JP2003294691A - Gas sensor element - Google Patents

Gas sensor element

Info

Publication number
JP2003294691A
JP2003294691A JP2002101539A JP2002101539A JP2003294691A JP 2003294691 A JP2003294691 A JP 2003294691A JP 2002101539 A JP2002101539 A JP 2002101539A JP 2002101539 A JP2002101539 A JP 2002101539A JP 2003294691 A JP2003294691 A JP 2003294691A
Authority
JP
Japan
Prior art keywords
sensor element
gas sensor
gas
diffusion resistance
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002101539A
Other languages
Japanese (ja)
Other versions
JP3867610B2 (en
Inventor
Susumu Naito
将 内藤
Shinichiro Imamura
晋一郎 今村
Makoto Nakae
誠 中江
Namiji Fujii
並次 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002101539A priority Critical patent/JP3867610B2/en
Publication of JP2003294691A publication Critical patent/JP2003294691A/en
Application granted granted Critical
Publication of JP3867610B2 publication Critical patent/JP3867610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To a gas sensor element in which a rich shift hardly occurs. <P>SOLUTION: The gas sensor element 1 comprises a solid electrolyte body 11, an electrode 121 on the side of a gas to be measured and a reference electrode 122 both provided for the solid electrolyte body 11, a chamber 140 facing the electrode 121 on the side of the gas to be measured, a guiding-out hole 150 for connecting the chamber 140 to external atmosphere of the gas sensor element 1, and a diffused resistor layer 16 made of a porous material which covers an opening part 151 of the guiding-out hole 150 on the side of the external atmosphere. The diffused resistor layer 16 is directly exposed to the external atmosphere. The gas sensor element 1 is constituted in such a way that its external surface has no members provided with diffused resistors except the diffused resistor layer 16. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,車両用内燃機関の燃焼制御など
に用いることができるガスセンサ素子に関する。
TECHNICAL FIELD The present invention relates to a gas sensor element that can be used for combustion control of an internal combustion engine for a vehicle.

【0002】[0002]

【従来技術】車両用エンジンの排気系にA/Fセンサ素
子を内蔵したガスセンサを設け,排気ガス中の酸素濃度
などから空燃比を測定し,これを利用してエンジンの燃
焼制御を行うことがある。車両の排気ガス浄化に三元触
媒を用いる場合,効率よく排気ガスを浄化するためには
車両用エンジンの燃焼室において空燃比が特定の値を有
することが重要である。従って,A/Fセンサ素子で精
度よく空燃比の測定を行うことで,精度高い燃焼制御を
実現することができ,三元触媒による排気ガスの浄化効
率を高めることができる(これが排気ガス制御フィード
バックシステムの原理である)。
2. Description of the Related Art A gas sensor having a built-in A / F sensor element is provided in an exhaust system of a vehicle engine, an air-fuel ratio is measured from the oxygen concentration in the exhaust gas, etc., and combustion control of the engine can be performed using this. is there. When a three-way catalyst is used to purify the exhaust gas of a vehicle, it is important that the air-fuel ratio has a specific value in the combustion chamber of the vehicle engine in order to purify the exhaust gas efficiently. Therefore, by accurately measuring the air-fuel ratio with the A / F sensor element, highly accurate combustion control can be realized, and the exhaust gas purification efficiency by the three-way catalyst can be improved (this is the exhaust gas control feedback). It is the principle of the system).

【0003】[0003]

【解決しようとする課題】ところで発明者らは長時間放
置されたA/Fセンサ素子が,活性化温度に達した後か
ら10数秒程度の間に,出力がリッチシフトを発生する
という現象を見出した。なお,活性化温度とは,A/F
センサ素子がA/Fを検出可能となる温度である。
By the way, the inventors have found a phenomenon that an output of the A / F sensor element, which has been left for a long time, undergoes a rich shift within about 10 seconds after reaching the activation temperature. It was The activation temperature is the A / F
This is the temperature at which the sensor element can detect A / F.

【0004】このリッチシフトは車両に搭載する排気ガ
ス制御フィードバックシステムに上記A/Fセンサ素子
を採用した場合に問題となる。すなわち,エンジン始動
直後の空燃比制御において出力のリッチシフトが発生し
た場合,エンジンの燃焼を著しく不安定にする。最悪の
場合,エンジンの空燃比を極端にリーン側に制御して,
失火(エンジン停止)にいたるおそれもある。
This rich shift becomes a problem when the above A / F sensor element is used in an exhaust gas control feedback system mounted on a vehicle. That is, when the output rich shift occurs in the air-fuel ratio control immediately after the engine is started, the combustion of the engine is made extremely unstable. In the worst case, control the air-fuel ratio of the engine to the extremely lean side,
There is also a risk of misfire (engine stop).

【0005】リッチシフトは次のようなプロセスにより
発生〜消滅に至ると考えられる。すなわち,リッチシフ
トはA/Fセンサ素子が高湿雰囲気に長時間放置された
後に発生する。高湿雰囲気にA/Fセンサ素子を放置し
た場合,素子の内部に水分が浸入し,吸着する。特に後
述する比較例1,2に記載したような構成の素子の場合
は拡散抵抗層と排気ガス側電極との間,また電極の近傍
により多く吸着する。
The rich shift is considered to occur and disappear by the following process. That is, the rich shift occurs after the A / F sensor element is left in a high humidity atmosphere for a long time. When the A / F sensor element is left in a high-humidity atmosphere, water enters the element and is adsorbed. In particular, in the case of the elements having the configurations as described in Comparative Examples 1 and 2 described later, a large amount is adsorbed between the diffusion resistance layer and the exhaust gas side electrode and in the vicinity of the electrode.

【0006】上記水分はA/Fセンサ素子が活性化温度
に達することで,脱離,気化する。気化した水分,つま
り水蒸気は体積膨張しつつ多孔質拡散層等を通じて素子
の外部に脱出しようとするが,多孔質拡散層の通過はそ
れなりの時間を要する。従って,素子の内部(特に被測
定ガス側電極の近傍)で水蒸気圧が上昇し,相対的に酸
素分圧が低下する。これによってA/Fセンサ素子の出
力にリッチシフトが発生する(図2に示すA部)。
The water is desorbed and vaporized when the A / F sensor element reaches the activation temperature. The vaporized water, that is, water vapor, tries to escape to the outside of the device through the porous diffusion layer and the like while expanding in volume, but it takes a certain amount of time to pass through the porous diffusion layer. Therefore, the water vapor pressure rises inside the element (particularly in the vicinity of the measured gas side electrode), and the oxygen partial pressure relatively decreases. This causes a rich shift in the output of the A / F sensor element (A portion shown in FIG. 2).

【0007】しかしながら,水蒸気は多孔質拡散層を通
じて少しずつ外部に抜け,これと同時に素子周辺の排気
ガスが内部に取り込まれる。これにより,時間の経過と
共にリッチシフトがおさまり,通常の出力を得る。この
ように,水分の脱離→気化による水蒸気の急激な体積膨
張が,1〜2A/F程度の大きなリッチシフトを引き起
こすと考えられる。もちろん素子外部の雰囲気が乾燥し
ていればこのような問題は発生しないが,駐車車両の排
気管内は排気ガスに含まれる水分によって高湿雰囲気と
なっており,リッチシフトの発生確率を高める環境であ
る。
However, the water vapor gradually escapes to the outside through the porous diffusion layer, and at the same time, the exhaust gas around the element is taken into the inside. As a result, the rich shift subsides over time and a normal output is obtained. Thus, it is considered that the rapid volume expansion of water vapor due to desorption of water → vaporization causes a large rich shift of about 1 to 2 A / F. Of course, if the atmosphere outside the element is dry, this kind of problem does not occur, but the exhaust pipe of the parked vehicle is in a high humidity atmosphere due to the moisture contained in the exhaust gas, and in an environment that increases the probability of rich shift occurrence. is there.

【0008】なお,このような問題はA/Fセンサ素子
以外の,車両用内燃機関の燃焼制御や排気ガス制御フィ
ードバックシステムに利用する各種ガスセンサ素子(酸
素センサ素子,NOxセンサ素子等)において同じよう
に生じる問題である。
Incidentally, such a problem is the same in various gas sensor elements (oxygen sensor element, NOx sensor element, etc.) used for combustion control of an internal combustion engine for vehicles and an exhaust gas control feedback system other than the A / F sensor element. Is a problem that arises.

【0009】本発明は,かかる従来の問題点に鑑みてな
されたもので,リッチシフトの生じ難いガスセンサ素子
を提供しようとするものである。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a gas sensor element in which a rich shift is unlikely to occur.

【0010】[0010]

【課題の解決手段】第1の発明は,固体電解質体と,該
固体電解質体に設けた被測定ガス側電極と基準電極とを
有し,上記被測定ガス側電極と対面するチャンバを有
し,上記チャンバとガスセンサ素子の外部雰囲気とを結
び,チャンバ内から直接外部雰囲気へつながる導出孔を
有することを特徴とするガスセンサ素子にある(請求項
1)。
According to a first aspect of the present invention, there is provided a solid electrolyte body, a measurement gas side electrode and a reference electrode provided on the solid electrolyte body, and a chamber facing the measurement gas side electrode. The gas sensor element is characterized in that it has a lead-out hole which connects the chamber to the atmosphere outside the gas sensor element and has a lead-out hole which is directly connected to the atmosphere outside the chamber (claim 1).

【0011】また,第2の発明は,固体電解質体と,該
固体電解質体に設けた被測定ガス側電極と基準電極とを
有し,上記被測定ガス側電極と対面するチャンバを有
し,上記チャンバとガスセンサ素子の外部雰囲気とを結
ぶ導出孔を有し,該導出孔の外部雰囲気側の開口部を覆
うように多孔質材からなる拡散抵抗層を有し,かつ上記
拡散抵抗層は直接外部雰囲気に対し露出し,その外面に
これ以上他の拡散抵抗を備えた部材のないよう構成する
ことを特徴とするガスセンサ素子にある(請求項2)。
The second invention has a solid electrolyte body, a gas to be measured side electrode and a reference electrode provided on the solid electrolyte body, and a chamber facing the electrode to be measured gas side, There is a lead-out hole that connects the chamber and the external atmosphere of the gas sensor element, and a diffusion resistance layer made of a porous material is provided so as to cover the opening of the lead-out hole on the side of the external atmosphere. According to another aspect of the gas sensor element, the gas sensor element is configured so that it is exposed to the outside atmosphere, and the outer surface of the member is free from any other member having a diffusion resistance.

【0012】第1,第2の発明の作用効果につき説明す
る。上記発明にかかるガスセンサ素子は被測定ガス側電
極の対面するチャンバと外部雰囲気とを結ぶ導出孔を有
する。ガスセンサ素子が長時間高湿雰囲気に曝され,大
量の水分が内部に入り込んだ状態で活性化温度に達し,
水分が水蒸気となった場合,水蒸気は上記導出孔を通じ
て速やかに外部雰囲気に放出される。従って,チャンバ
内の酸素分圧低下によるリッチシフトが生じ難くなる。
The operational effects of the first and second inventions will be described. The gas sensor element according to the above invention has a lead-out hole connecting the chamber facing the measured gas side electrode and the external atmosphere. The gas sensor element is exposed to a high humidity atmosphere for a long time and reaches the activation temperature with a large amount of water entering inside,
When the water content becomes water vapor, the water vapor is rapidly released to the outside atmosphere through the outlet. Therefore, a rich shift due to a decrease in oxygen partial pressure in the chamber is less likely to occur.

【0013】以上,本発明によれば,リッチシフトの生
じ難いガスセンサ素子を提供することができる。
As described above, according to the present invention, it is possible to provide a gas sensor element in which a rich shift is unlikely to occur.

【0014】[0014]

【発明の実施の形態】本発明にかかるガスセンサ素子
は,酸素イオン導電性の固体電解質体に被測定ガス側電
極と基準電極とを設け,これらの電極から構成する電気
化学セルを流れる酸素イオン電流に基づいて,所定のガ
ス濃度を測定するものである。被測定ガス中の酸素濃度
を測定する酸素センサ素子の他,特定のガスを分解して
酸素イオンを生成し,この酸素イオンに基づいて特定ガ
スの濃度を測定するような構成のガスセンサ素子もあ
る。特定ガスとしては例えばNOxやCO,HCなどが
例示できる。さらに,内燃機関の排気系に設置し,排気
ガス中の酸素濃度を測定して,その測定値に基づいて内
燃機関の燃焼室における空燃比(A/F)を測定するガ
スセンサ素子もある。
BEST MODE FOR CARRYING OUT THE INVENTION A gas sensor element according to the present invention comprises an oxygen ion conductive solid electrolyte provided with a gas side electrode to be measured and a reference electrode, and an oxygen ion current flowing through an electrochemical cell constituted by these electrodes. Based on the above, the predetermined gas concentration is measured. In addition to an oxygen sensor element that measures the oxygen concentration in the gas to be measured, there is also a gas sensor element that is configured to decompose a specific gas to generate oxygen ions and measure the concentration of the specific gas based on the oxygen ions. . Examples of the specific gas include NOx, CO, and HC. Further, there is a gas sensor element that is installed in the exhaust system of an internal combustion engine, measures the oxygen concentration in the exhaust gas, and measures the air-fuel ratio (A / F) in the combustion chamber of the internal combustion engine based on the measured value.

【0015】また,上記チャンバは拡散抵抗層や導出孔
を通じて被測定ガスが入り込む場所である。本発明にか
かるガスセンサ素子は,このチャンバと基準電極が対面
する基準ガスとの間のガス濃度差から生じる酸素イオン
電流に基づいて測定を行う。また,上記導入孔はチャン
バを覆う導入孔形成板に設けたピンホールより構成する
ことができる。
The chamber is a place where the gas to be measured enters through the diffusion resistance layer and the outlet. The gas sensor element according to the present invention performs measurement based on an oxygen ion current generated from a gas concentration difference between the chamber and the reference gas facing the reference electrode. Further, the introduction hole may be constituted by a pinhole provided on the introduction hole forming plate covering the chamber.

【0016】また,第1の発明にかかるガスセンサ素子
では,チャンバが導出孔を通じて直接素子の外部に導通
することもある。この場合,導出孔を通じて外部の被測
定ガスがチャンバに入り込む。
Further, in the gas sensor element according to the first aspect of the invention, the chamber may be directly connected to the outside of the element through the lead-out hole. In this case, the gas under measurement enters the chamber through the outlet.

【0017】また,第2の発明では,拡散抵抗層を設け
ることで,被測定ガスの温度に依存した出力変動を防止
して,より正確なセンサ出力を得ることができる。ま
た,拡散抵抗層を設けた後,切削加工などにより上記拡
散抵抗層をトリミングすることでセンサ出力の微調整を
計ることができる。この構成は外部に調整回路などを設
ける必要がないため,便利である。
Further, in the second invention, by providing the diffusion resistance layer, it is possible to prevent the output fluctuation depending on the temperature of the gas to be measured and obtain a more accurate sensor output. Further, after the diffusion resistance layer is provided, the diffusion resistance layer can be trimmed by cutting or the like to finely adjust the sensor output. This configuration is convenient because there is no need to provide an external adjustment circuit.

【0018】また,第2の発明にかかる拡散層は,上記
拡散抵抗層は直接外部雰囲気に対し露出し,その外面に
これ以上他の拡散抵抗を備えた部材のないよう構成す
る。これにより,拡散抵抗層以外の部分で水蒸気の放出
が阻害されることがなくなる。また,水分(水蒸気)が
素子の外部に向かう時,拡散抵抗層を通過する時点では
それなりの拡散抵抗を受けるが,導出孔の存在が,チャ
ンバ内での水蒸気分圧上昇を抑制する。そのためリッチ
シフトを抑制することができる。
Further, the diffusion layer according to the second aspect of the present invention is configured such that the diffusion resistance layer is directly exposed to the external atmosphere, and there is no member having another diffusion resistance on the outer surface thereof. As a result, the release of water vapor is not hindered in the part other than the diffusion resistance layer. Further, when moisture (water vapor) goes to the outside of the element, it receives a certain amount of diffusion resistance at the time of passing through the diffusion resistance layer, but the presence of the lead-out hole suppresses an increase in the partial pressure of water vapor in the chamber. Therefore, rich shift can be suppressed.

【0019】また,上記導出孔を複数備えることが好ま
しい(請求項3)。水分(水蒸気)の抜ける道は導出孔
及び拡散抵抗層である。ここで導出孔の開口面積が一定
であれば(限界電流値を所定の値とするため,導出孔の
開口面積は所定の値に設定する),導出孔の数には依存
しないが,導出孔を複数個設けることで,1つの孔から
抜ける水分(水蒸気)量を分散させて,抜ける時間をよ
り速くすることができる。従って,リッチシフトがより
生じ難くなる。
Further, it is preferable that a plurality of the lead-out holes are provided (claim 3). The paths through which water (water vapor) escapes are the lead-out holes and the diffusion resistance layer. Here, if the opening area of the lead-out holes is constant (the limiting current value is set to a predetermined value, the opening area of the lead-out holes is set to a predetermined value), it does not depend on the number of lead-out holes. By providing a plurality of holes, it is possible to disperse the amount of water (water vapor) that escapes from one hole and accelerate the escape time. Therefore, rich shift is less likely to occur.

【0020】また,ガスセンサ素子は2セル式とするこ
ともできる(請求項4)。リッチシュートはガスセンサ
素子の構造にかかわらず発生するため,2セル式の素子
であっても本発明にかかる構成は有効にリッチシュート
を防止することができる。そして,2セル式の素子とし
ては,例えば,後述する図4等のような,チャンバ層内
の酸素濃度を調節するポンプセル用の電極を備えるも
の,チャンバ内の酸素濃度を監視するモニタセンサ用の
電極を備えるものなどが挙げられる。
Further, the gas sensor element may be of a two-cell type (claim 4). Since the rich chute occurs regardless of the structure of the gas sensor element, the configuration according to the present invention can effectively prevent the rich chute even in the case of a 2-cell type element. As the two-cell type element, for example, one having an electrode for a pump cell for adjusting the oxygen concentration in the chamber layer as shown in FIG. 4 described later, a monitor sensor for monitoring the oxygen concentration in the chamber, etc. Examples include those equipped with electrodes.

【0021】次に,上記導出孔と上記拡散抵抗層との間
の拡散抵抗比は0.05〜0.4であることが好ましい
(請求項5)。導出孔の拡散抵抗をD1,拡散抵抗層の
拡散抵抗をD2とすると,拡散抵抗比は,{D2/(D
1+D2)}であり,この値が0.05〜0.4とな
る。D1,D2は上記二つの拡散抵抗がチャンバで形成
された拡散抵抗より十分大きい場合,以下のようにあら
わすことができる。 リーン側 Is=(D1+D2)ln{(1−PO2)/P} リッチ側 Is=(D1+D2)ln{(1−PM)/P} PO2は酸素分圧,PMは未燃焼ガスの分圧,ここに未燃
焼ガスとはH2,CnH,COなどである。)
Next, the diffusion resistance ratio between the lead-out hole and the diffusion resistance layer is preferably 0.05 to 0.4 (claim 5). When the diffusion resistance of the lead-out hole is D1 and the diffusion resistance of the diffusion resistance layer is D2, the diffusion resistance ratio is {D2 / (D
1 + D2)}, and this value is 0.05 to 0.4. When the above two diffusion resistances are sufficiently larger than the diffusion resistance formed in the chamber, D1 and D2 can be expressed as follows. Lean side Is = (D1 + D2) ln {(1-P O2 ) / P} Rich side Is = (D1 + D2) ln {(1-P M ) / P} P O2 is oxygen partial pressure, P M is unburned gas Partial pressure, where unburned gas is H 2 , C n H, CO, etc. )

【0022】拡散抵抗比を上述の範囲に保つことで以下
に示すようなこうかを得る。すなわち,拡散抵抗比とリ
ッチシフト量との間には,図6のような関係があり,こ
れによると拡散抵抗比が0.4以下においてはリッチシ
フト量は実使用上問題ないレベルである。しかしながら
0.4を超えるところでリッチシフト量が急激に上昇す
る。これは拡散抵抗比の増加のために拡散抵抗層を厚化
することで,拡散抵抗層への吸着水分量が増大し,リッ
チシフト量の増大につながったものと考えられる。以上
によって,拡散抵抗比を0.4以下とすることでリッチ
シフトを実使用上問題ないレベルに抑えるという効果を
得ることができる。
By keeping the diffusion resistance ratio within the above range, the following is obtained. That is, there is a relationship as shown in FIG. 6 between the diffusion resistance ratio and the rich shift amount. According to this, when the diffusion resistance ratio is 0.4 or less, the rich shift amount is at a level where there is no practical problem. However, when the value exceeds 0.4, the rich shift amount sharply increases. It is considered that this is because the amount of water adsorbed to the diffusion resistance layer increased by thickening the diffusion resistance layer in order to increase the diffusion resistance ratio, leading to an increase in the amount of rich shift. As described above, by setting the diffusion resistance ratio to 0.4 or less, it is possible to obtain the effect of suppressing the rich shift to a level at which there is no problem in practical use.

【0023】[0023]

【実施例】以下に,図面を用いて本発明の実施例につい
て説明する。 (実施例1)本例のガスセンサ素子1は,図1に示すご
とく,固体電解質体11と,該固体電解質体11に設け
た一対の被測定ガス側電極121と基準電極122とを
有し,上記被測定ガス側電極121と対面するチャンバ
140を有し,上記チャンバ140とガスセンサ素子1
の外部雰囲気とを結ぶ導出孔150を有する。そして,
導出孔150の外部雰囲気側の開口部151を覆うよう
に多孔質材からなる拡散抵抗層16を有し,かつ上記拡
散抵抗層16は直接外部雰囲気に対し露出し,その外面
にこれ以上他の拡散抵抗を備えた部材のないよう構成す
る。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) As shown in FIG. 1, a gas sensor element 1 of the present embodiment has a solid electrolyte body 11, a pair of measured gas side electrodes 121 and a reference electrode 122 provided on the solid electrolyte body 11, The gas sensor element 1 includes a chamber 140 facing the measured gas side electrode 121.
Has a lead-out hole 150 that connects with the external atmosphere. And
The diffusion resistance layer 16 made of a porous material is provided so as to cover the opening 151 on the external atmosphere side of the lead-out hole 150, and the diffusion resistance layer 16 is directly exposed to the external atmosphere, and the diffusion resistance layer 16 is further exposed to the external surface. It is configured so that there is no member having a diffusion resistance.

【0024】以下詳細に説明する。本例のガスセンサ素
子1は,ガスセンサに内蔵して自動車エンジンの排気系
に取り付けて使用され,排気ガス制御フィードバックシ
ステムの一部として用い,排気ガス内の酸素濃度から自
動車エンジン燃焼室のA/Fを検知するよう構成した素
子である。
The details will be described below. The gas sensor element 1 of this example is used by being built in a gas sensor and attached to an exhaust system of an automobile engine, and is used as a part of an exhaust gas control feedback system. From the oxygen concentration in the exhaust gas to the A / F of the automobile engine combustion chamber. Is an element configured to detect the.

【0025】図1に示すごとく,本例のガスセンサ素子
1は,板状で酸素イオン導電性のジルコニアよりなる固
体電解質体11と,該固体電界質体11の両面にそれぞ
れ設けた被測定ガス側電極121と基準電極122とよ
りなり,被測定ガス側電極121は固体電解質体11と
スペーサー14,導出孔形成板15により区切られた空
間であるチャンバ150に対面し,基準電極122は固
体電解質体11とスペーサ13とにより区切られた空間
である基準ガス室130に対面する。
As shown in FIG. 1, the gas sensor element 1 of this example is a plate-shaped solid electrolyte body 11 made of zirconia having oxygen ion conductivity, and the measured gas side provided on both sides of the solid electrolyte body 11. The electrode 121 to be measured includes a reference electrode 122. The gas-to-be-measured side electrode 121 faces a chamber 150 which is a space defined by the solid electrolyte body 11, the spacer 14 and the lead-out hole forming plate 15, and the reference electrode 122 is a solid electrolyte body. The reference gas chamber 130, which is a space partitioned by 11 and the spacer 13, is faced.

【0026】スペーサ13には通電により発熱する発熱
体190を設けたヒータ基板19が設けてある。この発
熱体190に本例のガスセンサ素子1使用時に通電し
て,ガスセンサ素子1を活性化温度となす。
The spacer 13 is provided with a heater substrate 19 provided with a heating element 190 which generates heat when energized. The heating element 190 is energized when the gas sensor element 1 of this example is used, and the gas sensor element 1 is brought to an activation temperature.

【0027】導出孔150を設けた導出孔形成板15に
多孔質セラミックよりなる拡散抵抗層16を積層する。
そして,拡散抵抗層16により導出孔15の開口部15
1を含む導出孔形成板15の全面が覆われる。また拡散
抵抗層16は直接素子の外部に露出しており,その表面
にはガスの流通を阻害するものはない。
The diffusion resistance layer 16 made of porous ceramic is laminated on the lead-out hole forming plate 15 having the lead-out holes 150.
The diffusion resistance layer 16 allows the opening 15 of the lead-out hole 15 to be formed.
The entire surface of the lead-out hole forming plate 15 including 1 is covered. Further, the diffusion resistance layer 16 is directly exposed to the outside of the element, and there is nothing that impedes the flow of gas on the surface thereof.

【0028】次に本例にかかるガスセンサ素子1の出力
タイムチャートを測定した。自動車エンジン実機の排気
系にガスセンサに組み付けた本例のガスセンサ素子1を
装着する。エンジンを始動することで排気ガスが発生
し,該排気ガスの温度とガスセンサ素子1に内蔵された
発熱体190に通電することによる加熱とで,素子1が
活性化温度に到達する。エンジン始動直後から20秒が
経過する時点までのガスセンサ素子1の出力をA/F換
算した線図を図2に記載した。なお,上記測定に先立っ
て,エンジンの排気系の湿度を95%以上に維持し,こ
の状態にガスセンサ素子1を24時間放置しておく。
Next, an output time chart of the gas sensor element 1 according to this example was measured. The gas sensor element 1 of this example mounted on a gas sensor is attached to the exhaust system of an actual vehicle engine. Exhaust gas is generated by starting the engine, and the element 1 reaches the activation temperature by the temperature of the exhaust gas and the heating by energizing the heating element 190 built in the gas sensor element 1. FIG. 2 shows a diagram in which the output of the gas sensor element 1 is converted to A / F from the time immediately after the engine is started until 20 seconds have elapsed. Prior to the above measurement, the humidity of the exhaust system of the engine is maintained at 95% or higher, and the gas sensor element 1 is left in this state for 24 hours.

【0029】図2における実施例1と記載した折線が本
例にかかるガスセンサ素子1の出力で,同図より明らか
であるが,エンジン始動から20秒の間にリッチシフト
は生じなかった。
The broken line described as Example 1 in FIG. 2 is the output of the gas sensor element 1 according to this example, which is clear from the figure, but no rich shift occurred within 20 seconds from the engine start.

【0030】また,後述する比較例1にかかるガスセン
サ素子9を用いて,上記に記載した要領で出力の時間変
化を測定した。その結果が比較(1)と符合をつけた折
線である。同図より明らかであるが,A部という非常に
大きなリッチシフトが8〜10秒で発生した。
Further, using the gas sensor element 9 according to Comparative Example 1 described later, the time change of the output was measured in the manner described above. The result is a broken line in agreement with the comparison (1). As is clear from the figure, a very large rich shift of part A occurred in 8 to 10 seconds.

【0031】また,後述する比較例1にかかるガスセン
サ素子9を設置したエンジンの排気系を,非常に乾燥し
た雰囲気(湿度20%以下)に24時間放置した後,上
記に記載した要領で出力の時間変化を測定した。その結
果が比較(2)と符合をつけた折線である。同図より明
らかであるが,乾燥しているため素子の内部に水分が殆
ど存在せず,リッチシフトが生じてない。
Also, after the exhaust system of the engine in which the gas sensor element 9 according to Comparative Example 1 to be described later is installed is left in a very dry atmosphere (humidity of 20% or less) for 24 hours, the output of the engine is changed as described above. The time change was measured. The result is a broken line in agreement with comparison (2). As is clear from the figure, since the element is dry, there is almost no water inside the element, and the rich shift does not occur.

【0032】次に本例にかかる作用効果について説明す
る。本例のガスセンサ素子1は被測定ガス側電極121
の対面するチャンバ140と外部雰囲気とを結ぶ導出孔
150を有する。導出孔150はその開口部151を覆
うように拡散抵抗層16を有し,該拡散抵抗層16は直
接外部雰囲気に対し露出し,その外面にこれ以上他の拡
散抵抗を備えた部材のない状態にある。
Next, the function and effect of this example will be described. The gas sensor element 1 of the present example is a measurement target gas side electrode 121.
Has a lead-out hole 150 connecting the chamber 140 facing each other and the external atmosphere. The lead-out hole 150 has a diffusion resistance layer 16 so as to cover the opening 151, the diffusion resistance layer 16 is directly exposed to the outside atmosphere, and there is no member having any other diffusion resistance on the outer surface thereof. It is in.

【0033】そのため,ガスセンサ素子1が長時間高湿
雰囲気に曝され,大量の水分が内部に入り込んだ状態で
活性化温度に達し,水分が水蒸気となった場合,水蒸気
は上記導出孔150,拡散抵抗層16を通じて速やかに
外部雰囲気に放出される。また,拡散抵抗層16を通過
する時点ではそれなりの拡散抵抗を受けるが,導出孔1
50の存在が,チャンバ140内での水蒸気分圧上昇を
抑制する。従って,本例にかかる構成のガスセンサ素子
1では,チャンバ140内の酸素分圧低下によるリッチ
シフトが生じ難くなる。
Therefore, when the gas sensor element 1 is exposed to a high-humidity atmosphere for a long time and reaches the activation temperature with a large amount of water entering inside, and the water becomes water vapor, the water vapor diffuses into the outlet hole 150 and diffuses. It is rapidly released to the outside atmosphere through the resistance layer 16. Also, although it receives a certain amount of diffusion resistance when passing through the diffusion resistance layer 16,
The presence of 50 suppresses an increase in the partial pressure of water vapor in the chamber 140. Therefore, in the gas sensor element 1 having the configuration according to this example, a rich shift due to a decrease in the oxygen partial pressure in the chamber 140 is less likely to occur.

【0034】また,本例にかかるガスセンサ素子1は拡
散抵抗層16を備えているため,被測定ガスの温度に依
存した出力変動を防止して,より正確なセンサ出力を得
ることができる。また,拡散抵抗層16を設けた後,切
削加工などにより上記拡散抵抗層をトリミングすること
でセンサ出力の微調整を計ることができる。この構成は
外部に調整回路などを設ける必要がないため,便利であ
る。
Further, since the gas sensor element 1 according to the present example is provided with the diffusion resistance layer 16, it is possible to prevent the output fluctuation depending on the temperature of the gas to be measured and obtain a more accurate sensor output. Further, after the diffusion resistance layer 16 is provided, the diffusion resistance layer is trimmed by cutting or the like so that the sensor output can be finely adjusted. This configuration is convenient because there is no need to provide an external adjustment circuit.

【0035】以上,本発明によれば,リッチシフトの生
じ難いガスセンサ素子を提供することができる。
As described above, according to the present invention, it is possible to provide a gas sensor element in which rich shift is unlikely to occur.

【0036】(実施例2)本例は図3に示すごとく,拡
散抵抗層を持たないガスセンサ素子1である。このガス
センサ素子1は固体電解質体11と,該固体電解質体1
1に設けた被測定ガス側電極121と基準電極122と
を有する。上記被測定ガス側電極121と対面するチャ
ンバ140を有し,上記チャンバ140とガスセンサ素
子1の外部雰囲気とを結び,チャンバ140内から外部
雰囲気へ直接開口する導出孔150を有する。その他詳
細な構成は実施例1と同様であり,作用効果も実施例1
と同様である。
(Embodiment 2) As shown in FIG. 3, this embodiment is a gas sensor element 1 having no diffusion resistance layer. The gas sensor element 1 includes a solid electrolyte body 11 and the solid electrolyte body 1
1 has a measured gas side electrode 121 and a reference electrode 122. It has a chamber 140 facing the measured gas side electrode 121, connects the chamber 140 to the external atmosphere of the gas sensor element 1, and has a lead-out hole 150 that directly opens from the chamber 140 to the external atmosphere. The other detailed configuration is the same as that of the first embodiment, and the function and effect are also the same as those of the first embodiment.
Is the same as.

【0037】(実施例3)本例は図4に示すごとく2セ
ル式のガスセンサ素子1である。このガスセンサ素子1
は実施例1と同様の構成であるが,導出孔形成板15を
固体電解質で構成し,導出孔150を取り囲むように一
対の電極123,124を設ける。この電極123,1
24と導出孔形成板15によってチャンバ140内の酸
素濃度を一定に保持するポンプセルを構成する。その他
詳細な構成は実施例1と同様であり,作用効果も実施例
1と同様である。
(Embodiment 3) This embodiment is a two-cell type gas sensor element 1 as shown in FIG. This gas sensor element 1
The configuration is the same as in Example 1, but the lead-out hole forming plate 15 is made of a solid electrolyte, and a pair of electrodes 123 and 124 are provided so as to surround the lead-out hole 150. This electrode 123,1
A pump cell for keeping the oxygen concentration in the chamber 140 constant is constituted by 24 and the lead-out hole forming plate 15. The other detailed configuration is the same as that of the first embodiment, and the operation and effect are also the same as those of the first embodiment.

【0038】(実施例4)本例は図5に示すごとく多数
の導出孔150を有するガスセンサ素子1である。この
ガスセンサ素子1は実施例1と同様の構成であるが,素
子の長手方向に一列に沿って5つの導出孔150を有す
る。その他詳細な構成は実施例1と同様である。
(Embodiment 4) This embodiment is a gas sensor element 1 having a large number of lead-out holes 150 as shown in FIG. This gas sensor element 1 has the same structure as that of the first embodiment, but has five lead-out holes 150 along a line in the longitudinal direction of the element. The other detailed configuration is similar to that of the first embodiment.

【0039】また,本例のガスセンサ素子1において,
水分(水蒸気)の抜ける道は5つの導出孔150及び拡
散抵抗層16である。5つの孔を設けることで,1つの
孔から抜ける水分(水蒸気)量を分散させて,抜ける時
間をより速くすることができる。従って,リッチシフト
がより生じ難くなる。その他詳細は実施例1と同様の作
用効果を有する。
In the gas sensor element 1 of this example,
The paths through which moisture (water vapor) escapes are the five outlet holes 150 and the diffusion resistance layer 16. By providing five holes, it is possible to disperse the amount of water (water vapor) that escapes from one hole and to speed up the escape time. Therefore, rich shift is less likely to occur. Other details have the same effects as those of the first embodiment.

【0040】(比較例1)図7に示すごとく,ガスセン
サ素子9は,下から順に,発熱体190を備えたヒータ
基板190,スペーサ13,固体電解質体11,スペー
サ14,拡散抵抗層16,そしてガス遮閉層91を積層
した素子である(特開2000−275215号)。チ
ャンバ140に侵入した水分(水蒸気)は拡散抵抗層1
6を経由し,ガス遮閉層91を避けて外部に出て行く。
ガス遮閉層91は素子の積層方向の面を覆うように設け
てあるため,水分(水蒸気)は素子の側面側から出て行
くことになり,水蒸気の出て行く際の経路が比較的長
い。従って,リッチシフトが生じやすい。
(Comparative Example 1) As shown in FIG. 7, the gas sensor element 9 comprises, in order from the bottom, a heater substrate 190 provided with a heating element 190, a spacer 13, a solid electrolyte body 11, a spacer 14, a diffusion resistance layer 16, and This is an element in which a gas blocking layer 91 is laminated (Japanese Patent Laid-Open No. 2000-275215). The moisture (water vapor) that has entered the chamber 140 is the diffusion resistance layer 1
It goes out through 6 avoiding the gas barrier layer 91.
Since the gas blocking layer 91 is provided so as to cover the surface of the element in the stacking direction, water (water vapor) will flow out from the side surface of the element, and the path for water vapor to exit will be relatively long. . Therefore, rich shift is likely to occur.

【0041】(比較例2)図8に示すごとく,ガスセン
サ素子90は,図1に示した本発明のガスセンサ素子1
と同様の構成であり,拡散抵抗層16の積層方向と直交
する表面に対しさらにピンホール920を設けた板92
を設けた素子である(実公平7−23735号)。ピン
ホール920は拡散抵抗を備えるため,ここでチャンバ
140から外部に出て行く水分(水蒸気)は拡散抵抗を
受ける。すなわち,導出孔150,拡散抵抗層16に続
いてピンホール920という経路を通じて水分(水蒸
気)は外部に出て行く。そのため,本発明と同様の導出
孔150を備えていても,リッチシフトを防止すること
はできない。ピンホール920によって,水分(水蒸
気)が出て行くことが阻害されるためである。
Comparative Example 2 As shown in FIG. 8, the gas sensor element 90 is the gas sensor element 1 of the present invention shown in FIG.
A plate 92 having the same structure as that of FIG.
Is an element provided with (Japanese Utility Model Publication No. 7-23735). Since the pinhole 920 has a diffusion resistance, the moisture (water vapor) that exits from the chamber 140 here receives the diffusion resistance. That is, moisture (water vapor) goes out through the route of the lead-out hole 150, the diffusion resistance layer 16 and the pinhole 920. Therefore, even if the same lead-out hole 150 as in the present invention is provided, the rich shift cannot be prevented. This is because the pinhole 920 prevents water (water vapor) from flowing out.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における,ガスセンサ素子の断面説明
図。
FIG. 1 is an explanatory cross-sectional view of a gas sensor element according to a first embodiment.

【図2】実施例1における,本例や比較例にかかるガス
センサ素子の経過時間とA/Fとの関係を示す線図。
FIG. 2 is a diagram showing a relationship between elapsed time and A / F of the gas sensor element according to the present example and the comparative example in Example 1.

【図3】実施例2における,拡散抵抗層を持たないガス
センサ素子の断面説明図。
FIG. 3 is an explanatory cross-sectional view of a gas sensor element having no diffusion resistance layer according to the second embodiment.

【図4】実施例3における,2セル式のガスセンサ素子
の断面説明図。
FIG. 4 is an explanatory cross-sectional view of a 2-cell type gas sensor element according to the third embodiment.

【図5】実施例4における,多数の導出孔を有するガス
センサ素子の説明図。
FIG. 5 is an explanatory diagram of a gas sensor element having a large number of lead-out holes according to the fourth embodiment.

【図6】拡散抵抗比とリッチシフト量との関係を示す線
図。
FIG. 6 is a diagram showing a relationship between a diffusion resistance ratio and a rich shift amount.

【図7】比較例1における,チャンバに拡散抵抗層,ガ
ス遮閉層を積層したガスセンサ素子の説明図。
FIG. 7 is an explanatory diagram of a gas sensor element in which a diffusion resistance layer and a gas blocking layer are stacked in the chamber in Comparative Example 1.

【図8】比較例2における,拡散抵抗層に拡散抵抗を有
するピンホールを備えた板を積層したガスセンサ素子の
説明図。
FIG. 8 is an explanatory view of a gas sensor element in which a plate having pinholes having diffusion resistance is laminated on a diffusion resistance layer in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1...ガスセンサ素子, 11...固体電解質体, 121...被測定ガス側電極, 122...基準電極, 140...チャンバ, 150...導出孔, 16...拡散抵抗層, 1. . . Gas sensor element, 11. . . Solid electrolyte body, 121. . . Measured gas side electrode, 122. . . Reference electrode, 140. . . Chamber, 150. . . Outlet hole, 16. . . Diffusion resistance layer,

フロントページの続き (72)発明者 中江 誠 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 藤井 並次 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内Continued front page    (72) Inventor Makoto Nakae             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Nami Fujii             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質体と,該固体電解質体に設け
た被測定ガス側電極と基準電極とを有し,上記被測定ガ
ス側電極と対面するチャンバを有し,上記チャンバとガ
スセンサ素子の外部雰囲気とを結び,チャンバ内から直
接外部雰囲気へつながる導出孔を有することを特徴とす
るガスセンサ素子。
1. A solid electrolyte body, a measurement gas side electrode and a reference electrode provided on the solid electrolyte body, and a chamber facing the measurement gas side electrode. The chamber and the gas sensor element are provided. A gas sensor element characterized by having a lead-out hole which is connected to an external atmosphere and which is directly connected from the chamber to the external atmosphere.
【請求項2】 固体電解質体と,該固体電解質体に設け
た被測定ガス側電極と基準電極とを有し,上記被測定ガ
ス側電極と対面するチャンバを有し,上記チャンバとガ
スセンサ素子の外部雰囲気とを結ぶ導出孔を有し,該導
出孔の外部雰囲気側の開口部を覆うように多孔質材から
なる拡散抵抗層を有し,かつ上記拡散抵抗層は直接外部
雰囲気に対し露出し,その外面にこれ以上他の拡散抵抗
を備えた部材のないよう構成することを特徴とするガス
センサ素子。
2. A solid electrolyte body, a gas to be measured side electrode and a reference electrode provided on the solid electrolyte body, and a chamber facing the gas to be measured side electrode. A diffusion resistance layer made of a porous material is provided so as to cover the opening on the external atmosphere side of the extraction hole, and the diffusion resistance layer is directly exposed to the external atmosphere. , A gas sensor element characterized in that the outer surface of the gas sensor element is configured so that there is no other member having a diffusion resistance.
【請求項3】 請求項1または2において,上記導出孔
を複数備えることを特徴とするガスセンサ素子。
3. The gas sensor element according to claim 1 or 2, further comprising a plurality of the lead-out holes.
【請求項4】 請求項1〜3のいずれか1項において,
ガスセンサ素子は2セル式であることを特徴とするガス
センサ素子。
4. The method according to claim 1, wherein
The gas sensor element is a two-cell type gas sensor element.
【請求項5】 請求項2〜4のいずれか1項において,
上記導出孔と上記拡散抵抗層との間の拡散抵抗比は0.
05〜0.4であることを特徴とするガスセンサ素子。
5. The method according to any one of claims 2 to 4,
The diffusion resistance ratio between the lead-out hole and the diffusion resistance layer is 0.
The gas sensor element is characterized in that it is 05 to 0.4.
JP2002101539A 2002-04-03 2002-04-03 Gas sensor element Expired - Fee Related JP3867610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101539A JP3867610B2 (en) 2002-04-03 2002-04-03 Gas sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101539A JP3867610B2 (en) 2002-04-03 2002-04-03 Gas sensor element

Publications (2)

Publication Number Publication Date
JP2003294691A true JP2003294691A (en) 2003-10-15
JP3867610B2 JP3867610B2 (en) 2007-01-10

Family

ID=29241865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101539A Expired - Fee Related JP3867610B2 (en) 2002-04-03 2002-04-03 Gas sensor element

Country Status (1)

Country Link
JP (1) JP3867610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112717A (en) * 2008-11-04 2010-05-20 Denso Corp Method for manufacturing gas sensor element, gas sensor element manufactured using the same and gas sensor having gas sensor element built therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112717A (en) * 2008-11-04 2010-05-20 Denso Corp Method for manufacturing gas sensor element, gas sensor element manufactured using the same and gas sensor having gas sensor element built therein

Also Published As

Publication number Publication date
JP3867610B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
US10605763B2 (en) Method of reducing output degradation of gas sensor
US8131451B2 (en) Air-fuel ratio sensor and control apparatus for internal combustion engine
JP6288011B2 (en) Internal combustion engine
JP6447568B2 (en) Nitrogen oxide sensor
JP3785024B2 (en) Catalyst temperature detector
JP3832437B2 (en) Gas sensor element
JPWO2010041585A1 (en) Exhaust sensor activity determination device, control device for internal combustion engine
WO2020145042A1 (en) Gas concentration detection device
JP2005121003A (en) Malfunction detecting device for air-fuel ratio sensor
JP4811131B2 (en) Exhaust gas sensor control device
JP6551314B2 (en) Gas sensor controller
JP2004037100A (en) Gas sensor element
JP3973851B2 (en) Gas sensor element
JP2008138569A (en) Air-fuel ratio control device of internal combustion engine
JP2004132960A (en) Gas sensor element
JP2003294691A (en) Gas sensor element
JP2007248113A (en) Gas concentration detector
JPH1082760A (en) Method for controlling air-fuel ratio
JP5559960B2 (en) NOx sensor and its degradation suppression recovery control device
JP2004251627A (en) Gas concentration detector of internal combustion engine
JP2005337782A (en) Particulate material detector
JP6455389B2 (en) Sensor control device
JP6733648B2 (en) Catalyst deterioration detector
JPH11270382A (en) Air-fuel ratio control device of internal combustion engine
JP2009127552A (en) Nox sensor correction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees