JP2003293090A - Duplex stainless steel having excellent pitting corrosion resistance - Google Patents

Duplex stainless steel having excellent pitting corrosion resistance

Info

Publication number
JP2003293090A
JP2003293090A JP2002102053A JP2002102053A JP2003293090A JP 2003293090 A JP2003293090 A JP 2003293090A JP 2002102053 A JP2002102053 A JP 2002102053A JP 2002102053 A JP2002102053 A JP 2002102053A JP 2003293090 A JP2003293090 A JP 2003293090A
Authority
JP
Japan
Prior art keywords
corrosion resistance
phase
less
stainless steel
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002102053A
Other languages
Japanese (ja)
Inventor
Atsushi Sho
篤史 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002102053A priority Critical patent/JP2003293090A/en
Publication of JP2003293090A publication Critical patent/JP2003293090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide duplex stainless steel which has excellent pitting corrosion resistance, and is suitable as the high corrosion resistant stock for piping for the chemical industry. <P>SOLUTION: The duplex stainless steel having excellent pitting corrosion resistance consists of steel having a composition containing, by mass, ≤0.05% C, 0.1 to 1.0% Si, 0.2 to 1.5% Mn, ≤0.035% P, ≤0.005% S, 3 to 7.5% Ni, 21 to 28% Cr, 1 to 5% Mo, ≤0.5% Cu, 0.005 to 0.04% Al and ≤0.25% N, and the balance Fe with inevitable impurities, and satisfying a γ ratio of 0.3 to 0.7, PRE (pitting resistant equivalent) of ≥32.5, and ΔPRE of -1.0 to 1.0. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に化学工業用配
管類の高耐食性素材として好適な耐孔食性の優れた二相
系ステンレス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a duplex stainless steel having excellent pitting corrosion resistance, which is particularly suitable as a highly corrosion-resistant material for piping for the chemical industry.

【0002】[0002]

【従来の技術】従来、耐孔食性に優れた高強度二相ステ
ンレス鋼として、例えば特開昭62−50444号公
報、特開昭62−253755号公報および特開平11
−80901号公報が知られている。また、熱間加工性
に優れた高耐食二相ステンレス鋼として、特開平2−2
58956号公報が知られている。これらはγ相のCr
+3Mo+16Nが34.5以上とすること(γ相の耐
食性パラメータを規定してやること)が、孔食発生の有
無を支配し、耐食性寄与元素Cr,Mo,Nを過剰に添
加することなく適正な耐孔食性であるステンレス鋼が得
られるとしている。
2. Description of the Related Art Conventionally, as a high-strength duplex stainless steel having excellent pitting corrosion resistance, for example, JP-A-62-50444, JP-A-62-253755, and JP-A-11-111.
No. -80901 is known. Further, as a high corrosion-resistant duplex stainless steel excellent in hot workability, JP-A-2-2
Japanese Patent No. 58956 is known. These are γ-phase Cr
Setting + 3Mo + 16N to 34.5 or more (defining the corrosion resistance parameter of the γ phase) governs the presence or absence of pitting corrosion, and prevents the corrosion resistance contributing elements Cr, Mo, and N from being added excessively, and the appropriate pitting resistance It is said that stainless steel, which is edible, can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、γ相の
耐食性を向上させることは非常に重要であるものの、単
にγ相の耐食性を耐食性パラメータを規定し(γ相の耐
食性を向上させる)γ相を腐食させないようにしても、
逆にα相の優先腐食が生じて耐孔食性が著しく劣る場合
があり、単にγ相の耐食性パラメータを規定するでけで
は優れた耐孔食性の材料を得ることができないことが判
った。すなわち、二相系ステンレス鋼は耐食性に寄与す
る元素(Cr,Mo,N)成分量が、鋼中γ量(=α
量)によって変化するので、鋼中トータルのCr,M
o,N含有量を同じとしたとしても、NiやSi等のγ
およびα生成含有量によって大きく耐食性が変化し、γ
相或いはα相のどちらかが偏って腐食する配合は耐食性
に劣る。上述した特許には、この点を解決したものは全
くない。
However, although it is very important to improve the corrosion resistance of the γ phase, simply defining the corrosion resistance parameter of the γ phase (improving the corrosion resistance of the γ phase) Even if it doesn't corrode,
On the contrary, it has been found that the preferential corrosion of the α phase may occur and the pitting corrosion resistance may be remarkably inferior, and a material having excellent pitting corrosion resistance cannot be obtained only by defining the corrosion resistance parameter of the γ phase. That is, in the duplex stainless steel, the amount of elements (Cr, Mo, N) that contribute to corrosion resistance is γ in the steel (= α
The amount of Cr and M in the steel
Even if the contents of o and N are the same, γ of Ni, Si, etc.
Corrosion resistance changes greatly depending on the content of α and α, and γ
A composition in which either the phase or the α phase is unevenly corroded is inferior in corrosion resistance. None of the above-mentioned patents have solved this point.

【0004】[0004]

【課題を解決するための手段】上述したような問題を解
消するために鋭意開発を進めた結果、耐食性に寄与する
元素Cr,Mo,Nを過剰に添加することなく、材料の
持つ耐孔食性を最大限に引き出すためには、最も重要な
のは、γ相の耐食性とα相の耐食性をできるだけ等しく
すること(−1.0≦△PRE≦1.0、すなわち、−
1.0より小さければα相が優先的に腐食し、逆に1.
0より大きければγ相の優先的な腐食が生じる)でγ相
とα相が同等に腐食し、最大の耐食性が得られることを
見出した。また、γ相とα相の耐食性を等しくするため
には、γ相とα相中にCr,Mo,Nを適正に分配する
ことが重要で、中でも特にNの分配が最も重要である。
[Means for Solving the Problems] As a result of intensive development to solve the above-mentioned problems, as a result, the pitting corrosion resistance of the material can be obtained without excessive addition of the elements Cr, Mo, N contributing to the corrosion resistance. In order to bring out the maximum value, the most important thing is to make the corrosion resistance of the γ phase and the corrosion resistance of the α phase as equal as possible (−1.0 ≦ ΔPRE ≦ 1.0, that is, −
If it is less than 1.0, the α phase is preferentially corroded, and conversely 1.
It was found that the γ-phase and the α-phase are corroded equally, and the maximum corrosion resistance can be obtained. Further, in order to make the corrosion resistance of the γ phase and the α phase equal, it is important to properly distribute Cr, Mo, and N in the γ phase and the α phase, and among them, the distribution of N is most important.

【0005】すなわち、γ相とα相の耐食性を等しくさ
せて、それぞれの相の優先的な腐食を抑制するために、
γ相とα相それぞれの成分組成を求め、マトリックス成
分に対するγ相とα相それぞれの成分組成を関係化し、
各相の耐食性を求めた各相の成分組成でパラメータ化
し、耐食性とパラメータとの関係を解析することで、耐
孔食性が等しくなる条件を見出したものである。
That is, in order to equalize the corrosion resistance of the γ phase and the α phase and suppress preferential corrosion of each phase,
Obtain the composition of each of the γ phase and α phase, and relate the composition of each of the γ phase and α phase to the matrix component,
By correlating the corrosion resistance of each phase with the obtained component composition of each phase and analyzing the relationship between the corrosion resistance and the parameters, the conditions under which the pitting corrosion resistance becomes equal are found.

【0006】その発明の要旨とするところは、 (1)質量%で、C:0.05%以下、Si:0.1〜
1.0%、Mn:0.2〜1.5%、P:0.035%
以下、S:0.005%以下、Ni:3〜7.5%、C
r:21〜28%、Mo:1〜5%、Cu:0.5%以
下、Al:0.005〜0.04%、N:0.25%以
下、を含有し、残部Feおよび不可避的不純物からなる
鋼で、下記式に示すγ率が0.3〜0.7、PREが3
2.5以上、△PREが−1.0〜1.0を満足する鋼
からなることを特徴とする耐孔食性の優れた二相系ステ
ンレス鋼。γ率=(149.7C−6.01Si+2.
76Mn+6.41Ni−5.62Cr−3.74Mo
+206.2N+117.2)/100、PRE=Cr
+3.3Mo+16N、△PRE=PRE(α)−PR
E(γ)={Cr(α)+3.3・Mo(α)+16・
N(α)}−{Cr(γ)+3.3・Mo(γ)+16
・N(γ)=(0.08γ+0.0824)Cr+3.
3(0.27γ+0.2879)Mo−16{N−0.
005(0.21γ+0.9563)Cr+0.059
5}/γ−3.5 ただし、Cr(α)はα相中のCr濃度、Mo(γ)は
γ相中のMo濃度を示す。
The gist of the invention is as follows: (1) Mass%, C: 0.05% or less, Si: 0.1
1.0%, Mn: 0.2 to 1.5%, P: 0.035%
Hereinafter, S: 0.005% or less, Ni: 3 to 7.5%, C
r: 21 to 28%, Mo: 1 to 5%, Cu: 0.5% or less, Al: 0.005 to 0.04%, N: 0.25% or less, and the balance Fe and unavoidable. Impurity steel with a γ ratio of 0.3 to 0.7 and a PRE of 3
A duplex stainless steel having excellent pitting corrosion resistance, which is made of a steel having a value of 2.5 or more and a ΔPRE satisfying -1.0 to 1.0. γ rate = (149.7C-6.01Si + 2.
76Mn + 6.41Ni-5.62Cr-3.74Mo
+ 206.2N + 117.2) / 100, PRE = Cr
+ 3.3Mo + 16N, △ PRE = PRE (α) -PR
E (γ) = {Cr (α) +3.3 ・ Mo (α) +16 ・
N (α)}-{Cr (γ) + 3.3 · Mo (γ) +16
N (γ) = (0.08γ + 0.0824) Cr + 3.
3 (0.27γ + 0.2879) Mo-16 {N-0.
005 (0.21γ + 0.9563) Cr + 0.059
5} /γ-3.5 where Cr (α) represents the Cr concentration in the α phase and Mo (γ) represents the Mo concentration in the γ phase.

【0007】(2)前記(1)に記載の成分組成に加え
て、Ti:0.1〜0.4%、V:0.1〜0.4%、
Nb:0.1〜0.4%の1種または2種以上で合計
0.4%以下であることを特徴とする耐孔食性の優れた
二相系ステンレス鋼。 (3)前記(1)または(2)に記載の成分組成に加え
て、Ca:0.0005〜0.01%、B:0.000
5〜0.003%の1種または2種を含有することを特
徴とする耐孔食性の優れた二相系ステンレス鋼である。
(2) In addition to the component composition described in (1) above, Ti: 0.1 to 0.4%, V: 0.1 to 0.4%,
Nb: Duplex stainless steel excellent in pitting corrosion resistance, characterized in that it is 0.1% to 0.4% or more, and is 0.4% or less in total. (3) In addition to the component composition described in (1) or (2) above, Ca: 0.0005 to 0.01%, B: 0.000
It is a duplex stainless steel excellent in pitting corrosion resistance, characterized by containing 5 to 0.003% of one or two kinds.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る化学組成の限
定理由について述べる。 C:0.05%以下 Cは、代表的な固溶強化元素であるが、多量の含有はC
r炭化物が粒界析出するようになって、耐食性を劣化さ
せるため、その上限を0.05%とした。 Si:0.1〜1.0% Siは、鋼の脱酸に必要である。しかし、0.1%未満
ではその効果が得られず、また、多量の添加はσ相析出
による脆化を招くようになるため、その上限を1.0%
とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition of the present invention will be described below. C: 0.05% or less C is a typical solid solution strengthening element, but a large amount of C is contained.
The upper limit was set to 0.05% because the r-carbide precipitates on the grain boundaries and deteriorates the corrosion resistance. Si: 0.1 to 1.0% Si is necessary for deoxidizing steel. However, if less than 0.1%, the effect is not obtained, and addition of a large amount causes embrittlement due to σ phase precipitation, so the upper limit is 1.0%.
And

【0009】Mn:0.2〜1.5% Mnは、Siと同様に、鋼の脱酸に必要である。しか
し、0.2%未満ではその効果が得られず、また、多量
の添加は経済的不利につながるため、その上限を1.5
%とした。 P:0.035%以下 Pは、多量の含有は溶接割れ感受性が高まるため、その
上限を0.035%とした。
Mn: 0.2-1.5% Mn, like Si, is necessary for deoxidizing steel. However, if less than 0.2%, the effect cannot be obtained, and addition of a large amount leads to an economical disadvantage, so the upper limit is set to 1.5.
%. P: 0.035% or less P has a maximum content of 0.035% because a large amount of P increases the weld cracking susceptibility.

【0010】S:0.005%以下 Sは、多量の含有は熱間加工性劣化を招くので、その上
限を0.005%とした。 Ni:3〜7.5% Niは、二相組織として加工性、耐食性を向上させるた
めに必要な元素である。しかし、3%未満ではその効果
が得られず、7.5%を超える添加はその効果が飽和
し、コスト的に高くなるので、その上限を7.5%とし
た。
S: 0.005% or less S is contained in a large amount, which causes deterioration in hot workability, so the upper limit was made 0.005%. Ni: 3 to 7.5% Ni is an element necessary for improving workability and corrosion resistance as a two-phase structure. However, if it is less than 3%, the effect cannot be obtained, and if it exceeds 7.5%, the effect is saturated and the cost becomes high, so the upper limit was made 7.5%.

【0011】Cr:21〜28% Crは、耐孔食性を向上させ、所望の耐食性を得るため
の必要な元素である。しかし、21%未満ではその効果
は得られず、多量の添加はσ相が析出し易くなって、製
造性が劣化するため、その上限を28%とした。 Mo:1〜5% Moは、耐孔食性を向上させ、所望の耐食性を得るため
の必要な元素である。しかし、1%未満ではその効果は
得られず、多量の添加はσ相が析出し易くなって、製造
性が劣化するため、その上限を5%とした。
Cr: 21 to 28% Cr is a necessary element for improving pitting corrosion resistance and obtaining desired corrosion resistance. However, if it is less than 21%, the effect cannot be obtained, and if a large amount is added, the σ phase tends to precipitate and the manufacturability deteriorates. Therefore, the upper limit was made 28%. Mo: 1 to 5% Mo is an element necessary for improving pitting corrosion resistance and obtaining desired corrosion resistance. However, if it is less than 1%, the effect cannot be obtained, and if a large amount is added, the σ phase tends to precipitate and the manufacturability deteriorates. Therefore, the upper limit was made 5%.

【0012】Cu:0.5%以下 Cuは、多量添加すると熱間加工性の劣化を招くため、
その上限を0.5%とした。 Al:0.005〜0.04% Alは、脱酸のため必要な元素である。しかし、0.0
05%未満ではその効果が得られず、また、多量の添加
はAlNの析出による加工性の劣化を招くため、その上
限を0.04%とした。
Cu: 0.5% or less If Cu is added in a large amount, hot workability deteriorates.
The upper limit was 0.5%. Al: 0.005-0.04% Al is an element necessary for deoxidation. But 0.0
If it is less than 05%, the effect cannot be obtained, and addition of a large amount causes deterioration of workability due to precipitation of AlN, so the upper limit was made 0.04%.

【0013】N:0.25%以下 Nは、耐孔食性を向上させ、所望の耐食性を得る元素で
ある。しかし、多量の添加は、熱間加工性の劣化を招く
ので、その上限を0.25%とした。 Ti:0.1〜0.4%、V:0.1〜0.4%、N
b:0.1〜0.4%の1種または2種以上で合計0.
4%以下 Ti、V、Nbは、さらに強度を高める元素であるが、
しかし、0.1%未満ではその効果が得られず、また、
0.4%を超える添加は熱間加工性を劣化させるため、
その上限を0.4%とした。
N: 0.25% or less N is an element that improves pitting corrosion resistance and obtains desired corrosion resistance. However, addition of a large amount causes deterioration of hot workability, so the upper limit was made 0.25%. Ti: 0.1-0.4%, V: 0.1-0.4%, N
b: 0.1 to 0.4% of one kind or two or more kinds in total of 0.
4% or less Ti, V, and Nb are elements that further increase the strength,
However, if less than 0.1%, the effect cannot be obtained, and
Since addition of more than 0.4% deteriorates hot workability,
The upper limit was 0.4%.

【0014】Ca:0.0005〜0.01% Caは、熱間加工性を改善させる元素である。しかし、
0.0005%未満ではその効果はなく、0.01%を
超える添加は、逆に熱間加工性を劣化させるため、その
上限を0.01%とした。 B:0.0005〜0.003% Bは、Caと同様に、熱間加工性を改善させる元素であ
る。しかし、0.0005%未満ではその効果はなく、
0.003%を超える添加は、逆に熱間加工性を劣化さ
せるため、その上限を0.003%とした。
Ca: 0.0005 to 0.01% Ca is an element that improves hot workability. But,
If it is less than 0.0005%, there is no effect, and if it exceeds 0.01%, the hot workability is deteriorated. Therefore, the upper limit was made 0.01%. B: 0.0005 to 0.003% B, like Ca, is an element that improves hot workability. However, if less than 0.0005%, there is no effect,
On the contrary, the addition of more than 0.003% deteriorates the hot workability, so the upper limit was made 0.003%.

【0015】γ率:0.3〜0.7 γ率は、製品の靱性を評価を示す当量式であり、0.3
未満ではその製品の靱性が劣化する。また、0.7を超
えるとα相においてσ相が析出し易くなって、脆化を招
くようになるため、その上限を0.7とした。 PRE:32.5以上 PREは、Cr,MoとNとの関係を示す値であり、3
2.5未満では所望の耐食性が得られないため、その下
限を32.5とした。
Γ ratio: 0.3 to 0.7 The γ ratio is an equivalent formula showing the toughness of a product, and is 0.3.
If it is less than 100%, the toughness of the product deteriorates. On the other hand, if it exceeds 0.7, the σ phase tends to precipitate in the α phase, which causes embrittlement. Therefore, the upper limit is set to 0.7. PRE: 32.5 or more PRE is a value indicating the relationship between Cr, Mo and N, and 3
If it is less than 2.5, the desired corrosion resistance cannot be obtained, so the lower limit was made 32.5.

【0016】△PREが−1.0〜1.0 △PREは、PREでのα相からγ相の差を示す値であ
り、この値が−1.0未満ではα相の優先腐食が生じ、
添加合金量に見合う耐食性が得られなくなるため、その
下限を−1.0とした。また、1.0を超えるとγ相の
優先腐食が生じて、添加合金量に見合う耐食性が得られ
なくなるため、その上限を1.0とした。
ΔPRE is -1.0 to 1.0 ΔPRE is a value indicating the difference between the α phase and the γ phase in PRE. If this value is less than -1.0, preferential corrosion of the α phase occurs. ,
Since the corrosion resistance corresponding to the amount of the added alloy cannot be obtained, the lower limit is set to -1.0. Further, if it exceeds 1.0, preferential corrosion of the γ phase occurs, and corrosion resistance commensurate with the amount of added alloy cannot be obtained, so the upper limit was made 1.0.

【0017】図1は、△PREと腐食減量との関係を示
す図である。すなわち、図1はPREが約32.6の合
金(本発明例No.1〜11、比較例No.13〜23
を用いて実験を行い、△PREによって孔食試験結果を
整理したものである。PRE:32.5以上の材料にお
いて、この図に示すように、△PREが−1.0〜1.
0の範囲では耐食性は良好で、この範囲から外れたもの
は孔食が発生している。従って、PRE:32.5以上
の材料について、△PREを計算するパラメータを用い
れば、良好な耐孔食性を示す材料であることが判る。さ
らに、このPRE:32.5以上の材料は添加した元素
が有効な機能する経済性の良い材料であることが判る。
FIG. 1 is a diagram showing the relationship between ΔPRE and corrosion weight loss. That is, FIG. 1 shows an alloy having a PRE of about 32.6 (invention examples No. 1 to 11 and comparative examples No. 13 to 23).
The results of pitting corrosion tests are summarized by ΔPRE. PRE: 32.5 or more, as shown in this figure, ΔPRE is -1.0 to 1.
In the range of 0, the corrosion resistance is good, and those outside this range have pitting corrosion. Therefore, it can be seen that, for the material having PRE: 32.5 or more, if the parameter for calculating ΔPRE is used, the material exhibits good pitting corrosion resistance. Further, it can be seen that the material having a PRE of 32.5 or more is a material with good economy in which the added element effectively functions.

【0018】[0018]

【実施例】表1に示す化学成分の供試材100kgを真
空誘導溶解炉にて溶解し、10mm厚の板に鍛伸し、1
000〜1100℃で20分保持後水冷による固溶化熱
処理を施した後、20mm×30mm×3.5mmの試
験片に加工し、#600まで湿式研磨し脱脂して試験片
を得た。腐食試験条件として、50℃の6%塩化第二鉄
溶液中に24時間浸漬し、試験後に付着した腐食生成物
を除去し、洗浄・乾燥後秤量し、試験前との重量変化か
ら腐食減量を求めて、その腐食評価とした。
[Example] 100 kg of the test material having the chemical composition shown in Table 1 was melted in a vacuum induction melting furnace and forged into a 10 mm thick plate, and 1
After being held at 000 to 1100 ° C. for 20 minutes and subjected to solution heat treatment by water cooling, it was processed into a test piece of 20 mm × 30 mm × 3.5 mm, wet-polished to # 600 and degreased to obtain a test piece. As a corrosion test condition, the product was immersed in a 6% ferric chloride solution at 50 ° C for 24 hours to remove the corrosion products attached after the test, washed and dried, and then weighed. It asked and made it the corrosion evaluation.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、No.1〜12は本発
明例であり、No.13〜25は比較例である。比較例
No.13、14、18〜21は、△PREの値が低い
ため、また、No.15〜17、23は、いずれも△P
REの値が高いために、耐孔食性が劣り、比較例No.
22はNiが高く、しかも、△PREの値が高いため
に、耐孔食性が劣る。また、比較例No.24〜25の
ように、PREの値が−1.0〜1.0内にある場合で
も、△PREの値が低い場合には孔食性が劣る。これに
対し、本発明例であるNo.1〜12は、いずれも耐孔
食性に優れていることが判る。
As shown in Table 1, No. Nos. 1 to 12 are examples of the present invention. 13 to 25 are comparative examples. Comparative Example No. In Nos. 13, 14, and 18 to 21, since the value of ΔPRE is low, no. 15 to 17 and 23 are all ΔP
Since the value of RE is high, the pitting corrosion resistance is inferior.
No. 22 has a high Ni content and a high ΔPRE value, and therefore has poor pitting corrosion resistance. In addition, Comparative Example No. Even if the value of PRE is within the range of -1.0 to 1.0 as in the case of 24 to 25, the pitting resistance is poor when the value of ΔPRE is low. On the other hand, the case of No. It can be seen that all of 1 to 12 have excellent pitting corrosion resistance.

【0021】[0021]

【発明の効果】以上述べたように、本発明により、特に
化学工業用配管類の高耐食性素材として好適な二相系ス
テンレス鋼を得ることが可能になったことは工業上極め
て優れた効果を奏するものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, it has become possible to obtain a duplex stainless steel suitable as a highly corrosion-resistant material for piping for the chemical industry. It plays.

【図面の簡単な説明】[Brief description of drawings]

【図1】△PREと腐食減量との関係を示す図である。FIG. 1 is a diagram showing a relationship between ΔPRE and corrosion weight loss.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.05%以下、 Si:0.1〜1.0%、 Mn:0.2〜1.5%、 P:0.035%以下、 S:0.005%以下、 Ni:3〜7.5%、 Cr:21〜28%、 Mo:1〜5%、 Cu:0.5%以下、 Al:0.005〜0.04%、 N:0.25%以下、 を含有し、残部Feおよび不可避的不純物からなる鋼
で、下記式に示すγ率が0.3〜0.7、PREが3
2.5以上、△PREが−1.0〜1.0を満足する鋼
からなることを特徴とする耐孔食性の優れた二相系ステ
ンレス鋼。 γ率=(149.7C−6.01Si+2.76Mn+
6.41Ni−5.62Cr−3.74Mo+206.
2N+117.2)/100 PRE=Cr+3.3Mo+16N △PRE=PRE(α)−PRE(γ)={Cr(α)
+3.3・Mo(α)+16・N(α)}−{Cr
(γ)+3.3・Mo(γ)+16・N(γ)=(0.
08γ+0.0824)Cr+3.3(0.27γ+
0.2879)Mo−16{N−0.005(0.21
γ+0.9563)Cr+0.0595}/γ−3.5 ただし、Cr(α)はα相中のCr濃度、Mo(γ)は
γ相中のMo濃度を示す。
1. In mass%, C: 0.05% or less, Si: 0.1 to 1.0%, Mn: 0.2 to 1.5%, P: 0.035% or less, S: 0. 0.005% or less, Ni: 3 to 7.5%, Cr: 21 to 28%, Mo: 1 to 5%, Cu: 0.5% or less, Al: 0.005 to 0.04%, N: 0 .25% or less, and a balance of Fe and unavoidable impurities, and a γ ratio shown in the following formula of 0.3 to 0.7 and a PRE of 3
A duplex stainless steel having excellent pitting corrosion resistance, which is made of a steel having a value of 2.5 or more and a ΔPRE satisfying -1.0 to 1.0. γ rate = (149.7C-6.01Si + 2.76Mn +
6.41Ni-5.62Cr-3.74Mo + 206.
2N + 117.2) / 100 PRE = Cr + 3.3Mo + 16N ΔPRE = PRE (α) -PRE (γ) = {Cr (α)
+ 3.3 · Mo (α) + 16 · N (α)}-{Cr
(Γ) + 3.3 · Mo (γ) + 16 · N (γ) = (0.
08γ + 0.0824) Cr + 3.3 (0.27γ +
0.2879) Mo-16 {N-0.005 (0.21
γ + 0.9563) Cr + 0.0595} /γ-3.5 where Cr (α) represents the Cr concentration in the α phase and Mo (γ) represents the Mo concentration in the γ phase.
【請求項2】 請求項1に記載の成分組成に加えて、T
i:0.1〜0.4%、V:0.1〜0.4%、Nb:
0.1〜0.4%の1種または2種以上で合計0.4%
以下であることを特徴とする耐孔食性の優れた二相系ス
テンレス鋼。
2. In addition to the component composition according to claim 1, T
i: 0.1 to 0.4%, V: 0.1 to 0.4%, Nb:
0.1% to 0.4%, 1 type or 2 types or more, 0.4% in total
Duplex stainless steel with excellent pitting corrosion resistance, characterized in that:
【請求項3】 請求項1または2に記載の成分組成に加
えて、Ca:0.0005〜0.01%、B:0.00
05〜0.003%の1種または2種を含有することを
特徴とする耐孔食性の優れた二相系ステンレス鋼。
3. In addition to the component composition according to claim 1 or 2, Ca: 0.0005 to 0.01%, B: 0.00
A duplex stainless steel having excellent pitting corrosion resistance, characterized by containing 05 to 0.003% of 1 type or 2 types.
JP2002102053A 2002-04-04 2002-04-04 Duplex stainless steel having excellent pitting corrosion resistance Pending JP2003293090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102053A JP2003293090A (en) 2002-04-04 2002-04-04 Duplex stainless steel having excellent pitting corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102053A JP2003293090A (en) 2002-04-04 2002-04-04 Duplex stainless steel having excellent pitting corrosion resistance

Publications (1)

Publication Number Publication Date
JP2003293090A true JP2003293090A (en) 2003-10-15

Family

ID=29242082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102053A Pending JP2003293090A (en) 2002-04-04 2002-04-04 Duplex stainless steel having excellent pitting corrosion resistance

Country Status (1)

Country Link
JP (1) JP2003293090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202247A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp Two-phase stainless steel material having excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202247A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp Two-phase stainless steel material having excellent corrosion resistance

Similar Documents

Publication Publication Date Title
EP0750053B1 (en) Duplex stainless steel excellent in corrosion resistance
JP2007284799A (en) Corrosion-resistant austenitic stainless steel
EP2770076B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
CA2342817C (en) Duplex stainless steel
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
EP1340829B1 (en) Duplex stainless steel for urea manufacturing plants
TW201031764A (en) Ferritic-austenitic stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
US20090081069A1 (en) Austenitic stainless steel
EP0261345B1 (en) Pitting resistant duplex stainless steel alloy
JPH05271832A (en) Corrosion resistant nickel base austenitic alloy and corrosion resistant member
JP2019505680A (en) Manufacturing method of duplex stainless steel pipe
JP2003293090A (en) Duplex stainless steel having excellent pitting corrosion resistance
CA2355109C (en) Corrosion resistant austenitic stainless steel
JP2635215B2 (en) Work-hardened stainless steel for springs
JP2004143576A (en) Low nickel austenitic stainless steel
JPH07157852A (en) Ferritic stainless steel excellent in high temp erature salt damage property
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JPS58144460A (en) Two-phase cast stainless steel having high corrosion resistant and high fatique strength
JPH03277744A (en) Ferritic stainless steel excellent in toughness and corrosion resistance after brazing
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance
JP3437668B2 (en) Melting resistant zinc alloy steel
JPH05302151A (en) Duplex stainless steel having high corrosion resistance, high strength and high toughness
JP3525014B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A02