などの表面研磨
金属基材を用いることが可能であるが、これらに限定さ
れない。
As the base material constituting the support of the present invention,
Any material can be used as long as it reflects incident light on the surface on which the thin film is formed. Further, even those having light absorption characteristics can be essentially applied to the present invention. In some cases, it may have a light-transmitting property so that the transmitted light can be used, but the light-reflecting one causes the multiple reflections in the thin film on the substrate to increase the fluorescence intensity as described above. It is preferable because it can be enhanced. That is, the reflectance of incident light on the surface of the base material is preferably 80% or more, and it is more preferable to use one having a high reflectance. As a specific example, a surface-polished semiconductor such as silicon, or a surface-polished metal base material such as aluminum, chromium, or gold can be used, but is not limited thereto.

【0019】なお、本発明の支持体の薄膜および基材は
1層に限定されることなく、反射率が最低となる、即
ち、薄膜の光学的膜厚ndが入射光の波長λに対しλ/
4の奇数倍±λ/10の範囲にあるという条件を満たせ
ば、多層構造でも良い。
The thin film and the base material of the support of the present invention are not limited to one layer and have the lowest reflectance, that is, the optical film thickness nd of the thin film is λ with respect to the wavelength λ of the incident light. /
A multilayer structure may be used as long as it satisfies the condition of being an odd multiple of 4 ± λ / 10.

【0020】本発明の支持体の形状は、固定対象物を表
面に固定化して蛍光検出を行うために使用可能な形状で
あれば、屈折率が薄膜より大きいという条件以外特に限
定されない。支持体の表面は平坦である必要はなく、例
えば図2に示すように溝形状でも良いし、逆に凸構造で
も良い。図2に示すような溝構造では、その上部をカバ
ーで覆うことにより、流路構造にして用いることも可能
である。また、支持体の表面は曲面を有していても良
く、断面が円形または楕円形であるような内壁を有する
流路を形成してもよい。さらに、支持体は球形または多
面体などの粒子状のものでもよい。この場合には、1以
上の粒子状の支持体を液体中で懸濁させたり、沈降させ
たりして粒子の運動状態を加味した各種検出(例えば、
粒子凝集分析法、蛍光相関分光法等)も可能となる上
に、均質な混合液を得ることができる。また、支持体が
棒状、糸状、繊維状、テープ状、ストリップ状の場合に
は、その外壁または端面に固定対象物を固定化すること
ができる。
The shape of the support of the present invention is not particularly limited as long as it has a refractive index larger than that of the thin film, as long as it can be used for immobilizing an object to be immobilized on the surface and detecting fluorescence. The surface of the support does not have to be flat, and may have a groove shape as shown in FIG. 2 or a convex structure. The groove structure as shown in FIG. 2 can be used as a flow channel structure by covering the upper part thereof with a cover. Further, the surface of the support may have a curved surface, and a flow path having an inner wall having a circular or elliptical cross section may be formed. Furthermore, the support may be in the form of particles such as spheres or polyhedra. In this case, various detections in which one or more particulate supports are suspended or settled in a liquid and the motion state of the particles is taken into consideration (for example,
Particle agglutination analysis, fluorescence correlation spectroscopy, etc.) are also possible, and a homogeneous mixture can be obtained. When the support is rod-shaped, thread-shaped, fiber-shaped, tape-shaped, or strip-shaped, the object to be fixed can be fixed to the outer wall or end face thereof.

【0021】以上のような構成とすることにより、入射
光が有効に利用され、高感度に蛍光を検出できるので、
本発明の支持体は、DNAプローブアレイなどの微量の
試料の検出に有効に利用されることができる。さらに、
基材および薄膜に用いる素材の選択により、従来使用さ
れているマイクロアレイ用スライドガラスよりも高感度
な蛍光検出用支持体が、はるかに低価格で製造すること
ができる。
With the above structure, the incident light can be effectively used and the fluorescence can be detected with high sensitivity.
The support of the present invention can be effectively used for detecting a trace amount of sample such as a DNA probe array. further,
By selecting the materials used for the base material and the thin film, a support for fluorescence detection having a higher sensitivity than the conventionally used slide glass for microarray can be manufactured at a much lower cost.

【0022】[0022]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0023】<実施例1>図3は、シリコン基板(屈折
率:n=4.09,k=0.04)の表面に種々の膜厚
のシリコン酸化膜を形成し、これに波長543nmの入
射光を入射角90度で照射した場合の反射率を、計算に
より求めたものである。縦軸は反射率を、横軸はシリコ
ン酸化膜の膜厚を表す。ここで、入射光の波長を543
nmとしたのは、以下の実施例で蛍光測定に用いた装置
の励起光の波長を用いたためである。この結果は計算結
果であるが、実際の反射率測定結果も同様の結果を示し
た。この結果より、シリコン酸化膜の屈折率n:1.4
6と膜厚dの積ndがおおよそ入射光の波長λのλ/4
の奇数倍のときで、基板の屈折率が薄膜より大きい条件
で、反射率が最低となっていることが分かった。これ
は、無反射コーティングの条件nd=λ/4と類似の条
件である。このことから、シリコン基板上に形成したシ
リコン酸化膜が入射光に対し選択吸収膜の様に機能して
いることが分かる。
<Embodiment 1> FIG. 3 shows that silicon oxide films of various thicknesses are formed on the surface of a silicon substrate (refractive index: n = 4.09, k = 0.04). The reflectance obtained by irradiating the incident light at an incident angle of 90 degrees is calculated. The vertical axis represents the reflectance and the horizontal axis represents the film thickness of the silicon oxide film. Here, the wavelength of the incident light is 543
The reason for using nm is that the wavelength of the excitation light of the device used for the fluorescence measurement in the following examples was used. Although this result is a calculation result, the actual reflectance measurement result also showed the same result. From this result, the refractive index of the silicon oxide film n: 1.4
The product nd of 6 and the film thickness d is approximately λ / 4 of the wavelength λ of the incident light.
It was found that the reflectance was the lowest under the condition that the refractive index of the substrate was larger than that of the thin film at an odd multiple of. This is a condition similar to the condition nd = λ / 4 of the antireflection coating. From this, it can be seen that the silicon oxide film formed on the silicon substrate functions like a selective absorption film for incident light.

【0024】<実施例2>平坦面からなる表面研磨した
シリコン基板(直径4インチ、厚さ0.5mm、(10
0)面の単結晶シリコン製((株)セミテック))上
に、シリコン酸化膜をそれぞれ100nm、200n
m、300nm、400nm、480nmの厚さで形成
したDNAプローブ固相用基板を準備した。酸化膜は、
シリコン基板の表面をRCA洗浄した後、酸化炉で所定
の膜厚になるように形成した。ここで、RCA洗浄は、
過酸化水素:塩酸:純水=1:1:6の混合液で80
℃、10分ボイル後、過酸化水素:アンモニア水:純水
=1:1:6の混合液で80℃、10分ボイルしてから
純水で流水洗浄することにより行った。また、比較のた
め市販のスライドガラス(白ガラス)とマイクロアレイ
用スライドガラス(MA)を準備した。これらの基板に
以下に示す手順でDNAプローブを固相し、ハイブリダ
イゼーション反応後、蛍光観察を行った。
Example 2 A surface-polished silicon substrate having a flat surface (diameter: 4 inches, thickness: 0.5 mm, (10
Silicon oxide films of 100 nm and 200 n, respectively, are formed on single crystal silicon (0) plane (Semitech Co., Ltd.).
m, 300 nm, 400 nm, 480 nm thickness formed substrate of DNA probe solid phase was prepared. The oxide film is
After the surface of the silicon substrate was RCA cleaned, it was formed in an oxidation furnace so as to have a predetermined film thickness. Here, the RCA cleaning is
80 with a mixture of hydrogen peroxide: hydrochloric acid: pure water = 1: 1: 6
After boiling at 10 ° C. for 10 minutes, the mixture was boiled at 80 ° C. for 10 minutes with a mixed solution of hydrogen peroxide: ammonia water: pure water = 1: 1: 6, and washed with running pure water. For comparison, a commercially available slide glass (white glass) and a microarray slide glass (MA) were prepared. A DNA probe was solid-phased on these substrates by the procedure shown below, and after the hybridization reaction, fluorescence observation was performed.

【0025】スライドの前処理法としては、一般的には
ガラス基板をアルカリや酸などで洗浄を行う。その後、
プローブDNA固相に必要な処理を行う。本実験では、
シリコン酸化膜の厚さが変化するのを防ぐため弱アルカ
リと過酸化水素の混合液で洗浄を行った。表面はγ−ア
ミノプロピルトリエトキシシランの1%希釈溶液を用い
てシラン処理を行い、アミノ基を形成した。これを純水
ですすぎ、乾燥後、ピンタイプアレイヤーであるSPB
IO((株)日立ソフトウェアエンジニアリング製)を
用いてプローブDNAの点着を行った。プローブ溶液に
は両側にアミノ基と結合するサイトを有するリンカー分
子を混合し、このリンカー分子により基板表面のアミノ
基とDNAプローブ末端のアミノ基を共有結合で固定す
る。基板側に固定化するプローブDNAは、5’NH化
−CAT GCA TGA ATT GTT TTT
TGC TCA TAC CCT 3’(30mer)
の配列を有するオリゴヌクレオチドプローブである。ス
ライド作製後、プローブDNAに対して相補的配列
(5’ AGG GTA TGA GCA AAA A
AC AAT TCA TGC ATG 3’)を有す
るオリゴヌクレオチドに5’末端蛍光標識を行ったもの
をターゲットDNAとしてハイブリダイゼーション反応
を行った。今回用いた蛍光色素はCy3で、波長535
nmの励起光で、560nmの蛍光を発する色素であ
る。ハイブリダイゼーション反応後のスライドを、1×
SSC(標準食塩−クエン酸緩衝液)で洗浄し、蛍光検
出器ScanArray4000(GSI lumon
ics社製)を用いて検出した。但し、蛍光検出器Sc
anArray4000は装置構成上、波長543nm
の励起光を用いた。各膜厚の基板について2枚ずつ実験
を行い、各基板の蛍光強度を求めた。蛍光強度は、64
スポットの平均値である。観察結果の実測値を表1に示
した。また、図4は、縦軸に蛍光強度を取り、表1の結
果をグラフに表したものである。
As a slide pretreatment method, a glass substrate is generally washed with an alkali or an acid. afterwards,
Perform necessary processing on the probe DNA solid phase. In this experiment,
In order to prevent the thickness of the silicon oxide film from changing, cleaning was performed with a mixed solution of weak alkali and hydrogen peroxide. The surface was silanized using a 1% dilute solution of γ-aminopropyltriethoxysilane to form amino groups. After rinsing this with pure water and drying it, SPB which is a pin type arrayer
The probe DNA was spotted using IO (manufactured by Hitachi Software Engineering Co., Ltd.). A linker molecule having sites for binding amino groups on both sides is mixed with the probe solution, and the amino group on the surface of the substrate and the amino group at the terminal of the DNA probe are covalently fixed by this linker molecule. The probe DNA immobilized on the substrate side was 5'NH-cat-GAC TGA ATT GTT TTT.
TGC TCA TAC CCT 3 '(30mer)
It is an oligonucleotide probe having the sequence of. After the slide was prepared, a sequence complementary to the probe DNA (5 ′ AGG GTA TGA GCA AAA A
A hybridization reaction was carried out by using an oligonucleotide having AC AAT TCA TGC ATG 3 ') labeled with a 5'-end fluorescence as a target DNA. The fluorescent dye used this time is Cy3, and the wavelength is 535.
It is a dye that emits fluorescence of 560 nm with excitation light of nm. 1x slide after hybridization reaction
After washing with SSC (standard salt-citrate buffer), a fluorescence detector ScanArray4000 (GSI lumon) was used.
ics). However, the fluorescence detector Sc
The anArray4000 has a wavelength of 543 nm due to the device configuration.
Of excitation light was used. Two experiments were conducted for each substrate having each film thickness, and the fluorescence intensity of each substrate was obtained. The fluorescence intensity is 64
It is the average value of the spots. The measured values of the observation results are shown in Table 1. In addition, FIG. 4 is a graph showing the results of Table 1 with the fluorescence intensity taken on the vertical axis.

【0026】[0026]

【表1】 [Table 1]

【0027】シリコン酸化膜を100nmから480n
mまで変化させると、図に示すように周期的な強度変化
を示した。また、蛍光強度の最大値は市販の白ガラスや
マイクロアレイ用スライドガラスに比べ数倍の強度であ
った。この結果と図3を比較するとほぼ同様の周期的変
化が認められ、すなわち励起光の反射率が低くなるほど
高い蛍光強度が得られることが明らかになった。これ
は、反射率が低い条件で励起光を用いると、図1bに示
した原理により効率的に蛍光色素を励起できるためと思
われる。
A silicon oxide film is formed from 100 nm to 480 n
When it was changed to m, a periodic intensity change was shown as shown in the figure. Further, the maximum value of the fluorescence intensity was several times that of commercially available white glass and slide glass for microarray. Comparing this result with FIG. 3, it was found that almost the same periodic change was observed, that is, the higher the excitation light reflectance, the higher the fluorescence intensity obtained. This is considered to be because the fluorescent dye can be efficiently excited by the principle shown in FIG. 1b when the excitation light is used under the condition of low reflectance.

【0028】<実施例3>次に、実施例2による検出結
果に関して更に詳細な検討を行うため、シリコン酸化膜
の厚さを細かく変化させ、60nm、80nm、100
nm、120nm、140nmとしたDNAプローブ固
相用基板で実験を行った。他の実験条件は実施例2に記
載の条件と同一である。その結果を図5に示す。蛍光強
度は80nmの膜厚で最大となった。図3の反射率の測
定においては約90nmに極小値を示しており、多少の
ずれはあるものの、図4と同様の傾向を示したことか
ら、反射率と蛍光強度は同様の周期で変化すると考えら
れる。
<Embodiment 3> Next, in order to carry out a more detailed study on the detection result of Embodiment 2, the thickness of the silicon oxide film is finely changed to 60 nm, 80 nm and 100 nm.
The experiment was performed using a substrate for a DNA probe solid phase having a wavelength of 120 nm, 120 nm, or 140 nm. The other experimental conditions are the same as those described in Example 2. The result is shown in FIG. The fluorescence intensity reached a maximum at a film thickness of 80 nm. In the reflectance measurement of FIG. 3, the minimum value was shown at about 90 nm, and although there was some deviation, it showed the same tendency as in FIG. 4, so that the reflectance and the fluorescence intensity change in the same cycle. Conceivable.

【0029】これらの実験結果から蛍光観察用支持体を
多層膜構造にして励起光の反射率を最小にするような薄
膜を形成することにより、より高感度の蛍光観察が可能
であることが分かった。
From these experimental results, it has been found that higher sensitivity fluorescence observation is possible by forming the support for fluorescence observation into a multi-layer structure to form a thin film that minimizes the reflectance of excitation light. It was

【0030】上記実施例1ないし3の結果から計算する
と、シリコン酸化膜とシリコン基板構造においては、反
射率が約30%以下であれば市販の白ガラスやマイクロ
アレイ用スライドガラスに比べて高い蛍光強度が観察さ
れ、それ以上の反射率では逆に市販のものよりも悪い結
果が得られた。この結果を一般的な構造に適用すると光
学的膜厚ndがλ/4の奇数倍±λ/10以内とするこ
とにより、市販の白ガラスやマイクロアレイ用スライド
ガラスに比べ良好な結果が得られることが分かった。
Calculating from the results of Examples 1 to 3 above, in the silicon oxide film and the silicon substrate structure, if the reflectance is about 30% or less, the fluorescence intensity is higher than that of the commercially available white glass or slide glass for microarray. Was observed, and at higher reflectances, on the contrary, worse results were obtained than those on the market. If this result is applied to a general structure, by setting the optical film thickness nd to be an odd multiple of λ / 4 within ± λ / 10, good results can be obtained as compared with commercially available white glass and slide glass for microarray. I understood.

【0031】[0031]

【発明の効果】以上詳述したように、本発明によれば、
励起光の増強や光電子倍増管などの検出光学系を変える
ことなく、効率的な蛍光検出が可能であり、かつ低価格
で製造できる支持体構造が提供される。
As described in detail above, according to the present invention,
Provided is a support structure which enables efficient fluorescence detection without increasing excitation light or changing a detection optical system such as a photomultiplier tube and which can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の支持体の一実施の形態を示した模式図
(a)、およびその支持体を用いて蛍光励起を行った場
合の原理図(b)。
FIG. 1 is a schematic diagram (a) showing an embodiment of a support of the present invention, and a principle diagram (b) when fluorescence excitation is performed using the support.

【図2】本発明の蛍光検出用支持体の表面に溝構造を有
する場合の支持体の構成図。
FIG. 2 is a structural diagram of a support in the case where the support for fluorescence detection of the present invention has a groove structure on the surface.

【図3】シリコン基板上にシリコン酸化物膜を形成した
ときの単層膜の反射率を表すグラフ。
FIG. 3 is a graph showing the reflectance of a single layer film when a silicon oxide film is formed on a silicon substrate.

【図4】シリコン基板上に種々の膜厚のシリコン酸化物
膜を形成した支持体上の蛍光標識物質に励起光を照射し
た場合の蛍光強度を表すグラフ。
FIG. 4 is a graph showing the fluorescence intensity when a fluorescent labeling substance on a support having silicon oxide films of various thicknesses formed on a silicon substrate is irradiated with excitation light.

【図5】シリコン基板上に種々の膜厚のシリコン酸化物
膜を形成した支持体上の蛍光標識物質に励起光を照射し
た場合の蛍光強度を表すグラフ。
FIG. 5 is a graph showing fluorescence intensity when a fluorescent labeling substance on a support having silicon oxide films of various thicknesses formed on a silicon substrate is irradiated with excitation light.

【符号の説明】[Explanation of symbols]

1…基材 2…薄膜 3…試料 4…励起光 5…多重反射 6…放射光 1 ... Base material 2 ... Thin film 3 ... Sample 4 ... Excitation light 5 ... Multiple reflection 6 ... Synchrotron radiation

フロントページの続き (72)発明者 大橋 陽子 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2G043 AA01 BA16 CA03 DA02 EA01 FA01 GA07 GB01 KA05 LA01 MA01 Continued front page    (72) Inventor Yoko Ohashi             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. F-term (reference) 2G043 AA01 BA16 CA03 DA02 EA01                       FA01 GA07 GB01 KA05 LA01                       MA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 波長λの入射光により励起される蛍光色
素で標識した試料を固定し、前記入射光の照射による前
記蛍光色素からの蛍光を検出するための蛍光検出用支持
体であって、 基材の表面に少なくとも1層からなる薄膜が形成されて
おり、前記薄膜の光学的膜厚nd(nは屈折率、dは膜
厚を表す)がλ/4の奇数倍±λ/10の範囲であるこ
とを特徴とする蛍光検出用支持体。
1. A support for fluorescence detection for fixing a sample labeled with a fluorescent dye excited by incident light of wavelength λ, and detecting fluorescence from the fluorescent dye by irradiation of the incident light, A thin film consisting of at least one layer is formed on the surface of the base material, and the optical film thickness nd (n is a refractive index, d is a film thickness) of the thin film is an odd multiple of λ / 4 ± λ / 10. A support for fluorescence detection, characterized by having a range.
【請求項2】 前記薄膜は入射光の透過率が90%以上
であることを特徴とする請求項1記載の蛍光検出用支持
体。
2. The support for fluorescence detection according to claim 1, wherein the thin film has a transmittance of incident light of 90% or more.
【請求項3】 前記薄膜が、1層または多層の絶縁性被
膜であることを特徴とする請求項1または2記載の蛍光
検出用支持体。
3. The support for fluorescence detection according to claim 1, wherein the thin film is a single-layer or multi-layer insulating coating.
【請求項4】 前記基材は前記薄膜より大きな屈折率を
有し、かつ入射光に対する反射率が80%以上であるこ
とを特徴とする請求項1ないし3のいずれか1項記載の
蛍光検出用支持体。
4. The fluorescence detection device according to claim 1, wherein the base material has a refractive index higher than that of the thin film, and the reflectance with respect to incident light is 80% or more. Support.
【請求項5】 前記基材が、シリコン、またはアルミニ
ウム、クロム、および金からなる群の中から選ばれる少
なくとも1種の金属または半導体で形成されることを特
徴とする請求項1ないし4のいずれか1項記載の蛍光検
出用支持体。
5. The substrate according to claim 1, wherein the base material is formed of silicon or at least one metal or semiconductor selected from the group consisting of aluminum, chromium and gold. The support for fluorescence detection according to item 1.
【請求項6】 前記基材の表面が溝構造を有することを
特徴とする請求項1ないし5のいずれか1項記載の蛍光
検出用支持体。
6. The support for fluorescence detection according to claim 1, wherein the surface of the base material has a groove structure.
JP2002093308A 2002-03-28 2002-03-28 Fluorescence detection support Expired - Fee Related JP4121762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093308A JP4121762B2 (en) 2002-03-28 2002-03-28 Fluorescence detection support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093308A JP4121762B2 (en) 2002-03-28 2002-03-28 Fluorescence detection support

Publications (2)

Publication Number Publication Date
JP2003294754A true JP2003294754A (en) 2003-10-15
JP4121762B2 JP4121762B2 (en) 2008-07-23

Family

ID=29237821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093308A Expired - Fee Related JP4121762B2 (en) 2002-03-28 2002-03-28 Fluorescence detection support

Country Status (1)

Country Link
JP (1) JP4121762B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023301A (en) * 2004-07-08 2006-01-26 Yamatake Corp Substrate for biochip and manufacturing method of the same
WO2006135097A1 (en) 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
WO2007142360A1 (en) * 2006-06-08 2007-12-13 Fujifilm Corporation Spectroscopic device and raman spectroscopic system
JP2008164412A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Sensor and sensing device
JP2010096645A (en) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microplate having periodic structure, surface plasmon excitation enhanced fluorescence microscope using the same, fluorescence microplate reader, and method of detecting specific antigen/antibody reaction
US8287939B2 (en) 2004-07-08 2012-10-16 Azbil Corporation Method for manufacturing substrate for biochip
JP2019501365A (en) * 2015-10-01 2019-01-17 ナノテンパー・テクノロジーズ・ゲーエムベーハー System and method for optically measuring particle stability and aggregation
WO2024054050A1 (en) * 2022-09-07 2024-03-14 주식회사 나노엔텍 Quality control slide of cell counting device, and method for manufacturing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023301A (en) * 2004-07-08 2006-01-26 Yamatake Corp Substrate for biochip and manufacturing method of the same
US8287939B2 (en) 2004-07-08 2012-10-16 Azbil Corporation Method for manufacturing substrate for biochip
JP4710031B2 (en) * 2004-07-08 2011-06-29 株式会社山武 Biochip substrate
EP1891414A1 (en) * 2005-06-14 2008-02-27 FUJIFILM Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
EP1891414A4 (en) * 2005-06-14 2010-04-21 Fujifilm Corp Sensor, multichannel sensor, sensing apparatus, and sensing method
WO2006135097A1 (en) 2005-06-14 2006-12-21 Fujifilm Corporation Sensor, multichannel sensor, sensing apparatus, and sensing method
WO2007142360A1 (en) * 2006-06-08 2007-12-13 Fujifilm Corporation Spectroscopic device and raman spectroscopic system
US7999934B2 (en) 2006-06-08 2011-08-16 Fujifilm Corporation Spectroscopic device and raman spectroscopic system
KR101355898B1 (en) 2006-06-08 2014-01-28 후지필름 가부시키가이샤 Spectroscopic device and raman spectroscopic apparatus
JP2008164412A (en) * 2006-12-28 2008-07-17 Fujifilm Corp Sensor and sensing device
JP2010096645A (en) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microplate having periodic structure, surface plasmon excitation enhanced fluorescence microscope using the same, fluorescence microplate reader, and method of detecting specific antigen/antibody reaction
JP2019501365A (en) * 2015-10-01 2019-01-17 ナノテンパー・テクノロジーズ・ゲーエムベーハー System and method for optically measuring particle stability and aggregation
JP7053458B2 (en) 2015-10-01 2022-04-12 ナノテンパー・テクノロジーズ・ゲーエムベーハー Systems and methods for optically measuring particle stability and agglomeration
WO2024054050A1 (en) * 2022-09-07 2024-03-14 주식회사 나노엔텍 Quality control slide of cell counting device, and method for manufacturing same

Also Published As

Publication number Publication date
JP4121762B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
Rubina et al. Hydrogel-based protein microchips: manufacturing, properties, and applications
EP2217928B1 (en) Alternate labeling strategies for single molecule sequencing
US7572642B2 (en) Assay based on particles, which specifically bind with targets in spatially distributed characteristic patterns
EP2040060B1 (en) Apparatus and method for detecting a target substance
WO2013051651A1 (en) Method for analyzing biomolecules and biomolecule analyzer
JP2005507489A (en) How to provide extended dynamic range in sample analysis
WO2005090997A1 (en) Method of agitating solution
JP4588730B2 (en) Multi-substrate biochip unit
NZ330227A (en) Device and apparatus for the simultaneous detection of multiple analytes, each reaction site bearing a ligand covalently bonded to the substrate
US6861251B2 (en) Translucent solid matrix assay device for microarray analysis
EP1626276A1 (en) Support having selectively bonding substance fixed thereto
JP5428322B2 (en) Assay method using plasmon excitation sensor
JP2010172271A (en) Device for analyzing nucleic acid, and unit for analyzing nucleic acid
JPH05506936A (en) Immobilized analyte detection device
JP4121762B2 (en) Fluorescence detection support
JP2009150708A (en) Detection method and inspection kit of target substance
JP2010537168A (en) Method for producing a microarray suitable for high-throughput detection
US6756014B2 (en) Biochemical sensor and biochemical testing system using the same
TWI644800B (en) Biological sensing chip containing molybdenum disulfide and detection device using the biological sensing chip
US7736888B2 (en) Stage and platform for building a biochip and biochip
JP2009145326A (en) Carrier for use in measurement of analyte, and method for producing the same
JP5516198B2 (en) Plasmon excitation sensor chip, plasmon excitation sensor using the same, and analyte detection method
JP5541003B2 (en) Plasmon excitation sensor chip and assay method using the same
JP2007171030A (en) Selectively-bonding substance immobilizing base material
JP2003329685A (en) Method of processing detector having probe molecule fixed thereto and aqueous processing solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050328

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110509

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees