JP2003284592A - Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity - Google Patents

Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity

Info

Publication number
JP2003284592A
JP2003284592A JP2002097520A JP2002097520A JP2003284592A JP 2003284592 A JP2003284592 A JP 2003284592A JP 2002097520 A JP2002097520 A JP 2002097520A JP 2002097520 A JP2002097520 A JP 2002097520A JP 2003284592 A JP2003284592 A JP 2003284592A
Authority
JP
Japan
Prior art keywords
fluorescent dye
microorganism
physiological activity
activity
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002097520A
Other languages
Japanese (ja)
Inventor
Kazuhide Kanehara
和秀 金原
Yoshinori Hiraoka
義範 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002097520A priority Critical patent/JP2003284592A/en
Publication of JP2003284592A publication Critical patent/JP2003284592A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measurement of physiological activity of microorganisms which have physiological activity, etc., such as refining an environmental pollutant and to provide a kit to carry out the method. <P>SOLUTION: The method subjects a sample containing the microorganisms to a dying treatment using a first fluorescent dye, a second fluorescent dye with a different wave length from the first fluorescent dye and a third fluorescent dye with a different wave length from the first and the second fluorescent dyes and then measures the fluorescence in flow cytometry or laser scanning cytometer. The method reveals, from the result of the measurement, the number and refining activity to the environmental pollutant and state of living of cells of the microorganisms refining the environmental pollutant by decomposition, dechlorination, or the like. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微生物の生理活性
測定方法および生理活性測定用キットに関する。本発明
は、例えば土壌等に含まれるポリ塩化ビフェニル等の環
境汚染化合物を代謝、分解、脱塩素等により浄化するこ
とができる微生物の全細胞数、浄化活性および生存状態
を把握するための測定等に適用が可能である。
TECHNICAL FIELD The present invention relates to a method for measuring physiological activity of microorganisms and a kit for measuring physiological activity. The present invention is, for example, a measurement for grasping the total cell number, purification activity and survival state of microorganisms that can purify environmental pollutants such as polychlorinated biphenyls contained in soil etc. by metabolism, decomposition, dechlorination, etc. Can be applied to.

【0002】[0002]

【従来の技術】近年、環境汚染化合物による環境汚染が
問題となっており、その中でもポリ塩化ビフェニル(以
下、PCB)は人体にとっても毒性の高い塩素化芳香族
化合物であり、特に注目されている。これらの環境汚染
化合物は、所定の微生物により分解される等して無毒化
されることが知られており、様々な方法により環境汚染
を改善する試みが研究されている。例えばPCBにより
広範囲に汚染された土壌を浄化するために、好気的PC
B分解菌や嫌気的PCB脱塩素コンソーシア(以下、分
解菌(群))等の微生物を用いた環境修復(バイオレメ
ディエーション)が有効な手法として用いられている。
2. Description of the Related Art In recent years, environmental pollution due to environmental pollutant compounds has become a problem, and among them, polychlorinated biphenyl (hereinafter, PCB) is a chlorinated aromatic compound which is highly toxic to the human body, and is particularly attracting attention. . It is known that these environmental pollutant compounds are detoxified by being decomposed by a predetermined microorganism, etc., and attempts to improve environmental pollution by various methods have been studied. Aerobic PC, for example, for cleaning soils extensively contaminated with PCB
Environmental restoration (bioremediation) using microorganisms such as B-decomposing bacteria and anaerobic PCB dechlorination consortia (hereinafter, decomposing bacteria (group)) is used as an effective method.

【0003】ところで、このような手法におけるPCB
の分解効率を評価するためには、汚染土壌中に含まれる
分解菌(群)の正確な全細胞数、生存状態、PCBの代
謝活性等の生理活性を把握することが重要である。生理
活性を測定するには、例えば、土壌中の所定の微生物を
特異的に検出する方法として、16SrRNAをプローブにし
たFISH(fluorescence in situ hybridization)法があ
る。
By the way, PCB in such a method
In order to evaluate the decomposing efficiency of, the accurate total cell number of the decomposing bacteria (group) contained in the contaminated soil, the survival state, and the physiological activity such as the metabolic activity of PCB are important. To measure the physiological activity, for example, as a method for specifically detecting a predetermined microorganism in soil, there is a FISH (fluorescence in situ hybridization) method using 16S rRNA as a probe.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、FISH法
では微生物を固定して検出を行うため、その微生物の生
理活性を検出と同時に測定することはできない。また、
土壌中の微生物の生育能力評価には、コロニー計数法
(CFU)が広く用いられている。しかしながら、コロニ
ー計数法は測定に時間がかかる。
However, in the FISH method, since the microorganisms are fixed and detected, the physiological activity of the microorganisms cannot be measured simultaneously with the detection. Also,
The colony counting method (CFU) is widely used to evaluate the viability of microorganisms in soil. However, the colony counting method is time-consuming to measure.

【0005】本発明は、このような技術的課題に基づい
てなされたもので、生理活性、特に環境汚染化合物を浄
化する活性を有する微生物を特異的に検出し、検出と同
時にそれら微生物の生存状態と生理活性を測定すること
ができる生理活性測定方法および生理活性測定用キット
等を提供することを目的とする。
The present invention has been made on the basis of such a technical problem, and specifically detects microorganisms having physiological activity, in particular, the activity of purifying environmental pollutant compounds, and at the same time with the detection, the survival state of the microorganisms. It is an object of the present invention to provide a method for measuring physiological activity, a kit for measuring physiological activity, and the like, which can measure physiological activity.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の微生物の生理活性測定方法は、所定の微
生物に結合し、所定の波長の蛍光を発する第1の蛍光色
素と、前記微生物において生理活性に関与する遺伝子に
取り込まれ、前記遺伝子により発現する、前記第1の蛍
光色素とは異なる波長の蛍光を発する第2の蛍光色素
と、前記微生物の死細胞に取り込まれ、前記第1の蛍光
色素および前記第2の蛍光色素とは異なる波長の蛍光を
発する第3の蛍光色素とを、前記微生物を含む検体に作
用せしめ、前記検体において生じる蛍光の波長差に基づ
いて前記検体に含まれる前記微生物の全細胞数、生理活
性および生存状態を測定することを特徴としている。
In order to solve the above-mentioned problems, the method for measuring the physiological activity of a microorganism of the present invention comprises a first fluorescent dye which binds to a predetermined microorganism and emits fluorescence of a predetermined wavelength, Incorporated in a gene involved in physiological activity in the microorganism, expressed by the gene, a second fluorescent dye that emits fluorescence of a wavelength different from that of the first fluorescent dye, and is incorporated in dead cells of the microorganism, A first fluorescent dye and a third fluorescent dye that emits fluorescence of a wavelength different from those of the second fluorescent dye are allowed to act on a sample containing the microorganism, and the sample is detected based on a wavelength difference of fluorescence generated in the sample. It is characterized by measuring the total cell number, physiological activity and survival state of the microorganism contained in

【0007】本発明の生理活性測定方法は、前記第1の
蛍光色素に基づく波長により前記全細胞数を、前記第2
の蛍光色素に基づく波長により前記生理活性を、前記第
3の蛍光色素に基づく波長により前記生存状態を測定す
ることができる。また、生理活性は、環境汚染化合物の
浄化活性であることが好ましい。また、前記第2の蛍光
色素にGFP(green fluorescent protein)又はルシ
フェラーゼを用い、前記GFP又はルシフェラーゼの発
現遺伝子をポリ塩化ビフェニル代謝および/または脱塩
素酵素遺伝子のプロモータ下流に導入することにより、
前記浄化活性としてポリ塩化ビフェニルの浄化活性を測
定することが望ましい。さらに、前記検体が生じる蛍光
の前記波長は、フローサイトメトリまたはレーザスキャ
ニングサイトメータにより検出することができる。
The physiological activity measuring method of the present invention is characterized in that the total cell number is determined by the wavelength based on the first fluorescent dye,
The physiological activity can be measured by the wavelength based on the fluorescent dye, and the survival state can be measured by the wavelength based on the third fluorescent dye. Further, the physiological activity is preferably a purification activity of environmental pollutant compounds. Further, by using GFP (green fluorescent protein) or luciferase as the second fluorescent dye, and introducing the expression gene of GFP or luciferase into the promoter downstream of polychlorinated biphenyl metabolism and / or dechlorination enzyme gene,
It is desirable to measure the purification activity of polychlorinated biphenyl as the purification activity. Further, the wavelength of fluorescence generated by the sample can be detected by flow cytometry or a laser scanning cytometer.

【0008】本発明の微生物の生理活性測定用キット
は、所定の微生物を含む検体に作用せしめることにより
生じる蛍光の波長に基づき、前記検体に含まれる前記微
生物の全細胞数、生理活性および生存状態を測定するた
めの生理活性測定用キットであって、前記微生物に結合
し、所定の波長の蛍光を発する第1の蛍光色素と、前記
微生物において前記生理活性に関与する遺伝子に取り込
まれ、前記遺伝子により発現する、前記第1の蛍光色素
とは異なる波長の蛍光を発する第2の蛍光色素と、前記
微生物の生細胞または死細胞に取り込まれ、前記第1の
蛍光色素および前記第2の蛍光色素とは異なる波長の蛍
光を発する第3の蛍光色素とを備えたことを特徴として
いる。また、生理活性は、環境汚染化合物の浄化活性で
あることが好ましい。また、本発明の生理活性測定用キ
ットは、前記環境汚染化合物としてポリ塩化ビフェニル
浄化活性を測定するため、前記第2の蛍光色素としてG
FP(green fluorescent protein)又はルシフェラー
ゼを備えることができる。
The kit for measuring physiological activity of a microorganism of the present invention is based on the wavelength of fluorescence generated by acting on a specimen containing a predetermined microorganism, based on the total number of cells, physiological activity and survival state of the microorganism contained in the specimen. A kit for measuring physiological activity for measuring, wherein a first fluorescent dye that binds to the microorganism and emits fluorescence of a predetermined wavelength, and is incorporated into a gene involved in the physiological activity in the microorganism, And a second fluorescent dye that emits fluorescence of a wavelength different from that of the first fluorescent dye and that is incorporated into living cells or dead cells of the microorganism to express the first fluorescent dye and the second fluorescent dye. And a third fluorescent dye that emits fluorescence of a wavelength different from the above. Further, the physiological activity is preferably a purification activity of environmental pollutant compounds. In addition, the physiological activity measuring kit of the present invention measures the polychlorinated biphenyl purification activity as the environmental pollutant, and thus the G as the second fluorescent dye is used.
It can be equipped with FP (green fluorescent protein) or luciferase.

【0009】[0009]

【発明の実施の形態】本発明の測定方法が適用される微
生物が有する生理活性に特に制限はないが、環境汚染化
合物を代謝、分解、脱塩素等により浄化することができ
る微生物の生理活性が好ましい。以下、生理活性とし
て、環境汚染化合物の浄化活性を例に挙げて説明する。
本発明においては、検体に含まれる微生物の全細胞数、
浄化活性および生存状態を同時に測定することができ
る。まず、これらの項目を測定するため、互いに異なる
波長を有する第1〜第3の蛍光色素を用いた染色処理を
行う。
BEST MODE FOR CARRYING OUT THE INVENTION There is no particular limitation on the physiological activity of the microorganism to which the measuring method of the present invention is applied, but the physiological activity of the microorganism capable of purifying environmental pollutant compounds by metabolism, decomposition, dechlorination, etc. preferable. Hereinafter, the biological activity will be described with reference to the purification activity of environmental pollutant compounds as an example.
In the present invention, the total number of cells of the microorganism contained in the sample,
Purifying activity and viability can be measured simultaneously. First, in order to measure these items, a dyeing process using first to third fluorescent dyes having different wavelengths is performed.

【0010】まず、全細胞数を測定するため、環境汚染
化合物代謝等により浄化することができる種の微生物に
第1の蛍光色素を間接的または直接的に結合させる染色
処理を行う。例えば環境汚染化合物としてPCBを浄化
する微生物の場合、その微生物の菌株ならびにコンソー
シアに特異的な菌群のモノクローナル抗体と、第1の蛍
光色素として赤色(波長630nm)の蛍光染料、例え
ばPerCPで標識した2次抗体とを検体に作用させ
る。これにより、後に述べる測定において検体中のその
微生物の全細胞数の測定を蛍光抗体法に基づいて行うこ
とができる。
First, in order to measure the total number of cells, a staining treatment is carried out in which the first fluorescent dye is indirectly or directly bound to a microorganism of a species which can be purified by metabolism of environmental pollutant compounds. For example, in the case of a microorganism that purifies PCB as an environmental pollutant compound, it is labeled with a monoclonal antibody of a bacterial group specific to the strain and consortia of the microorganism and a red (wavelength 630 nm) fluorescent dye such as PerCP as the first fluorescent dye. The secondary antibody is allowed to act on the sample. Thereby, in the measurement described later, the total cell number of the microorganism in the sample can be measured based on the fluorescent antibody method.

【0011】そして、浄化活性を測定するため、微生物
の環境汚染化合物の浄化活性に関与する遺伝子に取り込
まれ、前記遺伝子により発現する、第1の蛍光色素とは
異なる波長の蛍光を発する第2の蛍光色素を用いて染色
処理する。例えば環境汚染化合物としてPCBを浄化す
る微生物の場合、脱塩素活性をモニタリングするマーカ
として、PCB代謝や脱塩素酵素遺伝子群のプロモータ
下流に、第2の蛍光色素であるGFP(green fluoresc
ent protein)又はルシフェラーゼの発現遺伝子を導入
した変異株を作成する。このようにGFP又はルシフェ
ラーゼ遺伝子を導入された検体は、浄化活性を有してい
ればGFP又はルシフェラーゼ遺伝子が発現される。し
たがって、後に述べる測定において緑色(530nm)
又は黄緑色(560nm)の蛍光の有無により、浄化活
性の有無を識別することができる。なお、GFP又はル
シフェラーゼ遺伝子を導入した変異株を取得できない場
合、浄化に伴う分解、代謝、脱塩素活性等が行なわれる
ときに特異的に増加する酵素や代謝産物等に着目して緑
色等のマーカを設定することができる。
Then, in order to measure the purifying activity, a second fluorescent dye, which is incorporated into a gene involved in the purifying activity of the environmental pollutant compound of the microorganism and is expressed by the gene, emits fluorescence having a wavelength different from that of the first fluorescent dye. Stain with a fluorescent dye. For example, in the case of a microorganism that purifies PCB as an environmental pollutant, as a marker for monitoring dechlorination activity, a second fluorescent dye, GFP (green fluoresc), is placed downstream of the promoters of the PCB metabolism and dechlorination enzyme genes.
ent protein) or a luciferase expression gene is introduced into the mutant strain. The specimen into which the GFP or luciferase gene has been introduced in this manner expresses the GFP or luciferase gene if it has a purifying activity. Therefore, in the measurement described later, green (530 nm)
Alternatively, the presence or absence of purifying activity can be identified by the presence or absence of yellow-green (560 nm) fluorescence. When a mutant strain into which the GFP or luciferase gene has been introduced cannot be obtained, a marker such as green that focuses on the enzyme or metabolite that specifically increases when degradation, metabolism, dechlorination activity, etc. accompanying purification are performed. Can be set.

【0012】さらに、生存状態を測定するため、微生物
の死細胞に取り込まれ、前記第1の蛍光色素および前記
第2の蛍光色素とは異なる波長の蛍光を発する第3の蛍
光色素を用いて染色処理する。例えば、細胞膜に傷のつ
いた死細胞のみ染色することができる、赤橙色(575
nm)の蛍光を発する第3の蛍光色素であるプロピジウ
ムイオダイド(PI)を用いて染色処理を行う。これに
より、後に述べる測定において検体中の死細胞の識別を
行うことができる。なお、死細胞の識別を行うための第
3の蛍光色素は、プロピジウムイオダイドの他、例えば
エチジウムホモダイマー等の蛍光染料も使用することが
できる。さらに、検体中の生細胞を識別することによ
り、生存状態を測定するものであってもよい。この場
合、細胞内で酵素反応を受けて強い蛍光を発するカルセ
イン誘導体等を使用することができる。
Further, in order to measure the survival state, it is stained with a third fluorescent dye which is incorporated into dead cells of the microorganism and emits fluorescence of a wavelength different from those of the first fluorescent dye and the second fluorescent dye. To process. For example, a reddish orange color (575
Staining is performed using propidium iodide (PI), which is a third fluorescent dye that emits fluorescence of (nm). As a result, dead cells in the sample can be identified in the later-described measurement. In addition to the propidium iodide, a fluorescent dye such as ethidium homodimer can be used as the third fluorescent dye for identifying dead cells. Furthermore, the survival state may be measured by identifying living cells in the sample. In this case, a calcein derivative or the like that undergoes an enzymatic reaction in cells and emits strong fluorescence can be used.

【0013】以上述べた方法に基づいて染色処理された
検体における蛍光の測定を行う。なお、上記染色処理に
おいて処理を行う順は適宜変更することができる。蛍光
の測定においては、例えば液体系ではフローサイトメト
リ(FCM)、固体系においてはレーザスキャニングサ
イトメータ(LSC)を用いることが好ましい。これら
方法においては、所定の波長のレーザを検体に照射し、
それにより生じた光を光学検出器により簡単に測定する
ことができる。本発明では、例えば、まず測定装置の受
光部の受光波長を、第1の蛍光色素と、第2の蛍光色素
と、第3の蛍光色素の波長に合わせておく。そして、染
色処理された検体をフローサイトメトリに流したり、レ
ーザスキャニングサイトメータに設置し、蛍光を測定す
るだけで、環境汚染化合物を浄化する微生物の全細胞
数、浄化活性および生存状態を把握することができる。
Fluorescence in the sample dyed by the method described above is measured. The order in which the above-mentioned dyeing process is performed can be appropriately changed. For fluorescence measurement, it is preferable to use, for example, a flow cytometry (FCM) in a liquid system and a laser scanning cytometer (LSC) in a solid system. In these methods, irradiating the specimen with a laser of a predetermined wavelength,
The light generated thereby can be easily measured by an optical detector. In the present invention, for example, first, the light receiving wavelength of the light receiving unit of the measuring device is matched with the wavelengths of the first fluorescent dye, the second fluorescent dye, and the third fluorescent dye. Then, the stained sample can be flowed to a flow cytometer or installed in a laser scanning cytometer, and the fluorescence can be measured to determine the total cell number, purification activity and survival state of microorganisms that purify environmental pollutants. be able to.

【0014】なお、蛍光測定結果の具体例として、微生
物の生存状態および浄化活性としての環境汚染化合物の
代謝活性を以下に挙げるような状態で識別することがで
きる(PI:赤橙色マーカ、GFP:緑色マーカ)。 [PI-,GFP+]=生細胞で代謝活性あり [PI-,GFP-]=生細胞で代謝活性なし [PI+,GFP+]=死細胞で代謝活性あり [PI+,GFP-]=死細胞で代謝活性なし
As a specific example of the fluorescence measurement result, the survival state of the microorganism and the metabolic activity of the environmental pollutant compound as the purifying activity can be identified in the following states (PI: red-orange marker, GFP: Green marker). [PI -, GFP +] = There metabolic activity in living cells [PI -, GFP -] = No metabolic activity in living cells [PI +, GFP +] = There metabolic activity in dead cells [PI +, GFP -] = No metabolic activity in dead cells

【0015】以上述べた微生物の全細胞数および該微生
物の生理活性の測定、並びに生死細胞の識別を行うため
に、本発明は生理活性測定用キットを提供することがで
きる。この生理活性測定用キットは、上記した第1〜第
3の蛍光色素を備えていればよく、緩衝液や希釈用の生
理食塩水、あるいは試験管等の分析に必要なその他の試
薬や器具を含めることもできる。また、第1の蛍光色素
と第2の蛍光色素と第3の蛍光色素を1回の分析の必要
量毎に包装したり、希釈用の目盛付容器に封入するなど
の形態を適用することができる。かかるキットにおい
て、生理活性は環境汚染化合物の浄化活性であることが
好ましい。
The present invention can provide a kit for measuring physiological activity in order to measure the total number of cells of the above-mentioned microorganism and the physiological activity of the microorganism, and to identify live and dead cells. This physiological activity measuring kit may be provided with the above-mentioned first to third fluorescent dyes, and may contain a buffer solution, a physiological saline solution for dilution, or other reagents and instruments necessary for analysis such as a test tube. It can also be included. In addition, the first fluorescent dye, the second fluorescent dye, and the third fluorescent dye may be packaged for each required amount of one analysis, or may be sealed in a container with a scale for dilution. it can. In such a kit, the physiological activity is preferably a purifying activity for environmental pollutant compounds.

【0016】なお、上記実施の形態においては、微生物
により浄化される環境汚染化合物の具体例としてPCB
を例に挙げて述べているが、本発明の生理活性測定方法
および生理活性測定用キットはその他の難分解性の環境
汚染化合物を分解する分解菌(群)又は微生物を用いた
反応装置内の微生物(群)の生理活性についても適宜使
用することができる。その他、本発明の趣旨を逸脱しな
い限り、上記実施の形態で挙げた構成を取捨選択した
り、他の構成に適宜変更することが可能である。
In the above embodiment, PCB is used as a concrete example of the environmental pollutant compound purified by microorganisms.
, The bioactivity measuring method and the bioactivity measuring kit of the present invention are used in a reaction device using a degrading bacterium (group) or a microorganism that decomposes other persistent environmental pollutant compounds. It can also be appropriately used for the physiological activity of the microorganism (group). In addition, the configurations described in the above embodiments can be selected or changed to other configurations without departing from the spirit of the present invention.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
検体中における、生理活性、特に環境汚染化合物を浄化
する活性を有する微生物の全細胞数の把握や生死細胞の
識別と共に、微生物による環境汚染化合物の浄化活性を
同時に測定することができる。したがって、環境汚染化
合物の浄化等の状況をリアルタイムで把握することもで
きる。そのため、例えば環境汚染化合物の分解を行う微
生物にとって最適な条件を容易に探索することができ、
環境汚染の浄化等を効率的に行う方法を探索することが
可能となる。
As described above, according to the present invention,
It is possible to grasp the total number of cells of a microorganism having a physiological activity, in particular, an activity to purify an environmental pollutant compound in a sample, to discriminate between live and dead cells, and simultaneously measure the purifying activity of the environmental pollutant compound by the microorganism. Therefore, the situation of purification of the environmental pollutant compound can be grasped in real time. Therefore, for example, it is possible to easily search for optimal conditions for microorganisms that decompose environmental pollutants,
It becomes possible to search for a method for efficiently purifying environmental pollution.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 所定の微生物に結合し、所定の波長の蛍
光を発する第1の蛍光色素と、前記微生物において生理
活性に関与する遺伝子に取り込まれ、前記遺伝子により
発現する、前記第1の蛍光色素とは異なる波長の蛍光を
発する第2の蛍光色素と、前記微生物の死細胞に取り込
まれ、前記第1の蛍光色素および前記第2の蛍光色素と
は異なる波長の蛍光を発する第3の蛍光色素とを、前記
微生物を含む検体に作用せしめ、前記検体において生じ
る蛍光の波長差に基づいて前記検体に含まれる前記微生
物の全細胞数、生理活性および生存状態を測定すること
を特徴とする微生物の生理活性測定方法。
1. A first fluorescent dye that binds to a predetermined microorganism and emits fluorescence of a predetermined wavelength, and the first fluorescence that is incorporated into a gene involved in physiological activity in the microorganism and is expressed by the gene. A second fluorescent dye that emits fluorescence of a wavelength different from that of the dye, and a third fluorescence that is taken up by dead cells of the microorganism and emits fluorescence of a wavelength different from that of the first fluorescent dye and the second fluorescent dye. A microorganism, characterized in that a dye is allowed to act on a sample containing the microorganism, and the total number of cells of the microorganism contained in the sample, physiological activity and survival state are measured based on the wavelength difference of fluorescence generated in the sample. Method for measuring physiological activity of.
【請求項2】 前記第1の蛍光色素に基づく波長により
前記全細胞数を、前記第2の蛍光色素に基づく波長によ
り前記生理活性を、前記第3の蛍光色素に基づく波長に
より前記生存状態を測定することを特徴とする請求項1
記載の微生物の生理活性測定方法。
2. The total cell number is determined by the wavelength based on the first fluorescent dye, the physiological activity is determined by the wavelength based on the second fluorescent dye, and the survival state is determined by the wavelength based on the third fluorescent dye. It measures, It is characterized by the above-mentioned.
A method for measuring physiological activity of a microorganism as described.
【請求項3】 生理活性が、環境汚染化合物の浄化活性
である請求項1又は2記載の微生物の生理活性測定方
法。
3. The method for measuring a physiological activity of a microorganism according to claim 1, wherein the physiological activity is a purifying activity of an environmental pollutant compound.
【請求項4】 前記第2の蛍光色素にGFP(green fl
uorescent protein)又はルシフェラーゼを用い、前記
GFP又はルシフェラーゼの発現遺伝子をポリ塩化ビフ
ェニル代謝および/または脱塩素酵素遺伝子のプロモー
タ下流に導入することにより、前記浄化活性としてポリ
塩化ビフェニルの浄化活性を測定することを特徴とする
請求項3記載の微生物の生理活性測定方法。
4. The GFP (green fl) is added to the second fluorescent dye.
uorescent protein) or luciferase to introduce the expression gene of GFP or luciferase into the polychlorinated biphenyl metabolism and / or the promoter downstream of the dechlorination enzyme gene to measure the purified activity of polychlorinated biphenyl as the purifying activity. The method for measuring physiological activity of a microorganism according to claim 3, wherein
【請求項5】 前記検体が生じる蛍光の前記波長は、フ
ローサイトメトリまたはレーザスキャニングサイトメー
タにより検出することを特徴とする請求項1〜4のいず
れかに記載の微生物の生理活性測定方法。
5. The method for measuring physiological activity of microorganisms according to claim 1, wherein the wavelength of the fluorescence generated by the sample is detected by a flow cytometry or a laser scanning cytometer.
【請求項6】 所定の微生物を含む検体に作用せしめる
ことにより生じる蛍光の波長に基づき、前記検体に含ま
れる前記微生物の全細胞数、生理活性および生存状態を
測定するための生理活性測定用キットであって、 前記微生物に結合し、所定の波長の蛍光を発する第1の
蛍光色素と、 前記微生物において前記生理活性に関与する遺伝子に取
り込まれ、前記遺伝子により発現する、前記第1の蛍光
色素とは異なる波長の蛍光を発する第2の蛍光色素と、 前記微生物の生細胞または死細胞に取り込まれ、前記第
1の蛍光色素および前記第2の蛍光色素とは異なる波長
の蛍光を発する第3の蛍光色素とを備えたことを特徴と
する微生物の生理活性測定用キット。
6. A physiological activity measuring kit for measuring the total cell number, physiological activity and survival state of the microorganism contained in the specimen based on the wavelength of fluorescence generated by acting on the specimen containing a predetermined microorganism. A first fluorescent dye that binds to the microorganism and emits fluorescence of a predetermined wavelength, and is incorporated into a gene involved in the physiological activity in the microorganism and expressed by the gene, the first fluorescent dye. A second fluorescent dye that emits fluorescence of a wavelength different from that of the third fluorescent dye, and a third fluorescent dye that is incorporated into living cells or dead cells of the microorganism and emits fluorescence of a different wavelength from the first fluorescent dye and the second fluorescent dye. A kit for measuring physiological activity of microorganisms, comprising:
【請求項7】 生理活性が、環境汚染化合物の浄化活性
である請求項6記載の微生物の生理活性測定用キット。
7. The kit for measuring a physiological activity of a microorganism according to claim 6, wherein the physiological activity is a purifying activity of an environmental pollutant compound.
【請求項8】 前記環境汚染化合物としてポリ塩化ビフ
ェニルの浄化活性を測定するため、前記第2の蛍光色素
としてGFP(green fluorescent protein)又はルシ
フェラーゼを備えたことを特徴とする請求項6又は7記
載の微生物の生理活性測定用キット。
8. The GFP (green fluorescent protein) or luciferase is provided as the second fluorescent dye in order to measure the purifying activity of polychlorinated biphenyls as the environmental pollutant. Kit for measuring physiological activity of microorganisms of.
JP2002097520A 2002-03-29 2002-03-29 Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity Pending JP2003284592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097520A JP2003284592A (en) 2002-03-29 2002-03-29 Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097520A JP2003284592A (en) 2002-03-29 2002-03-29 Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity

Publications (1)

Publication Number Publication Date
JP2003284592A true JP2003284592A (en) 2003-10-07

Family

ID=29239992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097520A Pending JP2003284592A (en) 2002-03-29 2002-03-29 Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity

Country Status (1)

Country Link
JP (1) JP2003284592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097532A (en) * 2005-10-07 2007-04-19 Okayama Univ Method for judging physiological activity and kit for judging physiological activity
US8658037B2 (en) 2008-07-11 2014-02-25 Seiko Pmc Corporation Method for determining physiological state of microbial community and wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097532A (en) * 2005-10-07 2007-04-19 Okayama Univ Method for judging physiological activity and kit for judging physiological activity
US8658037B2 (en) 2008-07-11 2014-02-25 Seiko Pmc Corporation Method for determining physiological state of microbial community and wastewater treatment method

Similar Documents

Publication Publication Date Title
Fuller et al. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments
Joux et al. Use of fluorescent probes to assess physiological functions of bacteriaat single-cell level
Girotti et al. Monitoring of environmental pollutants by bioluminescent bacteria
Ramseier et al. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate (VI), and permanganate
Hatzinger et al. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria
Fish et al. Influence of freshwater sediment on the survival of Escherichia coli and Salmonella sp. as measured by three methods of enumeration
US6599715B1 (en) Real time viability detection of bacterial spores
Maalej et al. Temperature and growth-phase effects on Aeromonas hydrophila survival in natural seawater microcosms: role of protein synthesis and nucleic acid content on viable but temporarily nonculturable response
Ramalho et al. Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters
Matsunaga et al. Direct count of bacteria using fluorescent dyes: application to assessment of electrochemical disinfection
Silva et al. Cryptosporidium spp. and Giardia spp.(oo) cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays
US6964857B2 (en) Measuring indigenous photosynthetic organisms to detect chemical warefare agents in water
AU2002255500A1 (en) Tissue-based water quality biosensors for detecting chemical warfare agents
White et al. Biofilm ecology: On‐line methods bring new insights into mic and microbial biofouling
Catala et al. Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters
Moldenhauer Overview of rapid microbiological methods
JP2003284592A (en) Method for measurement of physiological activity of microorganism and kit for measurement of physiological activity
Joux et al. Methods for studying microorganisms in the environment
Bakermans et al. Use of substrate responsive-direct viable counts to visualize naphthalene degrading bacteria in a coal tar-contaminated groundwater microbial community
Maier et al. Physiological methods
Amalfitano et al. Water and microbial monitoring technologies towards the near future space exploration
Raybourne et al. Microscopy techniques: DEFT and flow cytometry
JP2001083120A (en) Method for evaluating ecotoxicology of environmental pollutant
Neilson et al. Biological techniques for measuring organic and metal contaminants in environmental samples
Anand Bioluminescence: Realtime indicators of hygiene

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605