JP2003287536A - Optical waveguide type protein chip and protein detecting apparatus - Google Patents

Optical waveguide type protein chip and protein detecting apparatus

Info

Publication number
JP2003287536A
JP2003287536A JP2002089768A JP2002089768A JP2003287536A JP 2003287536 A JP2003287536 A JP 2003287536A JP 2002089768 A JP2002089768 A JP 2002089768A JP 2002089768 A JP2002089768 A JP 2002089768A JP 2003287536 A JP2003287536 A JP 2003287536A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide layer
antibody
substrate
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002089768A
Other languages
Japanese (ja)
Other versions
JP3833955B2 (en
Inventor
Kenichi Uchiyama
兼一 内山
Hideo Eto
英雄 江藤
Ichiro Tono
一郎 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002089768A priority Critical patent/JP3833955B2/en
Publication of JP2003287536A publication Critical patent/JP2003287536A/en
Application granted granted Critical
Publication of JP3833955B2 publication Critical patent/JP3833955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide type protein chip capable of both shortening a reaction time between proteins in a specimen solution such as blood and an antibody and highly sensitively detecting protein molecules even through the use of the specimen solution of a very small quantity. <P>SOLUTION: The optical waveguide type protein chip is provided with a substrate, a first optical waveguide layer formed on the surface of the substrate, gratings each formed on the surfaces of both end parts of the first optical waveguide layer, a second optical waveguide layer made of a transparent conductive material having a refractive index higher than that of the first optical waveguide layer and formed on the first, optical waveguide layer located between the gratings, an antibody fixing film formed on the second optical waveguide layer, a first insulating member formed on the substrate containing the first optical waveguide layer and having a recessed well at a part at which the antibody immobilizing film is located, and an electrode membrane formed in such a way that its part is close to the well on the first insulating member for generating electric charge in-between the second optical waveguide layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、検体溶液中のタン
パク分子を検出するための光導波路型プロテインチップ
およびプロテイン検出装置に関する。
TECHNICAL FIELD The present invention relates to an optical waveguide type protein chip and a protein detection device for detecting protein molecules in a sample solution.

【0002】[0002]

【従来技術】酵素免疫法(ELISA法)では、透明な
プラスチックで造られたマイクロプレートと呼ばれる容
器の内壁に抗体を固定化して、検体溶液を注入しターゲ
ットタンパク分子を抗体と反応させてタンパク分子の検
出を行っている。この反応は、4℃で4時間程度費やさ
れる。
2. Description of the Related Art In the enzyme-linked immunosorbent assay (ELISA), an antibody is immobilized on the inner wall of a container called a microplate made of transparent plastic, a sample solution is injected, and a target protein molecule is reacted with the antibody to form a protein molecule. Is being detected. This reaction is spent at 4 ° C. for about 4 hours.

【0003】タンパク分子を高感度で測定をするには、
前記容器内壁の抗体と反応したターゲットタンパク分子
に酵素で標識した二次抗体を反応させる。更に酵素で発
色または蛍光を生じる色素を添加し吸光度もしくは蛍光
強度を測定している。
To measure protein molecules with high sensitivity,
A target protein molecule that has reacted with the antibody on the inner wall of the container is reacted with a secondary antibody labeled with an enzyme. Further, a dye that produces color or fluorescence with an enzyme is added to measure the absorbance or fluorescence intensity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
プロテインマイクロプレートは固定化された抗体とタン
パク分子との反応時間が長いという問題があった。
However, the conventional protein microplate has a problem that the reaction time between the immobilized antibody and the protein molecule is long.

【0005】本発明は、例えば血液のような検体溶液中
のタンパク分子と抗体の反応時間の短縮化を図ることが
可能でかつ、微量の検体溶液を用いても高感度でタンパ
ク分子の検出が可能な光導波路型プロテインチップを提
供しようとするものである。
The present invention can shorten the reaction time between a protein molecule and an antibody in a sample solution such as blood, and can detect a protein molecule with high sensitivity even when a small amount of sample solution is used. It is intended to provide a possible optical waveguide type protein chip.

【0006】本発明は、例えば血液のような複数の検体
溶液中のタンパク分子を同時並列的に抗体と反応できる
と共に検出時間の短縮化と高感度化を図ることが可能な
プロテイン検出装置を提供しようとするものである。
The present invention provides a protein detection device capable of simultaneously reacting protein molecules in a plurality of sample solutions such as blood with an antibody in parallel, and shortening the detection time and increasing the sensitivity. Is what you are trying to do.

【0007】[0007]

【課題を解決するための手段】本発明に係る光導波路型
プロテインチップは、基板と、前記基板表面に形成され
た第1光導波路層と、前記第1光導波路層の両端部表面
にそれぞれ形成されたグレーティングと、前記グレーテ
ィングの間に位置する前記第1光導波路層上に形成さ
れ、この第1光導波路層より高屈折率で透明な導電材料
からなる第2光導波路層と、前記第2光導波路層上に形
成された抗体固定化膜と、前記第1光導波路層を含む前
記基板上に形成され、前記抗体固定化膜が位置する箇所
に陥没したウエルを有する第1絶縁部材と、前記第1絶
縁部材上に一部が前記ウエルに近接するように形成さ
れ、前記第2光導波路層との間で電荷を発生させるため
の電極薄膜とを具備したことを特徴とするものである。
An optical waveguide type protein chip according to the present invention is formed on a substrate, a first optical waveguide layer formed on the surface of the substrate, and both end surfaces of the first optical waveguide layer. And a second optical waveguide layer formed on the first optical waveguide layer located between the gratings, the second optical waveguide layer being made of a conductive material having a higher refractive index than the first optical waveguide layer and being transparent. An antibody-immobilized film formed on the optical waveguide layer, and a first insulating member formed on the substrate including the first optical waveguide layer and having a well recessed at a position where the antibody-immobilized film is located, A part of the electrode is formed on the first insulating member so as to be close to the well, and an electrode thin film for generating charges between the second insulating layer and the second optical waveguide layer is provided. .

【0008】本発明に係るプロテイン検出装置は、基板
と、前記基板表面に形成された複数の第1光導波路層
と、前記各第1光導波路層の両端部表面にそれぞれ形成
されたグレーティングと、前記グレーティングの間に位
置する前記各第1光導波路層上にそれぞれ形成され、こ
の第1光導波路層より高屈折率で透明な導電材料からな
る複数の第2光導波路層と、前記各第2光導波路層上に
それぞれ形成された複数の抗体固定化膜と、前記第1光
導波路層を含む前記基板上に形成され、前記各抗体固定
化膜が位置する箇所に陥没したウエルを有する第1絶縁
部材と、前記第1絶縁部材上に一部が前記各ウエルにそ
れぞれ近接するように形成され、前記第2光導波路層と
の間で電荷を発生させるための複数の電極薄膜とを備え
た光導波路型プロテインチップ;前記プロテインチップ
の各第1光導波路層の一端にレーザ光を入射するための
レーザ素子;前記プロテインチップの各第1光導波路層
の他端から出射される光を受光する受光素子;および前
記プロテインチップとレーザ素子の間に配置されるポリ
ゴンミラー;を具備したことを特徴とするものである。
A protein detection device according to the present invention includes a substrate, a plurality of first optical waveguide layers formed on the surface of the substrate, and gratings formed on both end surfaces of each of the first optical waveguide layers. A plurality of second optical waveguide layers each formed on each of the first optical waveguide layers positioned between the gratings and made of a conductive material having a refractive index higher than that of the first optical waveguide layers; A first plurality of antibody-immobilized films respectively formed on the optical waveguide layer, and a well formed on the substrate including the first optical waveguide layer and having a well recessed at a position where each of the antibody-immobilized films is located; An insulating member; and a plurality of electrode thin films, which are formed on the first insulating member so as to be partially close to the respective wells and generate charges between the second optical waveguide layer and the second optical waveguide layer. Optical waveguide type protector A laser chip for injecting laser light into one end of each first optical waveguide layer of the protein chip; a light receiving element for receiving light emitted from the other end of each first optical waveguide layer of the protein chip; and A polygon mirror arranged between the protein chip and the laser element is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明の光導波路型プロテ
インチップおよびプロテイン検出装置を図面を参照して
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An optical waveguide type protein chip and a protein detection device of the present invention will be described in detail below with reference to the drawings.

【0010】図1は、この実施形態に用いられる光導波
路型プロテインチップを示す平面図、図2は図1のII−
II線に沿う断面図、図3は図1のIII−III線に沿う断面
図である。
FIG. 1 is a plan view showing an optical waveguide type protein chip used in this embodiment, and FIG. 2 is II- of FIG.
A sectional view taken along line II, and FIG. 3 is a sectional view taken along line III-III in FIG.

【0011】例えばガラスからなる基板1は、表面にこ
の基板1より高屈折率の複数、例えば4つの第1光導波
路層2が互いに平行に形成されている。これらの第1光
導波路2は、例えば380〜400℃の硝酸カリウム溶
融塩のようなイオン交換溶液に浸漬してカリウム、ナト
リウム等の高屈折率元素をイオン交換することにより形
成される。グレーティング3は、前記第1光導波路層2
と同等もしくは高い屈折率を有し、前記各第1光導波路
層2の両端部表面にそれぞれ形成されている。これらの
グレーティング3は、例えばフォトレジスト、酸化チタ
ン、酸化亜鉛、ニオブ酸リチウム、GaAsにより作ら
れる。
A substrate 1 made of glass, for example, has a plurality of first optical waveguide layers 2 having a higher refractive index than the substrate 1, for example, four first optical waveguide layers 2 formed on the surface in parallel with each other. These first optical waveguides 2 are formed, for example, by immersing in an ion exchange solution such as a molten salt of potassium nitrate at 380 to 400 ° C. to ion exchange high refractive index elements such as potassium and sodium. The grating 3 includes the first optical waveguide layer 2
Has a refractive index equal to or higher than that of the first optical waveguide layer 2 and is formed on both end surfaces of the respective first optical waveguide layers 2. These gratings 3 are made of photoresist, titanium oxide, zinc oxide, lithium niobate, GaAs, for example.

【0012】図2に示すように長さ方向の端部が傾斜し
た形状の複数、例えば4つの第2光導波路層4は、前記
各第1光導波路層2より高い屈折率を有し、前記2つの
グレーティング3の間に位置する前記各第1光導波路層
2上にそれぞれ形成されている。これらの第2光導波路
層4は、例えばITOまたは酸化錫などの透明な導電性
材料から作られる。
As shown in FIG. 2, a plurality of, for example, four second optical waveguide layers 4 each having an inclined end in the length direction have a higher refractive index than each of the first optical waveguide layers 2, and It is formed on each of the first optical waveguide layers 2 located between the two gratings 3. These second optical waveguide layers 4 are made of a transparent conductive material such as ITO or tin oxide.

【0013】複数、例えば4つの抗体固定化膜5は、前
記第2光導波路4の平坦な表面にそれぞれ形成されてい
る。これらの抗体固定化膜5は、例えばデキストリン、
カルボキシル基を配したシランから作られる。
A plurality of, for example, four antibody-immobilized films 5 are formed on the flat surface of the second optical waveguide 4, respectively. These antibody-immobilized membranes 5 are, for example, dextrin,
Made from silanes with carboxyl groups.

【0014】第1絶縁部材6は、前記各第1光導波路層
2、各第2光導波路層4および各抗体固定化膜5を含む
前記基板1上に形成され、前記各抗体固定化膜5が位置
する箇所をそれぞれ陥没してウエル7を形成している。
この第1絶縁部材6は、例えばフッ素を含むフォトレジ
ストから作られる。具体的には、前記フォトレジストの
溶液を前記各第1、第2の光導波路層2、4および前記
各抗体固定化膜5を含む前記基板1上に塗布し、乾燥し
た後、露光、現像処理することにより図1に示す外形形
状を有し、かつ前記各抗体固定化膜5が位置する箇所を
それぞれ陥没してウエル7を形成した第1絶縁部材6が
作製される。
The first insulating member 6 is formed on the substrate 1 including the first optical waveguide layer 2, the second optical waveguide layer 4 and the antibody immobilizing film 5, and the antibody immobilizing film 5 is formed. The wells 7 are formed by denting the places where are located.
The first insulating member 6 is made of, for example, a photoresist containing fluorine. Specifically, the solution of the photoresist is applied onto the substrate 1 including the first and second optical waveguide layers 2 and 4 and the antibody-immobilized film 5, dried, and then exposed and developed. By the treatment, the first insulating member 6 having the outer shape shown in FIG. 1 and having the wells 7 formed by recessing the positions of the antibody-immobilized films 5 is produced.

【0015】複数、例えば4つの電極薄膜8は、前記第
1光導波路層2間に位置する前記第1絶縁部材6上に前
記第1光導波路層2と平行して形成され、かつ中央付近
に前記ウエル7の開口部近傍に延びる延出部9を有す
る。これらの電極薄膜8は、例えばAu,Pt,Ti等
の金属から作られている。
A plurality of, for example, four electrode thin films 8 are formed on the first insulating member 6 located between the first optical waveguide layers 2 in parallel with the first optical waveguide layers 2 and near the center. It has an extending portion 9 extending near the opening of the well 7. These electrode thin films 8 are made of a metal such as Au, Pt, or Ti.

【0016】例えばAu,Pt,Ti等の金属からなる
別の電極薄膜(参照電極)10およびAg/AgCl薄
膜からなる標準電極11は、前記基板1周辺に位置する
前記第1絶縁部材6上に形成されている。すなわち、前
記電極薄膜8、前記参照電極10および前記標準電極1
1により電気化学的な3極管構造を構成している。
For example, another electrode thin film (reference electrode) 10 made of a metal such as Au, Pt, or Ti and a standard electrode 11 made of an Ag / AgCl thin film are provided on the first insulating member 6 located around the substrate 1. Has been formed. That is, the electrode thin film 8, the reference electrode 10, and the standard electrode 1
1 constitutes an electrochemical triode structure.

【0017】例えば矩形板状の第2絶縁部材12は、前
記各ウエル7を含む前記第1絶縁部材6上に複数の前記
第1光導波路2に対して直交する方向に形成されてい
る。前記第2絶縁部材12は、検体溶液を前記ウエル7
に供給、排出するための供給孔13、排出孔14がそれ
ぞれ各ウエル7毎に開口されている。
For example, the rectangular plate-shaped second insulating member 12 is formed on the first insulating member 6 including the wells 7 in a direction orthogonal to the plurality of first optical waveguides 2. The second insulating member 12 applies the sample solution to the well 7
A supply hole 13 and a discharge hole 14 for supplying and discharging to and from each well 7 are opened for each well 7.

【0018】良熱伝導性被膜15は、前記基板1裏面の
光入射領域および光出射領域を除く部分に形成されてい
る。この良熱伝導性被膜15としては、例えば銅、アル
ミニウムのような金属被膜、窒化アルミニウム、窒化ホ
ウ素のようなセラミック被膜を挙げることができる。
The good heat conductive coating 15 is formed on the rear surface of the substrate 1 except the light incident region and the light emitting region. Examples of the good thermal conductive film 15 include a metal film such as copper and aluminum, and a ceramic film such as aluminum nitride and boron nitride.

【0019】次に、前述した光導波路型プロテインチッ
プ16を備えるプロテイン検出装置を図4を参照して説
明する。
Next, a protein detection device equipped with the above-mentioned optical waveguide type protein chip 16 will be described with reference to FIG.

【0020】このプロテイン検出装置は、前記光導波路
型プロテインチップ16における複数の第1光導波路層
2の一端が露出する一方の端面側(右端面側)に配置さ
れたレーザ光を放出するためのレーザ素子(例えば波長
650nmの半導体レーザ)21を備えている。このレ
ーザ素子21のレーザ光放出側には、コリメートレンズ
22、偏光板23およびポリゴンミラー24が順次配置
されている。このポリゴンミラー24に代えてガルバノ
ミラーを用いてもよい。前記ポリゴンミラー24のレー
ザ光放出側には、第1シリンダレンズ25が前記プロテ
インチップ16の右端面と平行になるように配置されて
いる。第2シリンダレンズ26は、前記プロテインチッ
プ16における複数の第1光導波路層2の他端が露出す
る他方の端面側(左端面側)に配置されている。第2シ
リンダレンズ26のレーザ光放出側には、第2偏光板2
7および受光素子28が順次配置されている。
This protein detection device emits a laser beam arranged on one end face side (right end face side) of the optical waveguide type protein chip 16 where one end of the plurality of first optical waveguide layers 2 is exposed. A laser element (for example, a semiconductor laser having a wavelength of 650 nm) 21 is provided. A collimator lens 22, a polarizing plate 23 and a polygon mirror 24 are sequentially arranged on the laser light emitting side of the laser element 21. A galvanometer mirror may be used instead of the polygon mirror 24. A first cylinder lens 25 is arranged on the laser light emitting side of the polygon mirror 24 so as to be parallel to the right end surface of the protein chip 16. The second cylinder lens 26 is arranged on the other end surface side (left end surface side) of the protein chip 16 where the other ends of the plurality of first optical waveguide layers 2 are exposed. The second polarizing plate 2 is provided on the laser light emitting side of the second cylinder lens 26.
7 and the light receiving element 28 are sequentially arranged.

【0021】なお、前記プロテイン検出装置において前
記光導波路型プロテインチップ16は着脱可能でその配
置位置には収納部(図示せず)が設けられている。
In the protein detection device, the optical waveguide type protein chip 16 is detachable, and an accommodating portion (not shown) is provided at the disposition position.

【0022】次に、前述した光導波路型プロテインチッ
プおよびプロテイン検出装置の作用を説明する。
Next, the operation of the above-mentioned optical waveguide type protein chip and protein detection device will be described.

【0023】まず、オートサンプラーの針(図示せず)
を光導波路型プロテインチップ16の第2絶縁部材12
の各供給孔13にそれぞれ挿入し、抗体をこれらオート
サンプラーの針を通して4つのウエル7内に供給し、各
ウエル7底部の抗体固定化膜5に固定化する。この場
合、各抗体固定化膜5に固定化される抗体は同じでも、
異なってもよい。
First, the needle of the auto sampler (not shown)
The second insulating member 12 of the optical waveguide type protein chip 16
The antibody is supplied into the four wells 7 through the needles of these autosamplers and immobilized on the antibody-immobilized membrane 5 at the bottom of each well 7. In this case, even if the antibody immobilized on each antibody-immobilized membrane 5 is the same,
May be different.

【0024】次いで、これらのオートサンプラーの針を
取り去り、別のオートサンプラーの針(図示せず)を同
様に前記第2絶縁部材12の供給孔13に挿入し、図5
に示すように検体溶液である例えば血液29をこれらオ
ートサンプラーの針を通して前記各ウエル7内に供給す
ることにより、ELISA法に従って各ウエル7内にお
いて血液中のタンパク分子を例えばカルボキシル基を配
したシランコートのような抗体固定化膜5に固定化され
た抗体と反応させる。同時に、基準電極11に例えば
0.2〜0.3Vの電圧を印加することによって、複
数、例えば4つの電極薄膜8と参照電極10との間に電
流が流れるため、前記各電極薄膜8の延出部9と導電性
材料からなる第2光導電層4との間に電荷が発生する。
このとき、前記血液中のタンパク分子はpHに応じて電
荷を持っているため、そのタンパク分子は前記第2光導
電層4に向けて、つまりこの第2光導電層4上に位置す
る抗体固定化膜5に向けて引き寄せられる。このため、
各抗体固定化膜5に固定化される抗体と血液中のターゲ
ットタンパク分子との反応が短時間でなされる。この反
応において、前記基板1の裏面に良熱伝導性被膜15を
取り付けることによって、各ウエル7中の血液の温度を
均一化することが可能になる。
Next, these autosampler needles are removed, and another autosampler needle (not shown) is inserted into the supply hole 13 of the second insulating member 12 in the same manner as shown in FIG.
As shown in FIG. 5, blood 29, which is a sample solution, is supplied into each of the wells 7 through the needles of these autosamplers, so that protein molecules in blood are placed in each well 7 according to the ELISA method such as silane having a carboxyl group. The antibody immobilized on the antibody-immobilized film 5 such as a coat is reacted. At the same time, by applying a voltage of, for example, 0.2 to 0.3 V to the reference electrode 11, a current flows between a plurality of, for example, four electrode thin films 8 and the reference electrode 10, so that the extension of each electrode thin film 8 is increased. Electric charges are generated between the output portion 9 and the second photoconductive layer 4 made of a conductive material.
At this time, since the protein molecules in the blood have an electric charge according to the pH, the protein molecules are directed toward the second photoconductive layer 4, that is, the antibody immobilized on the second photoconductive layer 4 is immobilized. It is drawn toward the chemical film 5. For this reason,
The reaction between the antibody immobilized on each antibody-immobilized membrane 5 and the target protein molecule in the blood takes place in a short time. In this reaction, by attaching the good heat conductive coating 15 to the back surface of the substrate 1, it becomes possible to make the temperature of the blood in each well 7 uniform.

【0025】反応後の光導波路型プロテインチップ16
を図4に示すプロテイン検出装置に組み込み、色素マー
カの付いた二次抗体を図示しないオートサンプラーの針
を通して前記各ウエル7内に供給して抗体固定化膜5で
抗体と反応されたタンパク分子に対して色素マーカの付
いたインターカレータを作用させて発色させる。
Optical waveguide type protein chip 16 after reaction
4 was incorporated into the protein detection apparatus shown in FIG. 4, and a secondary antibody with a dye marker was supplied into each of the wells 7 through a needle of an autosampler (not shown) to convert the protein molecules reacted with the antibody on the antibody-immobilized membrane 5. On the other hand, an intercalator with a dye marker is acted on to develop a color.

【0026】このような状態で、図4に示すようにレー
ザ素子21から例えば波長650nmのレーザ光をコリ
メートレンズ22、偏光板23を通して回転駆動するポ
リゴンミラー24に放射させる。このとき、レーザ光は
コリメートレンズ22でコリメートされ、偏光板23で
TE,TMモードの光強度が同じになるように調節さ
れ、回転駆動するポリゴンミラー24で反射されて前記
プロテインチップ13の4つの第1光導波路層2に向け
て振り分けられる。振り分けられたレーザ光は、図5に
示すように前記プロテインチップ16の第1光導波路層
2が位置する基板1裏面側に入射され、基板1を通して
グレーティング3と第1光導波路層2の界面で屈折され
てその第1光導波路層2を伝播される。第1光導波路層
2を伝播されるレーザ光は、第1光導波路層2より高屈
折率の第2光導波路層4との界面で2つのモード(TM
モード、TEモード)に分割され、それら第1、第2の
光導波路層2,4を伝播する。このとき、前記抗体固定
化膜5で抗体とタンパク分子が反応され、発色されるこ
とに伴う変化(例えば吸光度変化)によってこの抗体固
定化膜5直下の第2光導波路層4を伝播する光の強度が
変化する。このように第1、第2の光導波路層2,4を
伝播した光は、第2光導波路層4の反対側の端部におい
てそれら光導波路層2,4の界面で再び結合、干渉する
ため、前記第2光導波路層4を伝播する光の強度変化を
増幅できる。その結果、前記抗体固定化膜5における抗
体と血液中のタンパク分子との反応、色素マーキングに
よる発色に基づく第2光導波路層4を伝播する光の極微
な変化も第2シリンダレンズ26および第2偏光板27
を通して受光素子28で検出することが可能になる。ま
た、このような検出操作は前記プロテインチップ16の
複数(4つ)の第1光導波路層2において同時、並列的
になされ、タンパク分子が同定される。
In this state, as shown in FIG. 4, a laser beam having a wavelength of 650 nm is emitted from the laser element 21 to the polygon mirror 24 which is rotationally driven through the collimator lens 22 and the polarizing plate 23. At this time, the laser light is collimated by the collimator lens 22, adjusted so that the light intensities in the TE and TM modes are the same by the polarizing plate 23, reflected by the polygon mirror 24 that is driven to rotate, and reflected by the four of the protein chips 13. It is distributed toward the first optical waveguide layer 2. The distributed laser light is incident on the back surface side of the substrate 1 where the first optical waveguide layer 2 of the protein chip 16 is located as shown in FIG. 5, and passes through the substrate 1 at the interface between the grating 3 and the first optical waveguide layer 2. It is refracted and propagated through the first optical waveguide layer 2. The laser light propagated through the first optical waveguide layer 2 has two modes (TM) at the interface with the second optical waveguide layer 4 having a higher refractive index than the first optical waveguide layer 2.
Mode, TE mode) and propagate through the first and second optical waveguide layers 2 and 4. At this time, the antibody and the protein molecule react with each other on the antibody-immobilized film 5, and a change (for example, a change in absorbance) accompanying the color development causes a change in the light that propagates through the second optical waveguide layer 4 immediately below the antibody-immobilized film 5. The intensity changes. Thus, the light propagating through the first and second optical waveguide layers 2 and 4 is recombined and interferes at the interface between the optical waveguide layers 2 and 4 at the opposite end of the second optical waveguide layer 4. The change in the intensity of the light propagating through the second optical waveguide layer 4 can be amplified. As a result, the reaction between the antibody in the antibody-immobilized film 5 and the protein molecule in the blood, and the minute change of the light propagating through the second optical waveguide layer 4 due to the coloring caused by the dye marking also cause the second cylinder lens 26 and the second cylinder lens 26. Polarizing plate 27
It becomes possible to detect with the light receiving element 28 through. In addition, such a detection operation is performed simultaneously and in parallel in the plurality (four) of the first optical waveguide layers 2 of the protein chip 16 to identify the protein molecule.

【0027】以上、本発明の光導波路型プロテインチッ
プによれば、各電極薄膜8の延出部9と導電性材料から
なる第2光導電層4との間に電荷を発生させ、底部に抗
体固定化膜5が位置する各ウエル7内の血液中のタンパ
ク分子を前記第2光導電層4に向けて、つまりこの第2
光導電層4上に位置する前記抗体固定化膜5に向けて引
き寄せられことができるため、各抗体固定化膜5に固定
化される抗体と血液中のターゲットタンパク分子との反
応時間を著しく短縮化することができる。
As described above, according to the optical waveguide type protein chip of the present invention, an electric charge is generated between the extending portion 9 of each electrode thin film 8 and the second photoconductive layer 4 made of a conductive material, and the antibody is formed on the bottom. The protein molecules in the blood in each well 7 in which the immobilization film 5 is located are directed toward the second photoconductive layer 4, that is, the second photoconductive layer 4.
Since it can be attracted toward the antibody-immobilized film 5 located on the photoconductive layer 4, the reaction time between the antibody immobilized on each antibody-immobilized film 5 and the target protein molecule in blood is significantly shortened. Can be converted.

【0028】また、前記基板1の裏面に良熱伝導性被膜
15を取り付けることによって、各ウエル7の検体溶液
の温度を均一化することができ、より高精度の検出が可
能になる。
Also, by attaching the good thermal conductive coating 15 to the back surface of the substrate 1, the temperature of the sample solution in each well 7 can be made uniform, and more accurate detection can be performed.

【0029】一方、複数のチップユニットを有する図1
〜図3に示すプ光導波路型ロテインチップ16を図4に
示すように組み込んだプロテイン検出装置によれば、プ
ロテインチップ16の各ウエル7内で検体溶液である血
液中のタンパク分子を抗体と反応させ、発色反応後、各
ウエル7の下方に位置する第1光導波路層2に光を入射
させ、伝播途中で第2光導波路層4との界面で2つのモ
ード(TMモード、TEモード)に分割、合流させ、第
1光導波路層2から放出される光の透過光強度を測定す
ることによって、前記各ウエル7内の血液中のタンパク
分子を検出することができる。このため、血液を前記各
ウエル7内に前記抗体固定化膜5表面より上方に位置す
る程度の少量供給するだけで、血液中のタンパク分子を
検出することができる。その結果、従来のようにウエル
の発色溶液の深さ方向に光を透過させる場合に比べて、
検体溶液である血液、試薬の使用量を削減できる。しか
も、前記ウエル7を有する第1絶縁部材6は例えばフッ
素を含むフォトレジストをフォトリソグラフィ技術によ
り形成でき、そのウエル寸法をミクロンオーダまで微細
化すること可能である点からも、前記ウエル7に供給す
る血液量を著しく少なくできるため、血液の使用量を削
減できる。
On the other hand, FIG. 1 having a plurality of chip units.
~ According to the protein detection device in which the optical waveguide type rotein chip 16 shown in Fig. 3 is incorporated as shown in Fig. 4, the protein molecules in the blood as the sample solution are reacted with the antibody in each well 7 of the protein chip 16. After the color development reaction, light is incident on the first optical waveguide layer 2 located below each well 7 and split into two modes (TM mode and TE mode) at the interface with the second optical waveguide layer 4 during propagation. By merging, and measuring the transmitted light intensity of the light emitted from the first optical waveguide layer 2, the protein molecule in the blood in each well 7 can be detected. Therefore, protein molecules in blood can be detected by supplying blood into each well 7 in such a small amount as to be located above the surface of the antibody-immobilized film 5. As a result, compared with the conventional case where light is transmitted in the depth direction of the coloring solution in the well,
It is possible to reduce the amount of blood and reagent used as the sample solution. In addition, the first insulating member 6 having the well 7 can be formed into a photoresist containing fluorine, for example, by a photolithography technique, and the well dimension can be reduced to the micron order. Since the amount of blood used can be significantly reduced, the amount of blood used can be reduced.

【0030】さらに、プロテインチップ16を図4に示
すように組み込んだプロテイン検出装置によれば複数の
検体溶液のタンパク分子を高感度で同時並列的に同定化
できると共に検出時間の短縮化を図ることができる。
Further, by using the protein detection device incorporating the protein chip 16 as shown in FIG. 4, it is possible to identify protein molecules of a plurality of sample solutions simultaneously in parallel with high sensitivity and shorten the detection time. You can

【0031】なお、前述した実施形態ではウエル7下に
抗体固定化膜5および第2光導波路層4が積層された第
1光導波路層2を1チップユニットとし、このチップユ
ニットを基板1に複数配列したが、1つのチップユニッ
トのみを基板に配置してプロテインチップを構成しても
よい。
In the above-described embodiment, the first optical waveguide layer 2 in which the antibody-immobilized film 5 and the second optical waveguide layer 4 are laminated under the well 7 constitutes one chip unit, and this chip unit is formed on the substrate 1 in plural. Although arranged, the protein chip may be configured by disposing only one chip unit on the substrate.

【0032】前述した実施形態では、第2絶縁部材12
をその供給孔13、排出孔14が第1絶縁部材6の各ウ
エル7と連通するように設けたが、この第2絶縁部材を
省略してもよい。
In the above-described embodiment, the second insulating member 12
Although the supply hole 13 and the discharge hole 14 are provided so as to communicate with each well 7 of the first insulating member 6, the second insulating member may be omitted.

【0033】[0033]

【発明の効果】以上詳述したように本発明によれば、例
えば血液のような検体溶液中のタンパクと抗体の反応時
間の短縮化を図ることが可能でかつ、微量の検体溶液を
用いても高感度でタンパク分子の検出が可能な光導波路
型プロテインチップを提供することができる。
As described in detail above, according to the present invention, it is possible to shorten the reaction time of a protein and an antibody in a sample solution such as blood, and to use a small amount of sample solution. It is possible to provide an optical waveguide type protein chip capable of detecting protein molecules with high sensitivity.

【0034】また、本発明によれば例えば血液のような
複数の検体溶液中のタンパク分子を同時並列的に抗体と
反応できると共に検出時間の短縮化と高感度化を図るこ
とが可能なプロテイン検出装置を提供することができ
る。
Further, according to the present invention, protein molecules in a plurality of sample solutions such as blood can be simultaneously reacted with an antibody in parallel, and the detection time can be shortened and the sensitivity can be improved. A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路型プロテインチップを示す平
面図。
FIG. 1 is a plan view showing an optical waveguide type protein chip of the present invention.

【図2】図1のII−II線に沿う断面図。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図1のIII−III線に沿う断面図。FIG. 3 is a sectional view taken along the line III-III in FIG.

【図4】本発明のプロテイン検出装置を示す平面図。FIG. 4 is a plan view showing a protein detection device of the present invention.

【図5】本発明のプロテイン検出装置の作用を説明する
ための断面図。
FIG. 5 is a cross-sectional view for explaining the operation of the protein detection device of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、 2…第1光導波路層、 3…グレーティング、 4…第2光導波路層、 5…抗体固定化膜、 6…第1絶縁部材、 7…ウエル、 8…電極薄膜、 12…第2絶縁部材、 15…良熱伝導性被膜 16…光導波路型プロテインチップ、 21…レーザ素子、 24…ポリゴンミラー、 28…受光素子、 19…検体溶液(血液)。 1 ... substrate, 2 ... the first optical waveguide layer, 3 ... Grating, 4 ... a second optical waveguide layer, 5 ... Antibody-immobilized membrane, 6 ... the first insulating member, 7 ... well, 8 ... electrode thin film, 12 ... a second insulating member, 15. Good thermal conductive film 16 ... Optical waveguide type protein chip, 21 ... Laser element, 24 ... Polygon mirror, 28 ... Light receiving element, 19 ... Sample solution (blood).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東野 一郎 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 Fターム(参考) 2G054 AA06 AA07 CA23 CE01 EA01 FA16 2H047 KA02 LA01 NA01 PA01 PA24 PA30 QA01 QA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ichiro Higashino             33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa             Inside the Toshiba Production Technology Center F-term (reference) 2G054 AA06 AA07 CA23 CE01 EA01                       FA16                 2H047 KA02 LA01 NA01 PA01 PA24                       PA30 QA01 QA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板と、 前記基板表面に形成された第1光導波路層と、 前記第1光導波路層の両端部表面にそれぞれ形成された
グレーティングと、 前記グレーティングの間に位置する前記第1光導波路層
上に形成され、この第1光導波路層より高屈折率で透明
な導電材料からなる第2光導波路層と、 前記第2光導波路層上に形成された抗体固定化膜と、 前記第1光導波路層を含む前記基板上に形成され、前記
抗体固定化膜が位置する箇所に陥没したウエルを有する
第1絶縁部材と、 前記第1絶縁部材上に一部が前記ウエルに近接するよう
に形成され、前記第2光導波路層との間で電荷を発生さ
せるための電極薄膜とを具備したことを特徴とする光導
波路型プロテインチップ。
1. A substrate, a first optical waveguide layer formed on the surface of the substrate, gratings formed on both end surfaces of the first optical waveguide layer, and the first optical waveguide layer located between the gratings. A second optical waveguide layer formed on the optical waveguide layer and made of a conductive material having a higher refractive index than that of the first optical waveguide layer; and an antibody immobilization film formed on the second optical waveguide layer, A first insulating member having a well formed on the substrate including a first optical waveguide layer and recessed at a position where the antibody-immobilized film is located; and a part of the well on the first insulating member is close to the well And an electrode thin film for generating electric charges between the second optical waveguide layer and the second optical waveguide layer.
【請求項2】 前記第1光導波路層、前記グレーティン
グ、前記第2光導波路層、前記抗体固定化膜、前記ウエ
ルおよび前記電極薄膜を1チップユニットとし、このチ
ップユニットを前記基板表面に前記第1光導波路層が互
いに平行になるように形成したことを特徴とする請求項
1記載の光導波路型プロテインチップ。
2. The first optical waveguide layer, the grating, the second optical waveguide layer, the antibody-immobilized film, the well, and the electrode thin film form one chip unit, and the chip unit is provided on the substrate surface as the first chip unit. The optical waveguide type protein chip according to claim 1, wherein one optical waveguide layer is formed so as to be parallel to each other.
【請求項3】 前記第1絶縁部材は、フォトレジストか
らなり、このフォトレジストを前記基板に塗布、乾燥
し、さらに露光、現像処理することにより所定の外形形
状に加工されるとともに、前記ウエルが形成されること
を特徴とする請求項1記載の光導波路型プロテインチッ
プ。
3. The first insulating member is made of a photoresist, and the photoresist is applied to the substrate, dried, and then exposed and developed to be processed into a predetermined outer shape, and the well is formed. The optical waveguide type protein chip according to claim 1, which is formed.
【請求項4】 検体溶液を前記ウエルに供給、排出する
ための2つの孔が開口された第2絶縁部材は、さらに少
なくとも前記ウエルを含む前記第1絶縁部材上に形成さ
れることを特徴とする請求項1または2記載の光導波路
型プロテインチップ。
4. A second insulating member having two holes for supplying and discharging a sample solution to and from the well is further formed on the first insulating member including at least the well. The optical waveguide type protein chip according to claim 1 or 2.
【請求項5】 良熱伝導性被膜は、前記基板裏面の所望
部分にさらに形成されることを特徴とする請求項1ない
し4いずれか記載の光導波路型プロテインチップ。
5. The optical waveguide type protein chip according to claim 1, wherein the good heat conductive coating is further formed on a desired portion of the back surface of the substrate.
【請求項6】 基板と、 前記基板表面に形成された複数の第1光導波路層と、前
記各第1光導波路層の両端部表面にそれぞれ形成された
グレーティングと、前記グレーティングの間に位置する
前記各第1光導波路層上にそれぞれ形成され、この第1
光導波路層より高屈折率で透明な導電材料からなる複数
の第2光導波路層と、前記各第2光導波路層上にそれぞ
れ形成された複数の抗体固定化膜と、前記第1光導波路
層を含む前記基板上に形成され、前記各抗体固定化膜が
位置する箇所に陥没したウエルを有する第1絶縁部材
と、前記第1絶縁部材上に一部が前記各ウエルにそれぞ
れ近接するように形成され、前記第2光導波路層との間
で電荷を発生させるための複数の電極薄膜とを備えた光
導波路型プロテインチップ;前記プロテインチップの各
第1光導波路層の一端にレーザ光を入射するためのレー
ザ素子;前記プロテインチップの各第1光導波路層の他
端から出射される光を受光する受光素子;および前記プ
ロテインチップとレーザ素子の間に配置されるポリゴン
ミラー;を具備したことを特徴とするプロテイン検出装
置。
6. A substrate, a plurality of first optical waveguide layers formed on the surface of the substrate, a grating formed on each end surface of each of the first optical waveguide layers, and located between the gratings. The first optical waveguide layer is formed on each of the first optical waveguide layers.
A plurality of second optical waveguide layers made of a conductive material having a higher refractive index than the optical waveguide layers, a plurality of antibody-immobilized films respectively formed on the respective second optical waveguide layers, and the first optical waveguide layer A first insulating member having a well that is formed on the substrate including a recess and is located at a position where each antibody-immobilized film is located; and a part of the first insulating member on the first insulating member so as to be close to each well. An optical waveguide type protein chip formed and provided with a plurality of electrode thin films for generating electric charges between the second optical waveguide layer; and a laser beam incident on one end of each first optical waveguide layer of the protein chip. And a light receiving element for receiving light emitted from the other end of each first optical waveguide layer of the protein chip; and a polygon mirror arranged between the protein chip and the laser element. Protein detection apparatus according to claim and.
JP2002089768A 2002-03-27 2002-03-27 Optical waveguide type protein chip and protein detection device Expired - Fee Related JP3833955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089768A JP3833955B2 (en) 2002-03-27 2002-03-27 Optical waveguide type protein chip and protein detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089768A JP3833955B2 (en) 2002-03-27 2002-03-27 Optical waveguide type protein chip and protein detection device

Publications (2)

Publication Number Publication Date
JP2003287536A true JP2003287536A (en) 2003-10-10
JP3833955B2 JP3833955B2 (en) 2006-10-18

Family

ID=29235264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089768A Expired - Fee Related JP3833955B2 (en) 2002-03-27 2002-03-27 Optical waveguide type protein chip and protein detection device

Country Status (1)

Country Link
JP (1) JP3833955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038375A (en) * 2014-08-05 2016-03-22 ベイジン ユウアン ホスピタル、キャピタル メディカル ユニバーシティBeijing Youan Hospital, Capital Medical University Chemi-luminescence protein chip measurement method and reagent kit used therefor
JP2020046531A (en) * 2018-09-19 2020-03-26 旭化成エレクトロニクス株式会社 Optical waveguide, optical concentration measurement device, and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038375A (en) * 2014-08-05 2016-03-22 ベイジン ユウアン ホスピタル、キャピタル メディカル ユニバーシティBeijing Youan Hospital, Capital Medical University Chemi-luminescence protein chip measurement method and reagent kit used therefor
JP2020046531A (en) * 2018-09-19 2020-03-26 旭化成エレクトロニクス株式会社 Optical waveguide, optical concentration measurement device, and manufacturing method
JP7179549B2 (en) 2018-09-19 2022-11-29 旭化成エレクトロニクス株式会社 Optical waveguide, optical density measuring device, and manufacturing method

Also Published As

Publication number Publication date
JP3833955B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US6534011B1 (en) Device for detecting biochemical or chemical substances by fluorescence excitation
JP3645907B2 (en) Method for detecting declining excitation light emission
Makarona et al. Point-of-need bioanalytics based on planar optical interferometry
US9222133B2 (en) Substrates, systems and methods for analyzing materials
JP3668198B2 (en) Optical waveguide type microplate
US5814565A (en) Integrated optic waveguide immunosensor
US6710870B1 (en) Method and device for measuring luminescence
CN109874334B (en) Contact imaging device for fluorescence applications
KR20090128528A (en) Calibration and normalization method for biosensors
JP2005338098A (en) Sensor platform and method for parallel detection of a plurality of analyte using dissipatively excited luminescence
JPH06167443A (en) Measuring apparatus utilizing surface plasmon resonance
US11408817B2 (en) Detection chip, detection system, and detection method
Bog et al. Densely Packed Microgoblet Laser Pairs for Cross‐Referenced Biomolecular Detection
EP0382832B1 (en) Method of assay fora ligand in a sample
Goddard et al. Real-time biomolecular interaction analysis using the resonant mirror sensor
US20190361015A1 (en) Electrically-Modulated Biosensors Using Electro-Active Waveguides
Stringer et al. Quantum dot-based biosensor for detection of human cardiac troponin I using a liquid-core waveguide
Colás Dual-mode electro-photonic silicon biosensors
Kunz et al. Sensing pads for hybrid and monolithic integrated optical immunosensors
JP3833955B2 (en) Optical waveguide type protein chip and protein detection device
JP3836394B2 (en) Optical waveguide type immunosensor and optical waveguide type immunoassay method
JP2004184381A (en) Optical waveguide type surface plasmon resonance sensor and optical waveguide type surface plasmon resonance device
US7339677B2 (en) Microchemical system, and photothermal conversion spectroscopic analysis method
JPWO2001084134A1 (en) Capillary array unit and electrophoresis apparatus using the same
JP3833952B2 (en) DNA chip and DNA detection apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

LAPS Cancellation because of no payment of annual fees