JP2003294433A - Method for synchronizing coordinate systems of plural three dimensional shape measuring devices - Google Patents

Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Info

Publication number
JP2003294433A
JP2003294433A JP2002093777A JP2002093777A JP2003294433A JP 2003294433 A JP2003294433 A JP 2003294433A JP 2002093777 A JP2002093777 A JP 2002093777A JP 2002093777 A JP2002093777 A JP 2002093777A JP 2003294433 A JP2003294433 A JP 2003294433A
Authority
JP
Japan
Prior art keywords
dimensional shape
shape measuring
measured
coordinate
measuring devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093777A
Other languages
Japanese (ja)
Inventor
Atsutada Nakatsuji
敦忠 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2002093777A priority Critical patent/JP2003294433A/en
Publication of JP2003294433A publication Critical patent/JP2003294433A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synchronizing origins and axes of two or more three-dimensional shape measuring devices when each of those measuring devices is used for shape measurement. <P>SOLUTION: In the method, a known-shaped solid body for calibration 120 (a plane board with a black line marked on its surface) is measured by using a plurality of three-dimensional shape measuring devices 103, 104, 105, 106 to obtain a fitting plane equation for each three-dimensional shape measuring device. Then both a rotational matrix R113 and a parallel vector T112 for providing coordinate conversion to the origins/coordinate axes of each fitting plane equation are obtained to synchronize coordinate systems 110, 111 comprising a plurality of origins/coordinate axes of three-dimensional shape measuring devices with one coordinate system of a three-dimensional shape measuring device. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の三次元形状
計測装置を用いて被測定物の計測を行う場合に、各計測
装置の原点と座標軸とからなる座標系を一致させる方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of aligning a coordinate system composed of an origin of each measuring device and a coordinate axis when measuring an object to be measured using a plurality of three-dimensional shape measuring devices.

【0002】[0002]

【従来の技術】三次元形状を非接触で計測する方法とし
て、縞走査を用いた投影法が知られている。この方法
は、概略以下のようにして行われる。正弦波状に濃淡値
が印刷されている格子を通して、光源から物体に対して
正弦波状の輝度分布を持つ光パターンを投影する。そし
て、物体上の縞画像を上記の光源とは別のところに設置
されたカメラで撮影する。物体を静止させたままで、格
子を縞と直角方向へと、波長の1/NずつN回ずらしな
がら画像を撮影して行く。撮影された画像は、物体に投
影された正弦波光パターンが2π/Nラジアンずつ進行
して行くように見える。計測点の輝度値を投影方向から
計測し、各輝度値より格子パターンの位相値を計算す
る。計測点の高さ変位に応じて格子パターンの位相が変
調するため、この位相の変調量を計算し、光学装置の幾
何関係式に代入することにより、物体の高さ変位量を計
算し、三次元形状を求める。
2. Description of the Related Art A projection method using fringe scanning is known as a method for measuring a three-dimensional shape in a non-contact manner. This method is generally performed as follows. A light pattern having a sinusoidal luminance distribution is projected from a light source onto an object through a grid in which grayscale values are printed in a sinusoidal shape. Then, a striped image on the object is photographed by a camera installed in a place different from the above light source. With the object still, the image is taken while shifting the grating in the direction perpendicular to the stripes N times by 1 / N of the wavelength. In the captured image, the sine wave light pattern projected on the object appears to advance by 2π / N radians. The brightness value at the measurement point is measured from the projection direction, and the phase value of the lattice pattern is calculated from each brightness value. Since the phase of the grating pattern is modulated according to the height displacement of the measurement point, calculate the phase modulation amount and substitute it into the geometrical relational expression of the optical device to calculate the height displacement amount of the object. Find the original shape.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の計測方
法では、被測定物の裏側を計測することができない。ま
た、被測定物が大きい場合には、1台の三次元形状計測
装置では計測できないこともある。このような場合に
は、表裏や上下左右等に複数の三次元形状計測装置を配
置して計測することになる。ここで、各三次元形状計測
装置は、独自の原点と座標軸で計測しているので、各装
置の計測データを単純につなぎ合わせることができず、
各計測装置の原点と座標軸とからなる座標系を一致させ
る必要がある。
However, the above measuring method cannot measure the back side of the object to be measured. In addition, when the object to be measured is large, it may not be possible to perform measurement with one three-dimensional shape measuring device. In such a case, a plurality of three-dimensional shape measuring devices are arranged on the front and back sides, and vertically and horizontally to measure. Here, each three-dimensional shape measuring device measures with its own origin and coordinate axis, so it is not possible to simply connect the measurement data of each device,
It is necessary to match the coordinate system consisting of the origin of each measuring device and the coordinate axis.

【0004】そこで、本発明は、複数台の三次元形状測
定の原点や座標軸といった座標系を一致させ、複数の三
次元形状計測装置の測定値を統合し、被測定物の裏側を
計測したり、被測定物が大きい場合でも三次元形状を計
測することを可能とする方法を提供することを目的とす
る。
Therefore, according to the present invention, the coordinate systems such as the origins and coordinate axes of a plurality of three-dimensional shape measuring devices are made to coincide with each other, and the measurement values of a plurality of three-dimensional shape measuring devices are integrated to measure the back side of the object to be measured. An object of the present invention is to provide a method capable of measuring a three-dimensional shape even when the object to be measured is large.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、複数の三次元形状計測装置
の座標系を一致させる方法であって、各々独自の原点と
座標軸とからなる座標系を有する複数の三次元形状計測
装置から計測可能な位置に、一の被測定面または相対位
置が既知の2以上の被測定面を有する校正用立体物を配
置し、各三次元形状計測装置によって前記被測定面上の
異なる3点以上について計測して各点の三次元位置を求
め、計測した値から被測定面の当てはめ面方程式を算出
し、各当てはめ面の対象となった被測定面相互間の位置
関係から一の当てはめ面方程式の座標系により他の当て
はめ面方程式の座標変換を行うことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a method of matching the coordinate systems of a plurality of three-dimensional shape measuring apparatuses, each of which has its own origin and coordinate axis. A three-dimensional shape for calibration is arranged at a position that can be measured by a plurality of three-dimensional shape measuring devices each having a coordinate system such that one surface to be measured or two or more surfaces to be measured whose relative positions are known is calibrated. The measuring device measures three or more different points on the surface to be measured to obtain the three-dimensional position of each point, calculates the fitting surface equation of the surface to be measured from the measured values, and determines the target surface of each fitting surface. It is characterized in that the coordinate system of one fitting surface equation is used to perform coordinate conversion of another fitting surface equation from the positional relationship between the measurement surfaces.

【0006】そして、請求項1記載の発明によれば、1
台の三次元形状計測装置で計測できない大きな対象物
や、測定対象物の裏側の形状を複数台の三次元形状計測
装置で計測する場合に、全ての原点・座標系を一致させ
ることができ、三次元形状を高速に計測することが可能
になる。また、1台の三次元形状計測装置では高精度に
計測することが難しい形状の複雑な部分を複数台の三次
元形状計測装置で計測することで、より高精度に対象物
の形状データを求めることが可能となる。
According to the invention of claim 1, 1
When measuring a large object that cannot be measured with a three-dimensional shape measuring device on a stand or the shape of the back side of the measuring object with multiple three-dimensional shape measuring devices, all origins and coordinate systems can be matched, It becomes possible to measure a three-dimensional shape at high speed. In addition, by measuring the complicated portion of the shape that is difficult to measure with high accuracy with one 3D shape measuring device with multiple 3D shape measuring devices, the shape data of the object can be obtained with higher accuracy. It becomes possible.

【0007】請求項2記載の発明は、請求項1記載の複
数の三次元形状計測装置の座標系を一致させる方法にお
いて、前記当てはめ面方程式が、前記3点以上の計測デ
ータについて、計測誤差を最小にすることにより求めら
れることを特徴とする。
According to a second aspect of the present invention, in the method of matching the coordinate systems of the plurality of three-dimensional shape measuring apparatus according to the first aspect, the fitting surface equation is used to calculate a measurement error for the measurement data of the three or more points. It is characterized by being obtained by minimizing it.

【0008】請求項2記載の発明によれば、3点以上の
計測データについて、計測誤差が最小になることにより
前記当てはめ面方程式を求めるため、複数台の三次元形
状計測装置でより高精度に対象物の形状データを求める
ことが可能となる。
According to the second aspect of the present invention, since the fitting surface equation is obtained by minimizing the measurement error for the measurement data of three or more points, a plurality of three-dimensional shape measuring devices can achieve higher accuracy. It becomes possible to obtain the shape data of the object.

【0009】請求項3記載の発明は、請求項2記載の複
数の三次元形状計測装置の座標系を一致させる方法の好
ましい一形態として、前記各三次元形状計測装置が計測
した各点の三次元位置の計測値について、誤差の二乗和
の極値から前記当てはめ面方程式を求めることを特徴と
する。
According to a third aspect of the present invention, as a preferred form of the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to the second aspect, the cubic of each point measured by each of the three-dimensional shape measuring apparatuses is used. With respect to the measured value at the original position, the fitting surface equation is obtained from the extreme value of the sum of squared errors.

【0010】請求項4記載の発明は、請求項1、2また
は3記載の複数の三次元形状計測装置の座標系を一致さ
せる方法において、前記被測定面が平面で、当てはめ面
が当てはめ平面となることを特徴とする。
According to a fourth aspect of the present invention, in the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatus according to the first, second or third aspect, the measured surface is a plane and the fitting surface is a fitting plane. It is characterized by

【0011】請求項4記載の発明によれば、被測定面を
平面としたため、平行な表裏の平面を計測すればよく、
また、平面度も工作機械により高精度に製作できるの
で、各三次元形状計測装置の原点・座標軸を高精度で一
致させることができる。また、校正用立体物の作成が容
易で安価にできる。
According to the fourth aspect of the invention, since the surface to be measured is a flat surface, it suffices to measure parallel front and back flat surfaces.
Further, since the flatness can be produced with high precision by the machine tool, the origin and coordinate axes of each three-dimensional shape measuring device can be aligned with high precision. In addition, it is easy and inexpensive to make a three-dimensional object for calibration.

【0012】請求項5記載の発明は、請求項1乃至4の
いずれかに記載の複数の三次元形状計測装置の座標系を
一致させる方法の好ましい一形態として、前記座標変換
を、回転行列と平行ベクトルを求めることにより行うこ
とを特徴とする。
According to a fifth aspect of the present invention, as a preferred form of the method for matching the coordinate systems of the plurality of three-dimensional shape measuring apparatuses according to any one of the first to fourth aspects, the coordinate transformation is performed by using a rotation matrix. It is characterized by performing the parallel vector.

【0013】[0013]

【発明の実施の形態】次に、本発明にかかる複数の三次
元形状計測装置の座標系を一致させる方法の実施の形態
の具体例について図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, specific examples of embodiments of a method for matching the coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to the present invention will be described in detail with reference to the drawings.

【0014】図1は、三次元形状計測装置の外観を示す
斜視図である。三次元形状計測装置は、2つのカメラ1
00と、2つのプロジェクタ101とから構成されてい
る。
FIG. 1 is a perspective view showing the appearance of a three-dimensional shape measuring apparatus. The three-dimensional shape measuring device has two cameras 1.
00 and two projectors 101.

【0015】そして、これらのプロジェクタ101より
正弦波状の縞画像を、対象となる立体物に照射し、その
立体物を2つのカメラ100により撮影することで立体
物の三次元計測を行っている。その際、対象物の空間位
置の原点(O)と座標軸X、Y、Zとからなる座標系1
02を用いて測定物の形状を示すことになる。
Then, the three-dimensional measurement of the three-dimensional object is performed by irradiating the three-dimensional object as a target with the sinusoidal striped image from these projectors 101 and photographing the three-dimensional object with the two cameras 100. At that time, a coordinate system 1 including the origin (O) of the spatial position of the object and the coordinate axes X, Y, and Z.
02 will be used to indicate the shape of the measured object.

【0016】このような構成の三次元形状計測装置を複
数台配置して、測定対象物の三次元計測を行う。図2
は、4台の三次元形状計測装置103、104、10
5、106を用いた計測装置の外観を示す斜視図であ
る。この装置では、図1に示した三次元形状計測装置を
上下左右に1台ずつ設置している。各三次元形状計測装
置は、剛性の大きいフレームに固定されている。
A plurality of three-dimensional shape measuring devices having such a configuration are arranged to perform three-dimensional measurement of the measuring object. Figure 2
Are four three-dimensional shape measuring devices 103, 104, 10
It is a perspective view which shows the external appearance of the measuring device using 5,106. In this apparatus, the three-dimensional shape measuring apparatus shown in FIG. 1 is installed one each in the vertical and horizontal directions. Each three-dimensional shape measuring device is fixed to a frame having high rigidity.

【0017】測定対象物107は、図2に示しているよ
うに、各装置の略々中心に位置し、左上部の三次元形状
計測装置104が、測定対象物107の左上部を計測
し、左下部の三次元形状計測装置103が、測定対象物
107の左下部を計測する。同様に、三次元形状計測装
置106が、測定対象物107の右上部を計測し、三次
元形状計測装置105が、測定対象物107の右下部を
計測する。従って、この4台の三次元形状計測装置で測
定対象物107の略々全周を計測できる構成になってい
る。
As shown in FIG. 2, the measuring object 107 is located substantially at the center of each device, and the three-dimensional shape measuring device 104 at the upper left portion measures the upper left portion of the measuring object 107. The lower left three-dimensional shape measuring apparatus 103 measures the lower left portion of the measurement object 107. Similarly, the three-dimensional shape measuring device 106 measures the upper right part of the measuring object 107, and the three-dimensional shape measuring device 105 measures the lower right part of the measuring object 107. Accordingly, the four three-dimensional shape measuring devices can measure almost the entire circumference of the measuring object 107.

【0018】計測動作は、まず、三次元形状計測装置1
03から計測を開始して、対象となる測定対象物107
の左下部を計測する。順に、他の三次元形状計測装置1
04、105、106で同様の計測を行い、各装置で計
測された計測データが図示しないパソコン等に4台分出
力される。
The measuring operation is as follows. First, the three-dimensional shape measuring apparatus 1
The measurement object 107 to be measured is started from 03.
Measure the lower left part of. In order, another three-dimensional shape measuring device 1
The same measurement is performed at 04, 105, and 106, and the measurement data measured by each device is output to a personal computer (not shown) for four units.

【0019】しかし、各三次元形状計測装置103、1
04、105、106には、測定対象物107の三次元
計測を行うための原点・座標軸からなる座標系が存在す
る。これらの原点と座標軸は、計測装置一台毎に固有の
ものであり、計測装置が異なれば原点・座標軸も異なっ
ている。そのため、各4台の三次元形状計測装置の計測
データを統合させることができない。そこで、各三次元
形状計測装置の原点・座標軸に座標変換を施し、各三次
元形状計測装置の原点・座標軸を一致させることが必要
となる。
However, each three-dimensional shape measuring device 103, 1
Each of 04, 105, and 106 has a coordinate system including an origin and coordinate axes for performing three-dimensional measurement of the measurement object 107. These origins and coordinate axes are unique to each measuring device, and different measuring devices have different origins and coordinate axes. Therefore, the measurement data of each of the four three-dimensional shape measuring devices cannot be integrated. Therefore, it is necessary to perform coordinate conversion on the origin / coordinate axes of each three-dimensional shape measuring device so that the origin / coordinate axes of each three-dimensional shape measuring device match.

【0020】図3は、座標系110から座標系111へ
と座標変換をする原理を示す図である。2台の三次元形
状計測装置において、一方の三次元形状計測装置の座標
系110上の点P(X1、Y1、Z1)が、他方の三次
元形状計測装置の座標系111上では(X2、Y2、Z
2)になるとする。これらをベクトル表示すれば、ベク
トルr1=(X1、Y1、Z1)、r2=(X2、Y
2、Z2)となる。図のT112は平行ベクトルを示
し、R113は回転行列を示す。図3から、以下の式が
成り立つ。
FIG. 3 is a diagram showing the principle of coordinate conversion from the coordinate system 110 to the coordinate system 111. In two three-dimensional shape measuring devices, a point P (X1, Y1, Z1) on the coordinate system 110 of one three-dimensional shape measuring device is (X2, Y2, Z
2). If these are displayed as vectors, vectors r1 = (X1, Y1, Z1), r2 = (X2, Y
2, Z2). T112 in the figure indicates a parallel vector, and R113 indicates a rotation matrix. From FIG. 3, the following equation holds.

【0021】[0021]

【数1】 上記の式(1)から、座標系111を座標系110に一
致させるには、座標軸を回転させる3×3の行列R11
3と、原点を移動させる平行ベクトルT112を求める
ことに帰着する。
[Equation 1] From the above equation (1), in order to match the coordinate system 111 with the coordinate system 110, a 3 × 3 matrix R11 that rotates the coordinate axes is used.
3 and the parallel vector T112 for moving the origin.

【0022】この回転行列R113と平行ベクトルT1
12を求めるため、図4に示す校正用立体物としての平
面板120を図5で示す位置に設置し、その平面板12
0を4台の三次元形状計測装置103〜106で各々計
測を行う。
This rotation matrix R113 and parallel vector T1
In order to obtain 12, the flat plate 120 as the three-dimensional object for calibration shown in FIG. 4 is installed at the position shown in FIG.
0 is measured by each of the four three-dimensional shape measuring devices 103 to 106.

【0023】図4に示す平面板120は、ベース122
に肌色の塗料を塗布し、その上に黒色の格子状のライン
121を塗装したもので、全く同じものが平面板120
の両面に塗装されている。ライン121の位置も表裏で
一致するようにしている。
The flat plate 120 shown in FIG.
A flesh-colored paint is applied on the surface of the flat plate 120, and a black grid line 121 is applied on it.
Both sides are painted. The positions of the lines 121 are also matched on the front and back.

【0024】まず、回転行列R113を求めるための動
作から説明する。三次元形状計測装置104で、図4に
示す平面板120の一方の面を被測定面として、この面
上の3点を計測する。計測データは、第1点(x1、y
1、z1)、第2点(x2、y2、z2)、第3点(x
3、y3、z3)のように各座標値として求められる。
これら3点は、同一直線上には並ばないように選ばれて
いる。3点の座標が求められれば、平面が決まるので、
計測している平面板の当てはめ平面方程式を求めること
ができる。
First, the operation for obtaining the rotation matrix R113 will be described. The three-dimensional shape measuring device 104 measures one surface of the plane plate 120 shown in FIG. 4 as a surface to be measured, and measures three points on this surface. The measurement data is the first point (x1, y
1, z1), second point (x2, y2, z2), third point (x
3, y3, z3) as coordinate values.
These three points are chosen so that they do not line up on the same straight line. If the coordinates of three points are obtained, the plane is determined.
The fitting plane equation of the plane plate being measured can be obtained.

【0025】ここで、当てはめ平面方程式は、以下のよ
うにして求められる。平面の方程式の法線ベクトルを
(α、β、−1)とした場合
Here, the fitting plane equation is obtained as follows. When the normal vector of the plane equation is (α, β, -1)

【0026】[0026]

【数2】 と表すことができる。この式(2)に、計測した被測定
面の上記3点の座標、第1点(x1、y1、z1)、第
2点(x2、y2、z2)、第3点(x3、y3、z
3)を代入すれば、3つの式(2)ができ、これらから
α、β、dの値を求めることができる。
[Equation 2] It can be expressed as. In this equation (2), the coordinates of the above-mentioned three points on the measured surface, the first point (x1, y1, z1), the second point (x2, y2, z2), and the third point (x3, y3, z).
By substituting 3), three equations (2) can be created, and the values of α, β, and d can be obtained from these.

【0027】しかし、上記の計測した座標の値には、計
測誤差が含まれているので、算出されたα、β、dの値
は正確なものではない。そこで、計測誤差の二乗和Eを
求める。
However, since the measured coordinate values include a measurement error, the calculated values of α, β and d are not accurate. Therefore, the square sum E of the measurement error is obtained.

【0028】誤差の二乗和Eは、The sum of squared errors E is

【0029】[0029]

【数3】 となる。そして、誤差が最も小さくなるときにこの関数
が極値を持つ条件から、最終的に当てはめ平面の平面方
程式の未知数α、β、dは以下の行列を解くことにより
求められる。
[Equation 3] Becomes Then, from the condition that this function has an extreme value when the error becomes the smallest, the unknowns α, β, and d of the plane equation of the fitting plane are finally obtained by solving the following matrix.

【0030】[0030]

【数4】 この1次元連立方程式の数値解析を行い、未知数α、
β、dを決定し、これにより、当てはめ平面の方程式を
決定する。
[Equation 4] Numerical analysis of this one-dimensional simultaneous equation
Determine β, d, and thereby the equation of the fitting plane.

【0031】図6は、2台の三次元形状計測装置104
と106とで平面板120を表裏両面を被測定面として
計測する状態を示す図で、(a)は斜視図、(b)は三
次元形状計測装置104の当てはめ平面の図、(c)は
三次元形状計測装置106の当てはめ平面の図である。
上述のようにして装置104から計測した当てはめ平面
130の方程式と装置106から計測した当てはめ平面
131の方程式を求めることができる。
FIG. 6 shows two three-dimensional shape measuring devices 104.
6A and 6B are views showing a state in which the flat plate 120 is measured with both front and back surfaces as the surfaces to be measured. FIG. 6A is a perspective view, FIG. 6B is a view of a fitting plane of the three-dimensional shape measuring apparatus 104, and FIG. It is a figure of the fitting plane of the three-dimensional shape measuring device 106.
The equation of the fitting plane 130 measured from the device 104 and the equation of the fitting plane 131 measured from the device 106 can be determined as described above.

【0032】各々の単位法線ベクトルをn1、n2とし
た場合、回転行列Rは、次式
When the unit normal vectors are n1 and n2, the rotation matrix R is

【0033】[0033]

【数5】 から求まる。[Equation 5] Can be obtained from

【0034】次に、平行ベクトルTの求め方について述
べる。図7は、2台の三次元形状計測装置104と10
6とで平面板120の表裏の対応点を計測する状態を示
す図で、(a)は斜視図、(b)は平行ベクトルTの求
め方を示す図である。図4に示す平面板120の表裏に
肌色をベース122として、黒色のライン121が塗装
されている。この黒色のラインは、縦ラインと横ライン
があり、交点が複数存在する。そこで図7に示すよう
に、ある交点をPとして、その交点の裏面に対応する交
点をP’とする。
Next, how to obtain the parallel vector T will be described. FIG. 7 shows two three-dimensional shape measuring devices 104 and 10.
6A and 6B are views showing a state in which corresponding points on the front and back of the plane plate 120 are measured by 6 and 6, in which FIG. 6A is a perspective view and FIG. Black lines 121 are painted on the front and back of the flat plate 120 shown in FIG. This black line has a vertical line and a horizontal line, and has a plurality of intersections. Therefore, as shown in FIG. 7, an intersection is defined as P, and an intersection corresponding to the back surface of the intersection is defined as P ′.

【0035】ここで、三次元形状計測装置104の原点
132から交点PへのベクトルをT1、三次元形状計測
装置106の原点133から交点P’へのベクトルをT
3、交点Pから交点P’をT2とすると、求める平行ベ
クトルT(装置106の原点から装置104の原点へ)
は、
Here, the vector from the origin 132 of the three-dimensional shape measuring device 104 to the intersection point P is T1, and the vector from the origin 133 of the three-dimensional shape measuring device 106 to the intersection point P'is T.
3. If the intersection point P to the intersection point P ′ is T2, the parallel vector T to be obtained (from the origin of the device 106 to the origin of the device 104)
Is

【0036】[0036]

【数6】 となる。[Equation 6] Becomes

【0037】また、T1、T3は、交点Pと交点P’の
三次元座標が計測データより解っているので、求めるこ
とができる。但し、計測の誤差を小さくするため、交点
Pと交点P’の三次元座標が計測データを通過し、図6
に示す当てはめ平面方程式の法線ベクトルと同じ向きを
持つ直線を求め、その直線と当てはめ平面との交点を解
析上の点Paと点Pa’の三次元座標として求める。
Further, T1 and T3 can be obtained because the three-dimensional coordinates of the intersection P and the intersection P'are known from the measurement data. However, in order to reduce the measurement error, the three-dimensional coordinates of the intersection P and the intersection P ′ pass the measurement data, and
A straight line having the same direction as the normal vector of the fitting plane equation shown in is obtained, and the intersection of the straight line and the fitting plane is obtained as the three-dimensional coordinates of points Pa and Pa ′ in the analysis.

【0038】従って、解析上の点Paと点Pa’からT
1、T3を求めることができる。ところで、ベクトルT
2の方向は、図6で示す当てはめ平面方程式の法線ベク
トルから、大きさは平面板の板厚より求められ、ベクト
ルT2を求めることができる。よって、これらより、ベ
クトルT1、T2、T3が求められ、式(6)からベク
トルTが求められる。
Therefore, from the analytical point Pa and the point Pa 'to T
1, T3 can be obtained. By the way, the vector T
The direction of 2 is obtained from the normal vector of the fitted plane equation shown in FIG. 6, and the size is obtained from the thickness of the plane plate, and the vector T2 can be obtained. Therefore, the vectors T1, T2, and T3 are obtained from these, and the vector T is obtained from the equation (6).

【0039】以上によって、三次元形状計測装置106
について三次元形状計測装置104座標系へ座標変換す
ることができる。同様にして、三次元形状計測装置10
5について三次元形状計測装置104座標系へ座標変換
し、三次元形状計測装置103について三次元形状計測
装置104座標系へ座標変換し、4台すべての座標系を
三次元形状計測装置104の座標と一致させることが可
能となる。
As described above, the three-dimensional shape measuring device 106
Can be coordinate-converted into the coordinate system of the three-dimensional shape measuring device 104. Similarly, the three-dimensional shape measuring apparatus 10
5 is converted into the coordinate system of the three-dimensional shape measuring device 104, the coordinate conversion of the three-dimensional shape measuring device 103 is converted into the coordinate system of the three-dimensional shape measuring device 104, and all four coordinate systems are coordinated by the three-dimensional shape measuring device 104. It becomes possible to match with.

【0040】尚、上記実施例において、図4に示した平
面板120の代わりに、図8に示すような平面板140
を校正用立体物として使用することができる。この実施
例では、図4の黒色ライン121の代わりに、溝141
が削られている。図4の実施例と同様にして、削られて
いない面142を被測定面とし、これから平面板140
の当てはめ平面方程式を求め、それら回転行列Rを求め
る。また、溝141の交点Pとその裏面の対応する図示
しない交点から平行ベクトルTを求めることができる。
In the above embodiment, instead of the flat plate 120 shown in FIG. 4, a flat plate 140 as shown in FIG.
Can be used as a three-dimensional object for calibration. In this embodiment, instead of the black line 121 of FIG.
Has been cut. Similar to the embodiment of FIG. 4, the uncut surface 142 is used as the surface to be measured, and the flat plate 140
Then, the fitted plane equation is calculated and the rotation matrix R is calculated. Further, the parallel vector T can be obtained from the intersection P of the groove 141 and the corresponding intersection not shown on the back surface thereof.

【0041】また、図4に示す平面板120の代わり
に、図9に示すような三角柱150を校正用立体物とし
て使用することもできる。これは、120度おきに三次
元形状計測装置201、202、203が並んでいる場
合に使用する。三次元形状計測装置201が三角柱15
0の被測定面151の当てはめ平面方程式を求め、三次
元形状計測装置202が被測定面152の当てはめ平面
方程式を、また、三次元形状計測装置203が被測定面
153の当てはめ平面方程式を求める。その後、各被測
定面151、152、153の交差する角度から同様に
して、回転行列Rを求める。また校正用立体物150の
各被測定面151、152、153上に隆起形状あるい
は塗装によるライン等を設けて測定点を決め、これらの
測定点の相互位置関係から平行ベクトルTを求める。
Instead of the plane plate 120 shown in FIG. 4, a triangular prism 150 as shown in FIG. 9 can be used as a calibration solid. This is used when the three-dimensional shape measuring devices 201, 202, 203 are arranged every 120 degrees. The three-dimensional shape measuring device 201 is a triangular prism 15.
The fitting plane equation of the measured surface 151 of 0 is obtained, the three-dimensional shape measuring apparatus 202 finds the fitting plane equation of the measured surface 152, and the three-dimensional shape measuring apparatus 203 finds the fitting plane equation of the measured surface 153. After that, the rotation matrix R is similarly obtained from the angle at which the measured surfaces 151, 152, 153 intersect. Further, a ridge shape or a line by painting is provided on each measured surface 151, 152, 153 of the calibration three-dimensional object 150 to determine a measurement point, and the parallel vector T is obtained from the mutual positional relationship of these measurement points.

【0042】図4に示す平面板120の代わりに、図1
0に示すような六面体160を校正用立体物として使用
することもできる。この六面体160の表面は、何も加
工されていない。この六面体160の各表面を被測定面
として当てはめ平面の方程式を求め、上記の実施例と同
様に、回転行列Rを求める。六面体160のエッジ点P
より平行ベクトルTを求める。
Instead of the plane plate 120 shown in FIG.
A hexahedron 160 as shown in 0 can also be used as a calibration solid. Nothing is processed on the surface of the hexahedron 160. Each surface of the hexahedron 160 is used as a surface to be measured to find a fitting plane equation, and the rotation matrix R is found in the same manner as in the above embodiment. Edge point P of hexahedron 160
The parallel vector T is obtained.

【0043】以上の実施例においては、校正用立体物の
被測定面は平面であったが、本発明では平面に限定され
ない。例えば、校正用立体物として球を使用することも
可能である。その他にも、被測定面の面形状が既知のも
のであればよく、被測定面が複数ある場合には、相互の
位置関係が既知であればよい。このように平面以外の面
を使用することもあるので、上記実施例の当てはめ平面
は、当てはめ面の下位概念ということになる。尚、三次
元形状計測装置の計測方法は、レーザを使用するもの等
種々のものに応用可能で、特定のものに限定されない。
In the above embodiments, the surface to be measured of the calibration solid is a flat surface, but the present invention is not limited to a flat surface. For example, it is possible to use a sphere as the calibration three-dimensional object. In addition, it suffices that the surface shape of the surface to be measured is known, and if there are a plurality of surfaces to be measured, the positional relationship between them may be known. Since a plane other than a plane may be used as described above, the fitting plane in the above embodiment is a subordinate concept of the fitting plane. The measuring method of the three-dimensional shape measuring apparatus can be applied to various things such as those using a laser, and is not limited to a particular one.

【0044】[0044]

【発明の効果】以上説明したように、本発明にかかる方
法によれば、複数の三次元形状計測装置の測定値を統合
し、被測定物の裏側を計測したり、被測定物が大きい場
合でも三次元形状を計測することが可能となる。
As described above, according to the method of the present invention, the measurement values of a plurality of three-dimensional shape measuring devices are integrated to measure the back side of the object to be measured or the object to be measured is large. However, it becomes possible to measure a three-dimensional shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】三次元形状計測装置の外観を示す斜視図であ
る。
FIG. 1 is a perspective view showing an appearance of a three-dimensional shape measuring apparatus.

【図2】4台の三次元形状計測装置を用いた計測装置の
外観を示す斜視図である。
FIG. 2 is a perspective view showing the appearance of a measuring device using four three-dimensional shape measuring devices.

【図3】一の座標系から他の座標系へと座標変換をする
原理を示す図である。
FIG. 3 is a diagram showing a principle of coordinate conversion from one coordinate system to another coordinate system.

【図4】校正用立体物としての平面板を示す図であっ
て、(a)は正面図、(b)は平面図、(c)は側面
図、(d)は斜視図である。
4A and 4B are views showing a plane plate as a calibration solid, wherein FIG. 4A is a front view, FIG. 4B is a plan view, FIG. 4C is a side view, and FIG.

【図5】4台の三次元形状計測装置と平面板の配置を示
す図であって、(a)は正面図、(b)は上面図、
(c)は側面図である。
5A and 5B are views showing the arrangement of four three-dimensional shape measuring devices and a plane plate, where FIG. 5A is a front view and FIG. 5B is a top view.
(C) is a side view.

【図6】2台の三次元形状計測装置で平面板を計測する
状態を示す図であって、(a)は斜視図、(b)、
(c)は当てはめ平面の図である。
FIG. 6 is a diagram showing a state in which a flat plate is measured by two three-dimensional shape measuring devices, in which (a) is a perspective view and (b) is
(C) is a view of a fitting plane.

【図7】2台の三次元形状計測装置で平面板の表裏の対
応点を計測する状態を示す図であって、(a)は斜視
図、(b)は平行ベクトルの求め方を示す図である。
7A and 7B are diagrams showing a state in which corresponding points on the front and back of a plane plate are measured by two three-dimensional shape measuring devices, FIG. 7A is a perspective view, and FIG. 7B is a diagram showing how to obtain a parallel vector. Is.

【図8】校正用立体物として溝のある平面図を示す斜視
図である。
FIG. 8 is a perspective view showing a plan view having a groove as a calibration three-dimensional object.

【図9】校正用立体物として三角柱を用いた状態を示す
図である。
FIG. 9 is a diagram showing a state in which a triangular prism is used as a calibration solid.

【図10】校正用立体物として六面体を用いた状態を示
す図である。
FIG. 10 is a diagram showing a state in which a hexahedron is used as a calibration three-dimensional object.

【符号の説明】[Explanation of symbols]

100 カメラ 101 プロジェクタ 102 座標系 103 三次元形状計測装置 104 三次元形状計測装置 105 三次元形状計測装置 106 三次元形状計測装置 107 測定対象物 110 一の三次元形状計測装置の原点と座標軸 111 他の三次元形状計測装置の原点と座標軸 112 平行ベクトルT 113 回転行列R 120 校正用立体物(平面板) 121 ライン 122 ベース 130 一の三次元形状計測装置の当てはめ(平)面 131 他の三次元形状計測装置の当てはめ(平)面 140 校正用立体物(平面板) 141 溝 142 面 150 三角柱 151 被測定面 152 被測定面 153 被測定面 160 六面体 201 三次元形状計測装置 202 三次元形状計測装置 203 三次元形状計測装置 100 cameras 101 projector 102 coordinate system 103 three-dimensional shape measuring device 104 three-dimensional shape measuring device 105 three-dimensional shape measuring device 106 three-dimensional shape measuring device 107 measurement object 110 Origin and coordinate axis of one three-dimensional shape measuring device 111 Origin and coordinate axes of other three-dimensional shape measuring devices 112 Parallel vector T 113 rotation matrix R 120 Three-dimensional object for calibration (flat plate) 121 lines 122 base 130 Fitting (flat) surface of one three-dimensional shape measuring device 131 Fitting (flat) surface of another three-dimensional shape measuring device 140 Three-dimensional object for calibration (flat plate) 141 groove 142 sides 150 triangular prism 151 surface to be measured 152 surface to be measured 153 Measured surface 160 hexahedron 201 Three-dimensional shape measuring device 202 Three-dimensional shape measuring device 203 three-dimensional shape measuring device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA04 AA53 BB05 DD19 EE00 FF06 FF61 HH06 JJ03 JJ05 LL41 PP01 QQ00 QQ17 QQ18 2F069 AA04 AA61 DD22 FF01 FF07 GG04 GG07 GG13 MM04 NN00 NN15 NN17    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F065 AA04 AA53 BB05 DD19 EE00                       FF06 FF61 HH06 JJ03 JJ05                       LL41 PP01 QQ00 QQ17 QQ18                 2F069 AA04 AA61 DD22 FF01 FF07                       GG04 GG07 GG13 MM04 NN00                       NN15 NN17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 各々独自の原点と座標軸とからなる座標
系を有する複数の三次元形状計測装置から計測可能な位
置に、一の被測定面または相対位置が既知の2以上の被
測定面を有する校正用立体物を配置し、各三次元形状計
測装置によって前記被測定面上の異なる3点以上につい
て計測して各点の三次元位置を求め、計測した値から被
測定面の当てはめ面方程式を算出し、各当てはめ面の対
象となった被測定面相互間の位置関係から一の当てはめ
面方程式の座標系により他の当てはめ面方程式の座標変
換を行うことを特徴とする複数の三次元形状計測装置の
座標系を一致させる方法。
1. One measurement surface or two or more measurement surfaces whose relative positions are known are located at positions that can be measured by a plurality of three-dimensional shape measuring devices each having a coordinate system having its own origin and coordinate axes. The three-dimensional shape measuring device is arranged, three or more different points on the measured surface are measured by each three-dimensional shape measuring device to obtain the three-dimensional position of each point, and the fitting surface equation of the measured surface is obtained from the measured values. And a plurality of three-dimensional shapes characterized in that the coordinate system of one fitting surface equation is used to perform coordinate transformation of another fitting surface equation from the positional relationship between the measured surfaces that are the objects of each fitting surface. A method of matching the coordinate systems of measuring devices.
【請求項2】 前記当てはめ面方程式が、前記3点以上
の計測データについて、計測誤差を最小にすることによ
り求められることを特徴とする請求項1記載の複数の三
次元形状計測装置の座標系を一致させる方法。
2. The coordinate system of a plurality of three-dimensional shape measuring apparatuses according to claim 1, wherein the fitting surface equation is obtained by minimizing measurement error for measurement data of the three or more points. How to match.
【請求項3】 前記各三次元形状計測装置が計測した各
点の三次元位置の計測値について、誤差の二乗和の極値
から前記当てはめ面方程式を求めることを特徴とする請
求項2記載の複数の三次元形状計測装置の座標系を一致
させる方法。
3. The fitting surface equation is obtained from the extreme value of the sum of squares of the error for the measurement value of the three-dimensional position of each point measured by each of the three-dimensional shape measuring devices. A method of matching the coordinate systems of a plurality of three-dimensional shape measuring devices.
【請求項4】 前記被測定面が平面で、当てはめ面が当
てはめ平面となることを特徴とする請求項1、2または
3記載の複数の三次元形状計測装置の座標系を一致させ
る方法。
4. The method for matching coordinate systems of a plurality of three-dimensional shape measuring apparatuses according to claim 1, 2 or 3, wherein the surface to be measured is a flat surface and the fitting surface is a fitting plane.
【請求項5】 前記座標変換を、回転行列と平行ベクト
ルを求めることにより行うことを特徴とする請求項1乃
至4のいずれかに記載の複数の三次元形状計測装置の座
標系を一致させる方法。
5. The method for matching the coordinate systems of a plurality of three-dimensional shape measuring devices according to claim 1, wherein the coordinate conversion is performed by obtaining a rotation matrix and a parallel vector. .
JP2002093777A 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices Pending JP2003294433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093777A JP2003294433A (en) 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093777A JP2003294433A (en) 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005013852A Division JP3781762B2 (en) 2005-01-21 2005-01-21 3D coordinate calibration system

Publications (1)

Publication Number Publication Date
JP2003294433A true JP2003294433A (en) 2003-10-15

Family

ID=29238078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093777A Pending JP2003294433A (en) 2002-03-29 2002-03-29 Method for synchronizing coordinate systems of plural three dimensional shape measuring devices

Country Status (1)

Country Link
JP (1) JP2003294433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534933A (en) * 2004-01-26 2007-11-29 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining workpiece coordinates
CN105157534A (en) * 2015-08-24 2015-12-16 苏州骏发精密机械有限公司 Product shaping test tool
WO2020012707A1 (en) * 2018-07-09 2020-01-16 オムロン株式会社 Three-dimensional measurement device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534933A (en) * 2004-01-26 2007-11-29 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining workpiece coordinates
CN105157534A (en) * 2015-08-24 2015-12-16 苏州骏发精密机械有限公司 Product shaping test tool
WO2020012707A1 (en) * 2018-07-09 2020-01-16 オムロン株式会社 Three-dimensional measurement device and method
JP2020008434A (en) * 2018-07-09 2020-01-16 オムロン株式会社 Three-dimensional measuring device and method

Similar Documents

Publication Publication Date Title
CN110672039B (en) Object omnibearing three-dimensional measurement method based on plane reflector
US11808564B2 (en) Calibration method for fringe projection systems based on plane mirrors
AU2008296518B2 (en) System and method for three-dimensional measurement of the shape of material objects
US8208029B2 (en) Method and system for calibrating camera with rectification homography of imaged parallelogram
US6377700B1 (en) Method and apparatus for capturing stereoscopic images using image sensors
EP2631740A2 (en) System for reproducing virtual objects
US6195455B1 (en) Imaging device orientation information through analysis of test images
WO2015038354A1 (en) Use of a three-dimensional imager&#39;s point cloud data to set the scale for photogrammetry
WO2000000925A1 (en) Method and apparatus for the processing of stereoscopic electronic images into three-dimensional computer models of real-life objects
Peng Algorithms and models for 3-D shape measurement using digital fringe projections
Zhang et al. Three-dimensional shape measurement using a structured light system with dual cameras
CN109672878A (en) To the field calibration system and method for the vision system of calibration object two opposite sides imaging
CN104976968A (en) Three-dimensional geometrical measurement method and three-dimensional geometrical measurement system based on LED tag tracking
Xu et al. 3D multi-directional sensor with pyramid mirror and structured light
US20160349045A1 (en) A method of measurement of linear dimensions of three-dimensional objects
JP2003294433A (en) Method for synchronizing coordinate systems of plural three dimensional shape measuring devices
JP4429135B2 (en) Three-dimensional shape measurement system and measurement method
JP3781762B2 (en) 3D coordinate calibration system
Fantin et al. An efficient mesh oriented algorithm for 3d measurement in multiple camera fringe projection
US9762872B2 (en) Apparatus, method and non-transitory computer-readable storage medium
RU164082U1 (en) DEVICE FOR MONITORING LINEAR SIZES OF THREE-DIMENSIONAL OBJECTS
JP3607688B2 (en) Three-dimensional shape measuring apparatus and rotation axis determination method in three-dimensional shape measurement
Harding et al. Geometric errors in 3D optical metrology systems
Liu et al. Comparison Study of Three Camera Calibration Methods Considering the Calibration Board Quality and 3D Measurement Accuracy
JP7099052B2 (en) Simulation equipment, simulation methods and programs

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124

RD01 Notification of change of attorney

Effective date: 20041224

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106