JP2003286901A - Power generation system - Google Patents

Power generation system

Info

Publication number
JP2003286901A
JP2003286901A JP2002089079A JP2002089079A JP2003286901A JP 2003286901 A JP2003286901 A JP 2003286901A JP 2002089079 A JP2002089079 A JP 2002089079A JP 2002089079 A JP2002089079 A JP 2002089079A JP 2003286901 A JP2003286901 A JP 2003286901A
Authority
JP
Japan
Prior art keywords
power
power generation
hydrogen
amount
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002089079A
Other languages
Japanese (ja)
Inventor
Satoshi Murata
聡 村田
Hirokazu Akagawa
裕和 赤川
Hiroyuki Ishida
裕幸 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002089079A priority Critical patent/JP2003286901A/en
Publication of JP2003286901A publication Critical patent/JP2003286901A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Wind Motors (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation system capable of supplying power to a consumption area neither too much nor too little taking a balance of supply and demand. <P>SOLUTION: This system is provided with a main generator 1 such as a wind power generator generating power to be supplied to the consumption area 10, an electrolyzer 2 electrolyzing water using surplus power when the surplus power is generated from a relation between a supply power amount generated by the main generator 1 and power demand at the consumption area, a storage device 3 storing at least hydrogen among the hydrogen and oxygen generated by electrolysis, and an auxiliary power generator 4 compensating a lack of the supply power amount by generating electricity using the hydrogen stored in the storing device 3 in case of a lack of power supply amount from the relation between the supply power amount generated by the main generator 1 and the power demand at the consumption area, and is composed of a combination of a monatomic working gas hydrogen diesel engine 5 and a power generator 6. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、需要電力量に対し
て供給電力量(発電量)が不足する場合に、その不足分
を補償する機能を有した発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system having a function of compensating for a shortage of supply power amount (power generation amount) with respect to demand power amount.

【0002】[0002]

【従来の技術】発電設備のうち、出力変化が頻繁に発生
する風力発電や出力変化が遅い原子力発電などの設備で
は、供給と需要のバランスをとるのが難しい。このた
め、需要のピークに合わせて最大出力を設定しているの
が現状である。
2. Description of the Related Art Among power generation facilities, it is difficult to balance supply and demand in facilities such as wind power generation in which output changes occur frequently and nuclear power generation in which output changes are slow. For this reason, the maximum output is currently set according to the peak demand.

【0003】[0003]

【発明が解決しようとする課題】しかし、需要のピーク
に合わせて最大出力を設定した場合、需要の少ないとき
には、電力を十分に活用し切れない無駄な状況が発生す
る。
However, when the maximum output is set according to the peak of demand, when the demand is small, a wasteful situation occurs in which the electric power cannot be fully utilized.

【0004】本発明は、上記事情を考慮し、需要と供給
のバランスをとりつつ、過不足なく消費先に対する電力
供給を行うことのできる発電システムを提供することを
目的とする。
In view of the above circumstances, it is an object of the present invention to provide a power generation system capable of supplying power to consumers while maintaining a balance between demand and supply.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、消費
先に供給するための電力を生成する主発電装置と、この
主発電装置が生成する供給電力量と消費先で必要とする
需要電力量との関係から供給電力量に余剰が生じた場合
にその余剰電力を利用して水を電気分解する電気分解装
置と、電気分解により生成した水素と酸素のうち少なく
とも水素を貯蔵する貯蔵装置と、前記主発電装置が生成
する供給電力量と消費先で必要とする需要電力量との関
係から供給電力量に不足が生じた場合に前記貯蔵装置に
貯蔵した水素を燃料として発電を行い前記不足分を補償
する単原子作動ガス水素ディーゼルエンジン駆動の補助
発電装置とを備えることを特徴とする。
According to the invention of claim 1, a main power generating device for generating electric power to be supplied to a consumer, a power supply amount generated by the main power generating device, and a demand required by the consumer. An electrolyzer that electrolyzes water by using the surplus power when there is a surplus in the supplied power due to the relationship with the amount of power, and a storage device that stores at least hydrogen of hydrogen and oxygen produced by electrolysis. And when the supply power amount is insufficient due to the relationship between the supply power amount generated by the main power generation device and the demand power amount required at the consumption destination, the hydrogen stored in the storage device is used as fuel to generate power. It is characterized by comprising an auxiliary power generation device driven by a monoatomic working gas hydrogen diesel engine for compensating for the shortage.

【0006】請求項2の発明は、請求項1に記載の発電
システムであって、前記単原子作動ガス水素ディーゼル
エンジンが、単原子ガスを作動ガスとし、これに酸素と
水素を加えてエンジンで燃焼させ、燃焼ガス中の水蒸気
を凝縮して系外に排出し、非凝縮の単原子ガスを再びエ
ンジンに循環させる循環経路に組み込まれたものである
ことを特徴とする。
A second aspect of the present invention is the power generation system according to the first aspect, wherein the monoatomic working gas hydrogen diesel engine uses monatomic gas as a working gas, and oxygen and hydrogen are added to the working gas to produce an engine. It is characterized in that it is incorporated into a circulation path for burning, condensing water vapor in the combustion gas to discharge it out of the system, and circulating the non-condensed monatomic gas to the engine again.

【0007】請求項3の発明は、請求項1または2に記
載の発電システムであって、前記主発電装置が、風力等
の自然力をエネルギー源とする発電装置であることを特
徴とする。
A third aspect of the present invention is the power generation system according to the first or second aspect, wherein the main power generation device is a power generation device that uses a natural force such as wind power as an energy source.

【0008】請求項4の発明は、請求項1または2に記
載の発電システムであって、前記主発電装置が、原子力
等の出力変化が遅い発電装置であることを特徴とする。
A fourth aspect of the present invention is the power generation system according to the first or second aspect, wherein the main power generation device is a power generation device in which the output change of nuclear power or the like is slow.

【0009】請求項5の発明は、請求項1から4のいず
れかに記載の発電システムであって、前記電気分解装置
が、高圧水を電気分解するものであることを特徴とす
る。
A fifth aspect of the present invention is the power generation system according to any one of the first to fourth aspects, wherein the electrolyzer electrolyzes high-pressure water.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は実施形態の発電システムの構
成を示すブロック図である。この発電システムは、需要
電力量に対して供給電力量(発電量)が不足する場合に
その不足分を補償する機能を有したものであり、消費先
10に供給するための電力を生成する主発電装置1と、
この主発電装置1が生成する供給電力量と消費先で必要
とする需要電力量との関係から供給電力量に余剰が生じ
た場合にその余剰電力を利用して水を電気分解する電気
分解装置2と、電気分解により生成した水素と酸素を貯
蔵する貯蔵装置3と、主発電装置1が生成する供給電力
量と消費先で必要とする需要電力量との関係から供給電
力量に不足が生じた場合に貯蔵装置2に貯蔵してある水
素を燃料として発電を行い前記不足分を補償する補助発
電装置4とを備えている。この補助発電装置4は、アル
ゴン、ヘリウム等の単原子ガスを作動ガスとして運転さ
れる単原子作動ガス水素ディーゼルエンジン5により発
電機6を駆動して発電するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the power generation system of the embodiment. This power generation system has a function of compensating for the shortage when the supplied power amount (power generation amount) is insufficient with respect to the demanded power amount, and is a main unit that generates power to be supplied to the consumer 10. Power generation device 1,
An electrolyzer that electrolyzes water using the surplus power when the surplus power is generated due to the relationship between the power supply generated by the main power generator 1 and the demanded power required by the consumer. 2, the storage device 3 that stores hydrogen and oxygen generated by electrolysis, and the relationship between the power supply amount generated by the main power generation device 1 and the demand power amount required at the consumption destination cause a shortage in the power supply amount. In this case, the auxiliary power generation device 4 is provided to generate electric power by using hydrogen stored in the storage device 2 as a fuel to compensate the shortage. This auxiliary power generator 4 drives a generator 6 by a monoatomic working gas hydrogen diesel engine 5 that is operated with a monatomic gas such as argon or helium as a working gas to generate power.

【0011】ここで使用する主発電装置1は、風力等
(その他に潮力、太陽熱、太陽光等)の自然力をエネル
ギー源とする発電装置であり、人為的に制御できない出
力変動が頻繁に発生する傾向を持つ。通常の需要に対し
て最大出力を設定した場合、例えば図2に示すような出
力変動が発生する。従って、需要に対して発電量が余剰
のときと不足のときが生じることになる。そこで、この
発電システムでは、供給電力量が需要電力量を上回った
場合に、その余剰電力で水を電気分解して水素と酸素を
生成し貯蔵する。そして、供給電力量が需要電力量を下
回った場合に、その不足分を、予め貯蔵してある水素を
用いて発電した電力により補償するようにしている。
The main power generator 1 used here is a power generator that uses natural forces such as wind power (in addition, tidal power, solar heat, sunlight, etc.) as an energy source, and output fluctuations that cannot be artificially controlled frequently occur. Have a tendency to When the maximum output is set for normal demand, output fluctuations such as those shown in FIG. 2 occur. Therefore, there are times when the amount of power generation is surplus or short of demand. Therefore, in this power generation system, when the supplied power amount exceeds the demanded power amount, the surplus power is used to electrolyze water to generate hydrogen and oxygen and store the hydrogen and oxygen. Then, when the supplied power amount is lower than the demanded power amount, the shortage is compensated by the power generated using hydrogen stored in advance.

【0012】水素を燃料として発電を行う補助発電装置
4としては、内燃機関と発電機6とを組み合わせたもの
が応答性や効率等を考えた場合に一番有力であり、この
システムでは、内燃機関として、往復動型の単原子作動
ガス水素ディーゼルエンジン5を使用している。この単
原子作動ガス水素ディーゼルエンジン5は、効率アップ
の面から、アルゴンやヘリウム等の単原子ガスを作動ガ
スとし、これに酸素と水素を加えてエンジンで燃焼さ
せ、燃焼ガス中の水蒸気を凝縮して系外に排出し(水は
電気分解装置にて再利用可)、非凝縮の単原子ガスを再
びエンジンに循環させる循環経路に組み込まれている
(この技術自体は、特開平11−93681号公報にお
いて開示されているものと同じである)。
A combination of an internal combustion engine and a generator 6 is most effective as the auxiliary power generation device 4 for generating electric power using hydrogen as a fuel, in consideration of responsiveness and efficiency. As the engine, a reciprocating monatomic working gas hydrogen diesel engine 5 is used. This monoatomic working gas hydrogen diesel engine 5 uses, as a working gas, a monatomic gas such as argon or helium as a working gas, adds oxygen and hydrogen to the working gas, and burns it in the engine to condense steam in the combustion gas. It is then discharged to the outside of the system (water can be reused in the electrolyzer), and is incorporated in the circulation path for circulating the non-condensed monatomic gas to the engine again (this technique itself is disclosed in JP-A-11-936681). The same as that disclosed in the publication).

【0013】このような単原子作動ガス水素ディーゼル
エンジン5は、不活性である単原子作動ガスを循環する
ことで系外への排気ガス放出がなくなり、非常にクリー
ンである。また、単原子作動ガス水素ディーゼルエンジ
ン5の給気に貯蔵酸素を混ぜて酸素リッチ状態で燃焼を
進行させることにより、一層の燃焼効率の向上を図って
いる。また、電気分解装置2においては、高圧水を電気
分解することにより、高圧の水素・酸素を生成できるよ
うにし、ガスで圧縮するよりも液体状態での圧縮により
圧縮効率が少なくてすむようにしている。
Such a monatomic working gas hydrogen diesel engine 5 is very clean because exhaust of exhaust gas to the outside of the system is eliminated by circulating the inert monatomic working gas. Further, the combustion efficiency is further improved by mixing the stored oxygen in the air supply of the monatomic working gas hydrogen diesel engine 5 and advancing the combustion in an oxygen rich state. Further, in the electrolyzer 2, high-pressure water is electrolyzed to generate high-pressure hydrogen / oxygen, and the compression efficiency in the liquid state is lower than that in the gas compression.

【0014】このように構成した発電システムでは、主
発電装置1の発電量に余剰が生じたときに、その余剰分
を水素ガスに変換して蓄えておき、主発電装置1の発電
量に不足が生じたときに、その水素ガスを利用して発電
を行い、不足分を補償するようにしているので、風力を
エネルギー源として発電する風力発電設備における出力
の平準化を図ることができる。特に、補助発電装置4の
動力源として、排気ガス放出がなくクリーンで応答性の
高い単原子作動ガス水素ディーゼルエンジン5を使用し
ているので、分単位で出力変動を生じる風力発電の弱点
を有効に補うことができる。例えば、クリーンな単原子
作動ガス水素ディーゼルエンジン5をアイドリング状態
に維持しておき、不足時に即座に自動で対応できるよう
にすることも可能である。
In the power generation system configured as described above, when the power generation amount of the main power generation device 1 has surplus, the surplus amount is converted into hydrogen gas and stored, and the power generation amount of the main power generation device 1 is insufficient. When the above occurs, the hydrogen gas is used to generate electric power to compensate for the shortage, so that the output can be leveled in the wind power generation facility that uses wind power as an energy source. In particular, as the power source of the auxiliary power generation device 4, since the clean and highly responsive monoatomic working gas hydrogen diesel engine 5 that does not emit exhaust gas is used, the weak point of wind power generation that causes the output fluctuation in minutes is effective. Can be compensated for. For example, it is possible to maintain a clean monatomic working gas hydrogen diesel engine 5 in an idling state so that it can immediately and automatically respond to a shortage.

【0015】また、補助発電装置4の電力補償機能は、
主発電装置1の発電量が不足するときばかりでなく、主
発電装置1の故障時やメンテナンス時にも利用すること
ができる。
The power compensation function of the auxiliary power generator 4 is as follows.
It can be used not only when the amount of power generation of the main power generation device 1 is insufficient, but also when the main power generation device 1 fails or is maintained.

【0016】なお、上記実施形態では、主発電装置1が
風力等の自然力をエネルギー源とする発電装置である場
合を示したが、例えば原子力発電設備や火力発電設備の
ように、出力変化が遅い発電設備であってもよい。例え
ば、主発電装置1が原子力発電設備である場合には、単
原子作動ガス水素ディーゼルエンジン5で駆動される補
助発電装置4による補償機能により、需要に対する出力
の追従性の悪さを補うことができる。
In the above embodiment, the case where the main power generation device 1 is a power generation device that uses natural power such as wind power as an energy source has been described, but the output change is slow, for example, in a nuclear power generation facility or a thermal power generation facility. It may be a power generation facility. For example, when the main power generation device 1 is a nuclear power generation facility, the compensating function of the auxiliary power generation device 4 driven by the monoatomic working gas hydrogen diesel engine 5 can compensate for poor output followability with respect to demand. .

【0017】[0017]

【発明の効果】以上説明したように、請求項1の発明に
よれば、需要電力量に対して供給電力量(発電量)が不
足する場合に、その不足分を補償する機能を有している
ので、主発電装置の出力変動が頻繁に起こる場合にも出
力の平準化が図れる。また、主発電装置の出力変化が遅
くて需要の変動に追従しにくい場合にも、不足分を補償
することにより、出力を需要の変動に追従させることが
できる。特に、往復動型の単原子作動ガス水素ディーゼ
ルエンジンと発電機との組み合わせで構成した補助発電
装置を採用したので、クリーンで高い応答性を発揮でき
るようになり、燃焼効率も高めることができる。
As described above, according to the first aspect of the present invention, when the supplied power amount (power generation amount) is insufficient with respect to the demanded power amount, it has a function of compensating for the shortage. Therefore, the output can be leveled even when the output of the main power generator frequently changes. Further, even when the output change of the main power generator is slow and it is difficult to follow the demand fluctuation, the output can be made to follow the demand fluctuation by compensating for the shortage. In particular, since the auxiliary power generator configured by combining the reciprocating-type monoatomic working gas hydrogen diesel engine and the generator is adopted, it becomes possible to exhibit clean and high responsiveness, and it is possible to enhance the combustion efficiency.

【0018】請求項2の発明によれば、単原子作動ガス
水素ディーゼルエンジンが、アルゴン等の単原子ガスを
作動ガスとし、これに酸素と水素を加えてエンジンで燃
焼させ、燃焼ガス中の水蒸気を凝縮して系外に排出し、
非凝縮の単原子ガスを再びエンジンに循環させる循環経
路に組み込まれたものであるため、系外への排気ガス放
出がなくなって非常にクリーンである。
According to the second aspect of the present invention, a monoatomic working gas hydrogen diesel engine uses a monatomic gas such as argon as a working gas, and oxygen and hydrogen are added to the working gas and burned in the engine, and steam in the combustion gas is added. Is condensed and discharged to the outside of the system,
Since it is built into the circulation path that circulates the non-condensed monatomic gas to the engine again, it is very clean because exhaust gas is not emitted to the outside of the system.

【0019】請求項3の発明によれば、主発電装置が風
力等の自然力をエネルギー源とする発電装置であること
から、システム出力の平準化が図れる。
According to the third aspect of the present invention, since the main power generation device is a power generation device that uses a natural force such as wind power as an energy source, the system output can be leveled.

【0020】請求項4の発明によれば、主発電装置が原
子力等の出力変化が遅い発電装置であることから、補助
発電装置の補償機能によって需要に対する出力の追従性
の悪さを補うことができる。
According to the fourth aspect of the present invention, since the main power generation device is a power generation device in which the output change of nuclear power or the like is slow, it is possible to compensate for the poor output followability with respect to the demand by the compensation function of the auxiliary power generation device. .

【0021】また、請求項5の発明のように、電気分解
を高圧水で行うことにより、貯蔵時等における圧縮動力
の軽減を図ることもできる。
Further, as in the fifth aspect of the invention, by performing electrolysis with high-pressure water, it is possible to reduce the compression power during storage or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態の発電システムのブロック
図である。
FIG. 1 is a block diagram of a power generation system according to an embodiment of the present invention.

【図2】 図1の発電システムにおける主発電装置の出
力と、消費先での需要との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the output of the main power generator in the power generation system of FIG. 1 and the demand at the consumer.

【符号の説明】[Explanation of symbols]

1 主発電装置 2 水の電気分解装置 3 貯蔵装置 4 補助発電装置 5 単原子作動ガス水素ディーゼルエンジン 6 発電機 10 消費先 1 main generator 2 Water electrolyzer 3 storage devices 4 Auxiliary power generator 5 monoatomic working gas hydrogen diesel engine 6 generator 10 Consumer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G092 AA02 AB09 AC08 DC09 DF01 DF02 DF03 EA11 FA01 FA15 HF01X 3H078 AA26 AA34 BB01 BB11    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3G092 AA02 AB09 AC08 DC09 DF01                       DF02 DF03 EA11 FA01 FA15                       HF01X                 3H078 AA26 AA34 BB01 BB11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 消費先に供給するための電力を生成する
主発電装置と、この主発電装置が生成する供給電力量と
消費先で必要とする需要電力量との関係から供給電力量
に余剰が生じた場合にその余剰電力を利用して水を電気
分解する電気分解装置と、電気分解により生成した水素
と酸素のうち少なくとも水素を貯蔵する貯蔵装置と、前
記主発電装置が生成する供給電力量と消費先で必要とす
る需要電力量との関係から供給電力量に不足が生じた場
合に前記貯蔵装置に貯蔵した水素を燃料として発電を行
い前記不足分を補償する単原子作動ガス水素ディーゼル
エンジン駆動の補助発電装置とを備えることを特徴とす
る発電システム。
1. A power supply surplus due to a relationship between a main power generation device that generates electric power to be supplied to a consumer and a supply power amount generated by this main power generator and a demand power amount required at the consumer. If an electrolysis occurs, the electrolysis device that electrolyzes water by using the surplus power, a storage device that stores at least hydrogen of hydrogen and oxygen produced by electrolysis, and the supply power that the main power generation device produces Monatomic working gas hydrogen diesel that uses the hydrogen stored in the storage device as a fuel to generate power and compensates for the deficiency when a shortage occurs in the amount of power supplied from the relationship between the amount of electricity required and the amount of power required at the consumer A power generation system comprising an engine-driven auxiliary power generation device.
【請求項2】 請求項1に記載の発電システムであっ
て、 前記単原子作動ガス水素ディーゼルエンジンが、単原子
ガスを作動ガスとし、 これに酸素と水素を加えてエンジンで燃焼させ、燃焼ガ
ス中の水蒸気を凝縮して系外に排出し、非凝縮の単原子
ガスを再びエンジンに循環させる循環経路に組み込まれ
たものであることを特徴とする発電システム。
2. The power generation system according to claim 1, wherein the monatomic working gas hydrogen diesel engine uses monatomic gas as a working gas, and oxygen and hydrogen are added to the working gas to be burned by the engine. A power generation system characterized in that the water vapor therein is condensed and discharged to the outside of the system, and is incorporated into a circulation path for circulating the non-condensed monatomic gas to the engine again.
【請求項3】 請求項1または2に記載の発電システム
であって、 前記主発電装置が、風力等の自然力をエネルギー源とす
る発電装置であることを特徴とする発電システム。
3. The power generation system according to claim 1 or 2, wherein the main power generation device is a power generation device that uses a natural force such as wind power as an energy source.
【請求項4】 請求項1または2に記載の発電システム
であって、 前記主発電装置が、原子力等の出力変化が遅い発電装置
であることを特徴とする発電システム。
4. The power generation system according to claim 1, wherein the main power generation device is a power generation device in which the output change of nuclear power or the like is slow.
【請求項5】 請求項1から4のいずれかに記載の発電
システムであって、 前記電気分解装置が、高圧水を電気分解するものである
ことを特徴とする発電システム。
5. The power generation system according to claim 1, wherein the electrolyzer electrolyzes high pressure water.
JP2002089079A 2002-03-27 2002-03-27 Power generation system Withdrawn JP2003286901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089079A JP2003286901A (en) 2002-03-27 2002-03-27 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089079A JP2003286901A (en) 2002-03-27 2002-03-27 Power generation system

Publications (1)

Publication Number Publication Date
JP2003286901A true JP2003286901A (en) 2003-10-10

Family

ID=29234765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089079A Withdrawn JP2003286901A (en) 2002-03-27 2002-03-27 Power generation system

Country Status (1)

Country Link
JP (1) JP2003286901A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064719A1 (en) * 2004-12-13 2006-06-22 Satoru Aritaka Electric energy generating system
JP2007249341A (en) * 2006-03-14 2007-09-27 Hitachi Ltd Hydrogen production system
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
CN103363507A (en) * 2012-03-28 2013-10-23 吕令生 Solar steam heating method and self-contained heat source system for implementing same
JP2015513890A (en) * 2012-03-02 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for operating a combination power plant, and a combination power plant
WO2016125717A1 (en) * 2015-02-06 2016-08-11 株式会社日立製作所 Power supply system
WO2016169744A1 (en) * 2015-04-23 2016-10-27 Younicos Ag Method for generating electric energy by means of fluctuating renewable energy sources
JP2017139850A (en) * 2016-02-02 2017-08-10 株式会社日立製作所 Power supply system
CN107091175A (en) * 2017-05-09 2017-08-25 国网山东省电力公司莱芜供电公司 A kind of clean energy resource generating means
WO2021202715A1 (en) * 2020-03-31 2021-10-07 Schlumberger Technology Corporation Power management at a wellsite
KR102545449B1 (en) * 2022-09-22 2023-06-20 주식회사 아이온커뮤니케이션즈 System and Method for redeeming greenhouse gas reduction performance for stand-alone microgrid
US11697986B2 (en) 2020-09-04 2023-07-11 Schlumberger Technology Corporation Power management at a wellsite
US11942781B2 (en) 2021-12-20 2024-03-26 Schlumberger Technology Corporation Power management at a wellsite

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064719A1 (en) * 2004-12-13 2006-06-22 Satoru Aritaka Electric energy generating system
JP2007249341A (en) * 2006-03-14 2007-09-27 Hitachi Ltd Hydrogen production system
JP2008285571A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Heavy oil reforming method and heavy oil reforming integrated plant
JP2015513890A (en) * 2012-03-02 2015-05-14 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method for operating a combination power plant, and a combination power plant
CN103363507A (en) * 2012-03-28 2013-10-23 吕令生 Solar steam heating method and self-contained heat source system for implementing same
CN103363507B (en) * 2012-03-28 2016-08-24 吕令生 Solar steam heating means and the thermal source self-contained unit of enforcement the method
WO2016125717A1 (en) * 2015-02-06 2016-08-11 株式会社日立製作所 Power supply system
JP2016146679A (en) * 2015-02-06 2016-08-12 株式会社日立製作所 Electric power supply system
WO2016169744A1 (en) * 2015-04-23 2016-10-27 Younicos Ag Method for generating electric energy by means of fluctuating renewable energy sources
JP2017139850A (en) * 2016-02-02 2017-08-10 株式会社日立製作所 Power supply system
CN107091175A (en) * 2017-05-09 2017-08-25 国网山东省电力公司莱芜供电公司 A kind of clean energy resource generating means
WO2021202715A1 (en) * 2020-03-31 2021-10-07 Schlumberger Technology Corporation Power management at a wellsite
US11697986B2 (en) 2020-09-04 2023-07-11 Schlumberger Technology Corporation Power management at a wellsite
US11942781B2 (en) 2021-12-20 2024-03-26 Schlumberger Technology Corporation Power management at a wellsite
KR102545449B1 (en) * 2022-09-22 2023-06-20 주식회사 아이온커뮤니케이션즈 System and Method for redeeming greenhouse gas reduction performance for stand-alone microgrid
WO2024063193A1 (en) * 2022-09-22 2024-03-28 주식회사 아이온커뮤니케이션즈 System and method for redeeming greenhouse gas reduction performance for stand-alone microgrid

Similar Documents

Publication Publication Date Title
JP2003286901A (en) Power generation system
JP6038671B2 (en) Thermal power generation system
EP1744030A4 (en) Engine generator
RU2007138627A (en) AIRCRAFT SYSTEM
AU2003303503A8 (en) High-efficiency fuel cell power system with power generating expander
US9979203B2 (en) Power supply system using a fuel cell, controller for the same and control method
JP2015176675A (en) Distributed power supply system, and method of operating the same
CN102851682A (en) Wind power high-temperature electrolytic hydrogen production system and method
JP3122473U (en) Hydrogen and oxygen generator
WO2016125717A1 (en) Power supply system
JP6553523B2 (en) Power supply system
US20160084157A1 (en) Water-rotor-internal-combustion engine (wrice)
JPH1172028A (en) Electric power leveling power generation method
JP5469120B2 (en) Power generation output control system and control method for distributed power supply
EP2706641A1 (en) Method to provide primary control power by an energy storage system
JPH0492374A (en) Energy system
JP2955274B1 (en) Hydrogen engine system
JPH06276701A (en) Electric power storing device
CN113078686A (en) Comprehensive energy utilization system for offshore island and operation method thereof
US20080096064A1 (en) Current: A Total Energy Management System
KR920000087A (en) A system that supplies power demand that varies periodically between the lowest and highest values
KR20140042386A (en) Power plant for ship with auxiliary power generation system
JP2006164637A (en) Power supply system
RU2017106205A (en) The method of operation of a nuclear power unit with a hydrogen superstructure and high-temperature electrolyzers
JP2004269945A (en) Hydrogen-producing facility using wind-power generation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607