JP2003282893A - Double-tunnel junction element - Google Patents

Double-tunnel junction element

Info

Publication number
JP2003282893A
JP2003282893A JP2002084684A JP2002084684A JP2003282893A JP 2003282893 A JP2003282893 A JP 2003282893A JP 2002084684 A JP2002084684 A JP 2002084684A JP 2002084684 A JP2002084684 A JP 2002084684A JP 2003282893 A JP2003282893 A JP 2003282893A
Authority
JP
Japan
Prior art keywords
electrode
intermediate electrode
tunnel junction
barrier layer
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084684A
Other languages
Japanese (ja)
Other versions
JP3784740B2 (en
Inventor
Yutaka Majima
豊 真島
Kohei Nagano
浩平 長野
Yasuo Azuma
康男 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002084684A priority Critical patent/JP3784740B2/en
Publication of JP2003282893A publication Critical patent/JP2003282893A/en
Application granted granted Critical
Publication of JP3784740B2 publication Critical patent/JP3784740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double-tunnel junction element exhibiting a negative differential resistance, in a double-tunnel junction having a flexible structure. <P>SOLUTION: The double-tunnel junction element having a flexible structure, is provided with a first electrode 1 made of a conductive metal, a conductive semiconductor, or a conductive organic material, a second electrode 2 made of a conductive metal, a conductive semiconductor, or a conductive organic material, each intermediate electrode 3 for functioning as a Coulomb island which is made of metal molecules, semiconductor molecules, or organic molecules, a first barrier layer 4 having a flexible structure, each second barrier layer 5 having a flexible structure which is so existent between the second electrode 2 and each intermediate electrode 3 as to become a barrier for electrons and holes, and a double-tunnel junction comprising the first electrode 1, the first barrier layer 4, the intermediate electrodes 3, the second barrier layers 5, and the second electrode 2 which are arranged in this order. By this structure, in the state of applying a voltage across the first and second electrodes 1, 2, the perturbation of the Coulomb force caused by the going-in and going-out of electrons or holes so resonates with the mechanical natural frequency of each intermediate electrode 3 that the tunnel current flowing through the double-tunnel junction exhibits a negative differential resistance. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、柔構造を有する二
重トンネル接合素子に係り、特に機能素子に応用される
負性微分抵抗素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double tunnel junction element having a flexible structure, and more particularly to a negative differential resistance element applied to a functional element.

【0002】[0002]

【従来の技術】これまでに、トンネル現象を用いて、負
性微分抵抗が発現する素子として、エサキダイオード、
共鳴トンネルダイオードなどが提案され、超高速の機能
素子への応用がなされてきた。これらのダイオードは、
いずれも電子性準位のエネルギー方向の分布を利用して
いるのが特徴である。
2. Description of the Related Art Heretofore, an Esaki diode, which has a negative differential resistance by using a tunnel phenomenon, has been used.
Resonant tunnel diodes have been proposed and applied to ultra-high speed functional devices. These diodes are
Both are characterized by utilizing the distribution of electronic levels in the energy direction.

【0003】ところで、最近、Gorelik等はPh
ys.Rev.Lett誌(Vol.80、4526〜
4529頁、1998年)において、柔構造を有する二
重トンネル接合において、クーロン島として働く中間電
極の帯電電荷量の時間的な変化に起因して、中間電極へ
のクーロン力が変化し、中間電極が機械的に振動するこ
とにより、トンネル抵抗の変調が起こり、電荷が電極間
で転送される、いわゆる電子シャトルを提案している。
この電子シャトル現象は、機械的な振動と単一電子現象
を組み合わせた新しい単一電子素子であり、電流標準の
実現や機能素子への応用が検討されている。
By the way, recently Gorelik et al.
ys. Rev. Lett magazine (Vol.80, 4526-
4529, 1998), in a double tunnel junction having a flexible structure, the Coulomb force on the intermediate electrode changes due to the temporal change in the amount of charge of the intermediate electrode acting as a Coulomb island. We propose a so-called electronic shuttle, in which the tunnel resistance is modulated by the mechanical vibration of the and electric charges are transferred between the electrodes.
This electron shuttle phenomenon is a new single-electron element that combines mechanical vibration and single-electron phenomenon, and its realization of current standard and its application to functional elements are being studied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この電
子シャトル現象を示す素子における電流−電圧依存性に
おいて、負性微分抵抗が発現することは予想されていな
かった。
However, it was not expected that a negative differential resistance would appear in the current-voltage dependence of the element exhibiting the electron shuttle phenomenon.

【0005】本発明は、上記状況に鑑みて、柔構造を有
する二重トンネル接合において、負性微分抵抗を発現す
る二重トンネル接合素子を提供することを目的とする。
In view of the above situation, it is an object of the present invention to provide a double tunnel junction element which exhibits a negative differential resistance in a double tunnel junction having a flexible structure.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕柔構造を有する二重トンネル接合素子において、
導電性の金属、半導体または有機材料からなる第1電極
と、導電性の金属、半導体または有機材料からなる第2
電極と、クーロン島として機能する金属、半導体または
有機分子からなる中間電極と、前記第1電極と前記中間
電極の間に存在し電子または正孔に対して障壁となる、
柔構造を有する第1障壁層と、前記第2電極と前記中間
電極の間に存在し電子または正孔に対して障壁となる、
柔構造を有する第2障壁層と、前記第1電極と、第1障
壁層と、中間電極と、第2障壁層と、第2電極との順に
並んでいる二重トンネル接合を備え、前記第1電極と第
2電極の間に電圧を加えた状態で、前記第1電極と中間
電極の間の電子または正孔の出入りに起因したクーロン
力の摂動と前記中間電極の機械的固有振動とが共振する
ことにより、前記二重トンネル接合を流れるトンネル電
流の電圧依存性が負性微分抵抗を発現する構造を有する
ことを特徴とする。
In order to achieve the above object, the present invention provides [1] a double tunnel junction element having a flexible structure,
A first electrode made of a conductive metal, semiconductor or organic material and a second electrode made of a conductive metal, semiconductor or organic material
An electrode, an intermediate electrode made of a metal, a semiconductor, or an organic molecule that functions as a Coulomb island, and a barrier between electrons or holes that exists between the first electrode and the intermediate electrode,
A first barrier layer having a flexible structure, which is present between the second electrode and the intermediate electrode and serves as a barrier against electrons or holes;
A second barrier layer having a flexible structure, the first electrode, a first barrier layer, an intermediate electrode, a second barrier layer, and a double tunnel junction in which a second electrode is arranged in this order. When a voltage is applied between the first electrode and the second electrode, the perturbation of the Coulomb force due to the entry and exit of electrons or holes between the first electrode and the intermediate electrode and the mechanical natural vibration of the intermediate electrode are It is characterized by having a structure in which the voltage dependence of the tunnel current flowing through the double tunnel junction exhibits negative differential resistance due to resonance.

【0007】〔2〕柔構造を有する二重トンネル接合素
子において、導電性の金属、半導体または有機材料から
なる第1電極と、導電性の金属、半導体または有機材料
からなる第2電極と、クーロン島として機能する金属、
半導体または有機分子からなる中間電極と、前記第1電
極と前記中間電極の間に存在し電子または正孔に対して
障壁となる、柔構造を有する第1障壁層と、前記第2電
極と前記中間電極の間に存在し電子または正孔に対して
障壁となる、柔構造を有する第2障壁層と、前記第1電
極と、第1障壁層と、中間電極と、第2障壁層と、第2
電極との順に並んでいる二重トンネル接合を備え、前記
第1電極と第2電極の間に電圧を加えた状態で、前記第
1電極から中間電極に入った電子または正孔が中間電極
から第2電極に転送されることに起因したクーロン力の
摂動と前記中間電極の機械的固有振動とが共振すること
により、前記二重トンネル接合を流れるトンネル電流の
電圧依存性が負性微分抵抗を発現する構造を有すること
を特徴とする。
[2] In a double tunnel junction element having a flexible structure, a first electrode made of a conductive metal, semiconductor or organic material, a second electrode made of a conductive metal, semiconductor or organic material, and Coulomb A metal that functions as an island,
An intermediate electrode composed of a semiconductor or an organic molecule; a first barrier layer having a flexible structure, which is present between the first electrode and the intermediate electrode and serves as a barrier against electrons or holes; A second barrier layer having a flexible structure, which is present between the intermediate electrodes and serves as a barrier against electrons or holes; the first electrode, the first barrier layer, the intermediate electrode, and the second barrier layer; Second
Electrons or holes entering the intermediate electrode from the first electrode from the intermediate electrode with a voltage applied between the first electrode and the second electrode. Resonance between the perturbation of the Coulomb force caused by being transferred to the second electrode and the mechanical natural vibration of the intermediate electrode causes the voltage dependence of the tunnel current flowing through the double tunnel junction to produce a negative differential resistance. It is characterized by having a structure to be expressed.

【0008】〔3〕上記〔1〕又は〔2〕記載の二重ト
ンネル接合素子において、前記二重トンネル接合のトン
ネル電流の電圧依存性がピークを有することを特徴とす
る。
[3] In the double tunnel junction device according to the above [1] or [2], the voltage dependence of the tunnel current of the double tunnel junction has a peak.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0010】図1は本発明の柔構造を有する二重トンネ
ル接合を備える負性微分抵抗素子の模式図である。
FIG. 1 is a schematic diagram of a negative differential resistance element having a double tunnel junction having a flexible structure according to the present invention.

【0011】この図において、1は導電性の金属、半導
体または有機材料からなる第1電極、2は導電性の金
属、半導体または有機材料からなる第2電極、3はクー
ロン島として機能する金属、半導体または有機分子から
なる中間電極、4は第1電極1と前記中間電極3の間に
存在し電子または正孔に対して障壁となる、柔構造を有
する第1障壁層、5は第2電極2と前記中間電極3の間
に存在し電子または正孔に対して障壁となる、柔構造を
有する第2障壁層である。
In this figure, 1 is a first electrode made of a conductive metal, a semiconductor or an organic material, 2 is a second electrode made of a conductive metal, a semiconductor or an organic material, 3 is a metal functioning as a Coulomb island, Intermediate electrodes made of a semiconductor or organic molecule, 4 is a first barrier layer having a flexible structure, which is present between the first electrode 1 and the intermediate electrode 3 and serves as a barrier against electrons or holes, and 5 is a second electrode. It is a second barrier layer having a flexible structure, which is present between 2 and the intermediate electrode 3 and serves as a barrier against electrons or holes.

【0012】また、第1電極1と中間電極3間のトンネ
ル接合を第1接合、第2電極2と中間電極3間のトンネ
ル接合を第2接合という。
The tunnel junction between the first electrode 1 and the intermediate electrode 3 is called a first junction, and the tunnel junction between the second electrode 2 and the intermediate electrode 3 is called a second junction.

【0013】本発明は、柔構造を有する二重トンネル接
合において、第1電極1または第2電極2と中間電極3
の間の電子または正孔の出入りに起因したクーロン力の
摂動と中間電極3の機械的固有振動とが共振すること、
または前記第1電極1から中間電極3に入った電子また
は正孔が中間電極3から第2電極2に転送されることに
起因したクーロン力の摂動と前記中間電極3の機械的固
有振動とが共振することにより、二重トンネル接合を流
れるトンネル電流の電圧依存性が負性微分抵抗を発現す
る構造の負性微分抵抗素子を提供することを最も大きな
特徴としている。
According to the present invention, in the double tunnel junction having a flexible structure, the first electrode 1 or the second electrode 2 and the intermediate electrode 3 are provided.
Resonance between the perturbation of Coulomb force due to the entry and exit of electrons or holes and the mechanical natural vibration of the intermediate electrode 3.
Alternatively, the perturbation of the Coulomb force caused by the transfer of the electrons or holes entering the intermediate electrode 3 from the first electrode 1 to the second electrode 2 and the mechanical natural vibration of the intermediate electrode 3 may occur. The most significant feature is to provide a negative differential resistance element having a structure in which the voltage dependence of the tunnel current flowing through the double tunnel junction causes a negative differential resistance by resonating.

【0014】すなわち、本発明は、導電性の金属、半導
体または有機材料からなる第1電極1と、導電性の金
属、半導体または有機材料からなる第2電極2と、クー
ロン島として機能する金属、半導体または有機分子から
なる中間電極3と、前記第1電極1と前記中間電極3の
間に存在し、電子または正孔に対して障壁となり柔構造
を有する第1障壁層(第1接合)4と、前記第2電極2
と前記中間電極3の間に存在し、電子または正孔に対し
て障壁となり柔構造を有する第2障壁層(第2接合)5
とが、前記第1電極1、第1障壁層4、中間電極3、第
2障壁層5、第2電極2の順に並んでいる二重トンネル
接合において、前記第1電極1と第2電極2の間に電圧
を加えた状態で、前記第1電極1と前記中間電極3の間
の電子または正孔の出入りに起因したクーロン力の摂動
と中間電極3の機械固有振動とが共振すること、または
前記第1電極1から中間電極3に入った電子または正孔
が中間電極3から第2電極2に転送されることに起因し
たクーロン力の摂動と前記中間電極3の機械的固有振動
とが共振することにより、前記二重トンネル接合4,5
を流れるトンネル電流の電圧依存性がピークを有する。
That is, according to the present invention, a first electrode 1 made of a conductive metal, a semiconductor or an organic material, a second electrode 2 made of a conductive metal, a semiconductor or an organic material, and a metal functioning as a Coulomb island, An intermediate electrode 3 made of a semiconductor or an organic molecule, and a first barrier layer (first junction) 4 existing between the first electrode 1 and the intermediate electrode 3 and having a flexible structure which serves as a barrier against electrons or holes. And the second electrode 2
And a second barrier layer (second junction) 5 which is present between the intermediate electrode 3 and serves as a barrier against electrons or holes and has a flexible structure.
In the double tunnel junction in which the first electrode 1, the first barrier layer 4, the intermediate electrode 3, the second barrier layer 5, and the second electrode 2 are arranged in this order, the first electrode 1 and the second electrode 2 When a voltage is applied between the first electrode 1 and the intermediate electrode 3, the perturbation of the Coulomb force caused by the entry and exit of electrons or holes between the first electrode 1 and the intermediate electrode 3 resonates with the natural vibration of the intermediate electrode 3. Alternatively, the perturbation of the Coulomb force caused by the transfer of the electrons or holes entering the intermediate electrode 3 from the first electrode 1 to the second electrode 2 and the mechanical natural vibration of the intermediate electrode 3 may occur. By resonating, the double tunnel junctions 4, 5
There is a peak in the voltage dependence of the tunnel current flowing through the.

【0015】本発明における電極1,2と中間電極3の
間の電子または正孔の出入りおよび転送は次のようにし
て発生する。一般にトンネル接合において第1電極1と
中間電極3の間のトンネル接合を第1接合4、第2電極
2と中間電極3の間のトンネル接合を第2の接合5とす
ると、例えばA.E.Hanna and M.Tin
kham等のPhys.Rev.B 誌(Vol 4
4,5919〜5922頁,1991年)などに記載さ
れているように、各接合におけるトンネルレートは、
Incoming and outgoing and transfer of electrons or holes between the electrodes 1 and 2 and the intermediate electrode 3 in the present invention occur as follows. Generally, in the tunnel junction, the tunnel junction between the first electrode 1 and the intermediate electrode 3 is referred to as the first junction 4, and the tunnel junction between the second electrode 2 and the intermediate electrode 3 is referred to as the second junction 5. E. Hanna and M.D. Tin
Kham et al. in Phys. Rev. B magazine (Vol 4
4, 5919-5922, 1991), the tunnel rate at each junction is

【0016】[0016]

【数1】 [Equation 1]

【0017】のように表される。ただし、ΔEjは、中
間電極3における単位電荷の増減に対応した接合jのエ
ネルギー変化であり、
It is expressed as follows. However, ΔEj is the energy change of the junction j corresponding to the increase or decrease of the unit charge in the intermediate electrode 3,

【0018】[0018]

【数2】 [Equation 2]

【0019】のように表される。It is expressed as follows.

【0020】ただし、C1、C2は第1接合4および第
2接合5の静電容量、R1、R2は第1接合4および第
2接合5のトンネル抵抗、Tは絶対温度、Qは中間電極
3上の電荷量、Q0は補償電荷、kBはボルツマン定
数、eは単位電荷、Vは第1電極1を基準として第2電
極2に加えられる電圧である。微小ドットにn個の電子
が存在する確率を分布係数σ(n)とし〔ただし、Σσ
(n)=1〕、上式を次のレート方程式 σ(n)〔Γ1 + (n)+Γ2 + (n)〕 =σ(n+1)〔Γ1 - (n+1)+Γ2 - (n+
1)〕 に代入すると分布係数σ(n)を求めることができる。
この分布係数σ(n)により、中間電極3上の時間平均
電子数N(V)が次のように求まる。
Here, C1 and C2 are capacitances of the first junction 4 and the second junction 5, R1 and R2 are tunnel resistances of the first junction 4 and the second junction 5, T is an absolute temperature, and Q is an intermediate electrode 3. The above charge amount, Q0 is a compensation charge, kB is a Boltzmann constant, e is a unit charge, and V is a voltage applied to the second electrode 2 with the first electrode 1 as a reference. The probability that n electrons are present in a minute dot is the distribution coefficient σ (n) [where Σσ
(N) = 1], and the above equation is converted into the following rate equation σ (n) [Γ 1 + (n) + Γ 2 + (n)] = σ (n + 1) [Γ 1 (n + 1) + Γ 2 (n +
1)], the distribution coefficient σ (n) can be obtained.
From the distribution coefficient σ (n), the time average electron number N (V) on the intermediate electrode 3 is obtained as follows.

【0021】[0021]

【数3】 [Equation 3]

【0022】二重トンネル接合においてクーロン閉塞が
起きると、時間平均電子数N(V)が量子化し、整数の
値をとるようになる。ところで、N(V)が整数ではな
い領域では、N(V)よりも大きい整数のなかで一番小
さい整数Naと、N(V)よりも小さい整数のなかで一
番大きい整数Nbの間で、中間電極3上の電荷数は出入
りが起きる。第1接合4および第2接合5における中間
電極3への電荷の出入りの周波数f1およびf2は、
When Coulomb blockage occurs in the double tunnel junction, the time average electron number N (V) is quantized and takes an integer value. By the way, in the region where N (V) is not an integer, between the smallest integer Na that is larger than N (V) and the largest integer Nb that is smaller than N (V). The number of charges on the intermediate electrode 3 goes in and out. The frequencies f1 and f2 of charge in and out of the intermediate electrode 3 at the first junction 4 and the second junction 5 are

【0023】[0023]

【数4】 [Equation 4]

【0024】となる。It becomes

【0025】ここでは、トンネル抵抗R1がR2よりも
小さい状況を仮定する。一般に、時間平均電子数N
(V)の電圧依存性はトンネル抵抗比に依存し、R1と
R2の比が大きいほど中間電極3上の電子数はクーロン
閉塞により量子化する。したがって、ここではR2/R
1が、10以上、より好ましくは100以上の場合を仮
定する。このとき、f1はf2よりも大きくなり、f1
で中間電極3に電荷が出入りする現象が起きることにな
る。第1電極1、中間電極3、第2電極2からなる電極
系においては、この電荷の出入りにより中間電極3に静
電的な力(クーロン力)が周期的に加わり、中間電極3
は第1電極1と第2電極2の間に生じる外部電界に沿っ
て振動することになる。このf1の周波数依存性を計算
すると、時間平均電子数N(V)の小数点以下の部分が
0.5となるとき、f1は極大値をとる。
Here, it is assumed that the tunnel resistance R1 is smaller than R2. In general, time average electron count N
The voltage dependence of (V) depends on the tunnel resistance ratio, and the larger the ratio of R1 and R2, the more the number of electrons on the intermediate electrode 3 is quantized by Coulomb blockage. Therefore, here R2 / R
It is assumed that 1 is 10 or more, more preferably 100 or more. At this time, f1 becomes larger than f2, and f1
Then, a phenomenon occurs in which electric charges flow in and out of the intermediate electrode 3. In the electrode system including the first electrode 1, the intermediate electrode 3, and the second electrode 2, an electrostatic force (Coulomb force) is periodically applied to the intermediate electrode 3 due to the inflow and outflow of the charge, and the intermediate electrode 3
Will oscillate along the external electric field generated between the first electrode 1 and the second electrode 2. When the frequency dependence of f1 is calculated, f1 has a maximum value when the fractional part of the number N (V) of time-averaged electrons is 0.5.

【0026】また、前記第1電極から中間電極に入った
電子または正孔が中間電極から第2電極に転送される場
合の電荷の転送の周波数と、前記第2電極から中間電極
に入った電子または正孔が中間電極から第1電極に転送
される場合の電荷の転送の周波数は、
The frequency of charge transfer when electrons or holes entering the intermediate electrode from the first electrode are transferred to the second electrode from the intermediate electrode, and electrons entering the intermediate electrode from the second electrode Or the frequency of charge transfer when holes are transferred from the intermediate electrode to the first electrode is

【0027】[0027]

【数5】 [Equation 5]

【0028】のようにf4またはf5のいずれかとな
る。
As described above, either f4 or f5 is obtained.

【0029】ここでは、片方の接合における電荷の出入
りの場合と同様に、トンネル抵抗R1がR2よりも小さ
い状況として、R2/R1が、10以上、より好ましく
は100以上の場合を仮定する。電圧が正のとき、f4
はf5より大きくなり、f4で電荷が転送される現象が
起きることになり、また、電圧が負のとき、f4はf5
よりも小さくなり、f5で電荷が転送される現象が起き
ることになる。第1電極1、中間電極3、第2電極2か
らなる電極系においては、この電荷の転送により中間電
極3にクーロン力が周期的に加わり、中間電極3は第1
電極1と第2電極2の間に生じる外部電界に沿って振動
することになる。このf4およびf5の周波数依存性を
計算すると、電圧の絶対値の増大に増加し、電圧が負の
場合には、N(V)がNbとほぼ等しくなる電圧V以下
の電圧領域でf4は一定となり、電圧が正の場合には、
N(V)がNaとほぼ等しくなる電圧V以上の電圧領域
でf5は一定となる。
Here, it is assumed that the tunnel resistance R1 is smaller than R2, as in the case where charges flow in and out of one of the junctions, and that R2 / R1 is 10 or more, more preferably 100 or more. F4 when the voltage is positive
Becomes larger than f5, and a phenomenon in which charges are transferred at f4 occurs, and when the voltage is negative, f4 becomes f5
Therefore, a phenomenon in which charges are transferred at f5 occurs. In the electrode system including the first electrode 1, the intermediate electrode 3, and the second electrode 2, the Coulomb force is periodically applied to the intermediate electrode 3 by the transfer of the charges, and the intermediate electrode 3 is
It vibrates along the external electric field generated between the electrode 1 and the second electrode 2. Calculating the frequency dependence of f4 and f5 increases the absolute value of the voltage, and when the voltage is negative, f4 is constant in the voltage region below the voltage V at which N (V) is approximately equal to Nb. And when the voltage is positive,
F5 is constant in a voltage region equal to or higher than the voltage V at which N (V) is almost equal to Na.

【0030】一方、中間電極3を支える部分に柔構造を
含む二重トンネル接合では、中間電極3は機械的に共振
する周波数f3を有しており、このf3は f3 =1/2π・√(k/M) で与えられる。ただし、kは中間電極3を支える系の見
掛け上のばね定数、Mは中間電極3を含む共振系の見掛
け上の質量である。
On the other hand, in the double tunnel junction including the flexible structure in the portion supporting the intermediate electrode 3, the intermediate electrode 3 has a frequency f3 at which it mechanically resonates, and this f3 is f 3 = 1 / 2π√ It is given by (k / M). Here, k is the apparent spring constant of the system supporting the intermediate electrode 3, and M is the apparent mass of the resonance system including the intermediate electrode 3.

【0031】ここで、中間電極3への電荷の出入りに起
因したクーロン力による機械的な励振の周波数f1と機
械的な固有共振周波数f3が一致すると、中間電極3は
共振により大きく振動することになる。この中間電極3
の振動は、第2接合5のトンネル距離および第1接合4
のトンネル距離を変調する。
Here, if the frequency f1 of mechanical excitation due to the Coulomb force caused by the charge and discharge of electric charges to and from the intermediate electrode 3 and the mechanical natural resonance frequency f3 match, the intermediate electrode 3 vibrates greatly due to resonance. Become. This intermediate electrode 3
Of the first junction 4 and the tunnel distance of the second junction 5
Modulate the tunnel distance of.

【0032】一般にトンネル抵抗は、トンネル距離に対
して指数関数的に変化し、トンネル距離の減少に伴いト
ンネルレートは大きくなる。したがって、中間電極3が
振動することによるトンネル距離の変調は、トンネル抵
抗の変調を引き起こし、電荷が中間電極の機械的振動に
同期して転送される、いわゆる電子シャトル現象により
外部回路にトンネル電流が流れやすくなる。
In general, the tunnel resistance changes exponentially with respect to the tunnel distance, and the tunnel rate increases as the tunnel distance decreases. Therefore, the modulation of the tunnel distance due to the vibration of the intermediate electrode 3 causes the modulation of the tunnel resistance, and the electric charge is transferred in synchronization with the mechanical vibration of the intermediate electrode, that is, the so-called electronic shuttle phenomenon causes the tunnel current to flow to the external circuit. It becomes easy to flow.

【0033】以上述べたように、柔構造を有する二重ト
ンネル接合においては、中間電極3上の平均電子数が少
数点以下の値を持つ場合には、電荷の出入りによりクー
ロン力による機械的な励振があり、この励振周波数が中
間電極3の固有共振周波数と一致した際には、中間電極
3の振幅が共振により大きくなり、電子シャトル現象が
観察されやすくなる。さらに、このクーロン力による機
械的な励振周波数はクーロンブロッケード現象に依存す
るので電圧依存性があり、電子の出入りの周波数と中間
電極の固有振動数が共振する電圧領域においてトンネル
電流が増加するため、外部回路を流れる電流と電圧の依
存性には、負性微分抵抗が観察されることになる。
As described above, in the double tunnel junction having a flexible structure, when the average number of electrons on the intermediate electrode 3 has a value below the decimal point, the charge and the output cause the mechanical force by the Coulomb force. When there is excitation and the excitation frequency matches the natural resonance frequency of the intermediate electrode 3, the amplitude of the intermediate electrode 3 becomes large due to resonance, and the electron shuttle phenomenon is easily observed. Furthermore, the mechanical excitation frequency due to this Coulomb force depends on the Coulomb blockade phenomenon, and therefore has voltage dependence, and since the tunnel current increases in the voltage region where the electron entrance / exit frequency and the natural frequency of the intermediate electrode resonate, Negative differential resistance will be observed in the dependence of the current and voltage flowing through the external circuit.

【0034】さらに、第1電極1から中間電極3に入っ
た電子または正孔が中間電極3から第2電極2に転送さ
れることに起因したクーロン力の摂動周波数f4または
f5と中間電極3の機械的固有振動周波数f3が一致し
た際には、中間電極3の振幅が共振により大きくなり、
電荷が振動に同期して転送される、いわゆる電子シャト
ル現象が観察されやすくなる。さらに、このクーロン力
による機械的な励振周波数は、クーロンブロッケード現
象に依存するので電圧依存性があり、電子の転送周波数
と中間電極の固有振動数が共振する電圧領域においてト
ンネル電流が増加するため、外部回路を流れる電流と電
圧の依存性には、負性微分抵抗が観察されることにな
る。
Further, the perturbation frequency f4 or f5 of the Coulomb force caused by the transfer of electrons or holes entering the intermediate electrode 3 from the first electrode 1 to the second electrode 2 and the intermediate electrode 3 When the mechanical natural vibration frequencies f3 match, the amplitude of the intermediate electrode 3 increases due to resonance,
The so-called electron shuttle phenomenon, in which charges are transferred in synchronization with vibration, becomes easy to observe. Furthermore, the mechanical excitation frequency due to this Coulomb force depends on the Coulomb blockade phenomenon and therefore has voltage dependency, and since the tunneling current increases in the voltage region where the electron transfer frequency and the natural frequency of the intermediate electrode resonate, Negative differential resistance will be observed in the dependence of the current and voltage flowing through the external circuit.

【0035】トンネル抵抗R1の方がトンネル抵抗R2
よりも小さいと仮定した場合、電子の出入りの周波数f
1の極大値と、電子の転送に対応した周波数f4または
f5の大小関係は、中間電極3における電荷数の変化が
同じ場合には、電子の出入りの周波数f1の極大値の方
が電子の転送に対応した周波数f4またはf5よりも大
きくなる。
The tunnel resistance R1 is the tunnel resistance R2.
Frequency f of electron ingress and egress, assuming smaller than
The maximum value of 1 and the frequency f4 or f5 corresponding to the transfer of electrons are as follows. When the change in the number of charges in the intermediate electrode 3 is the same, the maximum value of the frequency f1 of electron inflow and outflow is larger. Is higher than the frequency f4 or f5 corresponding to.

【0036】更に、f1の電圧依存性は極大値を有する
のに対して、f4、またはf5は電圧の絶対値の増加に
対して単調に増加し、電圧が負の場合には、N(V)が
Nbとほぼ等しくなる電圧V以下の電圧領域でf4はほ
ぼ一定となり、電圧が正の場合には、N(V)がNaと
ほぼ等しくなる電圧V以上の電圧領域でf5はほぼ一定
となるため、中間電極4の機械的固有振動数との共振
は、電荷の出入りと電荷の転送の双方で観察されること
になる。
Further, the voltage dependence of f1 has a maximum value, whereas f4 or f5 monotonically increases with an increase in the absolute value of the voltage, and when the voltage is negative, N (V Is substantially equal to Nb in a voltage range equal to or lower than V, and when the voltage is positive, f4 is substantially constant in a voltage range equal to or higher than V in which N (V) is substantially equal to Na. Therefore, the resonance with the mechanical natural frequency of the intermediate electrode 4 will be observed both when the charge goes in and out and when the charge is transferred.

【0037】また、初期状態でトンネル抵抗R1がトン
ネル抵抗R2よりも小さいと仮定しているが、前記共振
により、振幅が大きくなることにより中間電極3が第2
電極2に近づいた際に、トンネル抵抗R1がトンネル抵
抗R2よりも大きくなる瞬間が存在すると、振幅が共振
により大きくなる前に転送されていた電荷とは逆の極性
の電荷が第2電極2から中間電極3に入り、中間電極3
が第1電極1に近づいた際に転送される、いわゆる戻る
過程での、電子シャトルが観察されることもある。
Although it is assumed that the tunnel resistance R1 is smaller than the tunnel resistance R2 in the initial state, the resonance causes the amplitude to increase and the intermediate electrode 3 to move to the second position.
When there is a moment when the tunnel resistance R1 becomes larger than the tunnel resistance R2 when approaching the electrode 2, a charge having a polarity opposite to that of the charge transferred before the amplitude becomes large due to resonance from the second electrode 2. Entering the intermediate electrode 3, the intermediate electrode 3
The electron shuttle may be observed in the so-called returning process in which the electron is transferred when the electron approaches the first electrode 1.

【0038】更に、中間電極3はクーロンブロッケード
現象を観察できるような大きさと静電容量であれば材料
は金属であっても、半導体微粒子であっても、有機分子
であってもよい。半導体や有機分子を用いる場合には、
電子性準位が離散的に存在するため、クーロンブロッケ
ード現象が電子性準位に影響を受けるものの、電荷の出
入りに起因した励振系は存在するので、中間電極3は半
導体であっても、有機分子であってもよい。
Further, the intermediate electrode 3 may be made of metal, fine semiconductor particles, or organic molecules as long as it has a size and an electrostatic capacity such that the Coulomb blockade phenomenon can be observed. When using semiconductors and organic molecules,
Since there are discrete electronic levels, the Coulomb blockade phenomenon is affected by the electronic levels. However, even if the intermediate electrode 3 is a semiconductor, even if the intermediate electrode 3 is a semiconductor It may be a molecule.

【0039】第1接合と第2接合の間の第1障壁層4お
よび第2障壁層5における柔構造は、中間電極3を支え
る部分が柔構造を有していればよい。すなわち、柔構造
を有する少なくとも片方の障壁層で中間電極3は支持さ
れていればよいため、接合の片方は真空やガスなどが存
在する空間であってもよい。
The flexible structure in the first barrier layer 4 and the second barrier layer 5 between the first junction and the second junction may be such that the portion supporting the intermediate electrode 3 has a flexible structure. That is, since the intermediate electrode 3 may be supported by at least one barrier layer having a flexible structure, one of the joints may be a space in which a vacuum or gas exists.

【0040】本発明における柔構造には、中間電極3と
柔構造を含む第1障壁層4および第2障壁層5からなる
振動系において、中間電極3上に存在する電荷数が振動
系の共振周波数に同期して変化する場合に、トンネル抵
抗R1およびR2が変化するような材料または構造が好
ましく、材料としては有機材料や液体などが好ましい。
In the flexible structure of the present invention, in the vibration system including the intermediate electrode 3 and the first barrier layer 4 and the second barrier layer 5 including the flexible structure, the number of charges existing on the intermediate electrode 3 causes resonance of the vibration system. A material or structure that changes the tunnel resistances R1 and R2 when changing in synchronization with the frequency is preferable, and an organic material or a liquid is preferable as the material.

【0041】以下、本発明の二重トンネル接合素子の具
体例について説明する。
Specific examples of the double tunnel junction element of the present invention will be described below.

【0042】図2は本発明の具体例を示す二重トンネル
接合素子の構成図である。
FIG. 2 is a block diagram of a double tunnel junction device showing a specific example of the present invention.

【0043】この図において、11はマイカ基板、12
は金膜〔金(111)結晶面〕、13はその金膜12上
の1,6ヘキサンジチオール自己組織化膜、14はその
1,6ヘキサンジチオール自己組織化膜13に着床した
平均粒径8nmのコロイド金微粒子(市販品:真空冶金
製のパーフェクトゴールド)、15は走査型プローブで
ある。この構造において、走査型プローブ15は第1電
極1、金膜12は第2電極2、金微粒子14は中間電極
3、ヘキサンジチオール自己組織化膜13は第2障壁層
5、走査型プローブ15と金微粒子14の間の空間は第
1障壁層4に相当する。
In this figure, 11 is a mica substrate and 12
Is a gold film [gold (111) crystal plane], 13 is a 1,6 hexanedithiol self-assembled film on the gold film 12, and 14 is an average particle diameter of the 1,6 hexanedithiol self-assembled film 13. 8 nm colloidal gold fine particles (commercially available product: perfect metal manufactured by vacuum metallurgy), 15 is a scanning probe. In this structure, the scanning probe 15 includes the first electrode 1, the gold film 12 includes the second electrode 2, the gold fine particles 14 include the intermediate electrode 3, the hexanedithiol self-assembled film 13 includes the second barrier layer 5, and the scanning probe 15. The space between the gold particles 14 corresponds to the first barrier layer 4.

【0044】マイカ基板11上に金膜12を蒸着し、加
熱処理により金(111)結晶面を得た。この金膜12
付きマイカ基板11上に1,6ヘキサンジチオール自己
組織化膜13を作成し、平均粒径8nmのコロイド金微
粒子14を着床した。このコロイド金微粒子14と金膜
12付きマイカ基板11が二つのチオール基で化学結合
した素子を真空中に入れ、走査型プローブ(タングステ
ンプローブ)15を接近させ、プローブ振動時の電流電
圧特性を測定した。その結果、タングステンプローブ1
5を基準として印加電圧が0.17V、0.23V、
0.3V、0.35Vのとき、明瞭な負性微分抵抗が観
察された。
A gold film 12 was deposited on the mica substrate 11 and heat-treated to obtain a gold (111) crystal plane. This gold film 12
A 1,6 hexanedithiol self-assembled film 13 was formed on the attached mica substrate 11, and colloidal gold fine particles 14 having an average particle size of 8 nm were implanted. The element in which the colloidal gold fine particles 14 and the mica substrate 11 with the gold film 12 are chemically bonded by two thiol groups is put in a vacuum, and the scanning probe (tungsten probe) 15 is brought close to it, and the current-voltage characteristic at the time of probe vibration is measured. did. As a result, the tungsten probe 1
5, the applied voltage is 0.17V, 0.23V,
At 0.3 V and 0.35 V, a clear negative differential resistance was observed.

【0045】図3は本発明の二重トンネル接合素子によ
り負性抵抗(ピーク)が表れた測定結果を示す図であ
り、図3(a)は負性抵抗(ピーク)が表れた正バイア
ス側の測定結果、図3(b)は負性抵抗(ピーク)が表
れた負バイアス側の測定結果を示す図である。これらの
図において、横軸は電圧、縦軸は電流である。
FIG. 3 is a diagram showing a measurement result showing negative resistance (peak) by the double tunnel junction element of the present invention, and FIG. 3 (a) is a positive bias side showing negative resistance (peak). 3B is a diagram showing the measurement result on the negative bias side in which the negative resistance (peak) appears. In these figures, the horizontal axis represents voltage and the vertical axis represents current.

【0046】この図3における負性抵抗(ピーク)は、
電子の出入りまたは転送に起因した励振系と中間電極の
固有振動との共振が、複数の中間電極3において発生し
ていることに起因している。このように複数の中間電極
において共振現象が同時に発生することは、本発明に係
る二重トンネル接合を並列に用いることが可能であるこ
とを意味し、素子電流を増大させることができるという
観点において好ましい。
The negative resistance (peak) in FIG. 3 is
This is because resonance between the excitation system and the natural vibration of the intermediate electrode due to the entry and exit or transfer of electrons occurs in the plurality of intermediate electrodes 3. The simultaneous occurrence of the resonance phenomenon in the plurality of intermediate electrodes means that the double tunnel junction according to the present invention can be used in parallel, and from the viewpoint that the device current can be increased. preferable.

【0047】この測定は、プローブを振動させた際に測
定したものであるが、このプローブ振動数は、機械的共
振周波数f3よりは数桁小さく、走査型プローブと金微
粒子間の距離を変調させているにすぎない。さらに、プ
ローブを振動させない状態で電圧依存性を測定した際に
も、図3と同様な位置に、同様な電流のピークが電流電
圧特性として観察された。
This measurement was carried out when the probe was vibrated. The probe frequency was several orders of magnitude lower than the mechanical resonance frequency f3, and the distance between the scanning probe and the fine gold particles was modulated. It ’s just that. Furthermore, when the voltage dependence was measured without vibrating the probe, the same current peak was observed as the current-voltage characteristic at the same position as in FIG.

【0048】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0049】[0049]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、柔構造を有する二重トンネル接合において、片
方の電極と中間電極の間の単一電子または単一正孔の出
入りに起因したクーロン力の摂動と中間電極の機械的固
有振動とが共振することにより、二重トンネル接合を流
れるトンネル電流の負性微分抵抗を発現させることがで
きる。
As described above in detail, according to the present invention, in a double tunnel junction having a flexible structure, a single electron or a single hole can enter and exit between one electrode and an intermediate electrode. Resonance between the perturbation of the resulting Coulomb force and the mechanical natural vibration of the intermediate electrode makes it possible to develop a negative differential resistance of the tunnel current flowing through the double tunnel junction.

【0050】そして、本発明は、一般に電子回路に用い
る負性微分抵抗を有するデバイスとして用いることが可
能であり、発振器、トリガ回路、入力するデータ信号を
識別して出力する識別回路や超高速ディジタル・シフト
レジスタ等の機能素子、超高速素子に利用可能である。
The present invention can be used as a device having a negative differential resistance generally used in electronic circuits, and includes an oscillator, a trigger circuit, an identification circuit for identifying and outputting an input data signal, and an ultra-high speed digital signal. -It can be used for functional devices such as shift registers and ultra-high speed devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の柔構造を有する二重トンネル接合を備
える負性微分抵抗素子の模式図である。
FIG. 1 is a schematic view of a negative differential resistance element including a double tunnel junction having a flexible structure according to the present invention.

【図2】本発明の具体例を示す二重トンネル接合素子の
構成図である。
FIG. 2 is a configuration diagram of a double tunnel junction element showing a specific example of the present invention.

【図3】本発明の二重トンネル接合素子により負性抵抗
(ピーク)が表れた測定結果を示す図である。
FIG. 3 is a diagram showing a measurement result in which a negative resistance (peak) appears by the double tunnel junction element of the present invention.

【符号の説明】[Explanation of symbols]

1 第1電極 2 第2電極 3 中間電極 4 第1障壁層(第1接合) 5 第2障壁層(第2接合) 11 マイカ基板 12 金膜〔金(111)結晶面〕 13 1,6ヘキサンジチオール自己組織化膜 14 コロイド金微粒子 15 走査型プローブ(タングステンプローブ) 1st electrode 2 Second electrode 3 intermediate electrode 4 First barrier layer (first junction) 5 Second barrier layer (second junction) 11 Mica substrate 12 Gold film [gold (111) crystal plane] 13 1,6 Hexanedithiol self-assembled film 14 Colloidal gold particles 15 Scanning probe (tungsten probe)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 柔構造を有する二重トンネル接合素子に
おいて、(a)導電性の金属、半導体または有機材料か
らなる第1電極と、(b)導電性の金属、半導体または
有機材料からなる第2電極と、(c)クーロン島として
機能する、金属、半導体または有機分子からなる中間電
極と、(d)前記第1電極と前記中間電極の間に存在し
電子または正孔に対して障壁となる、柔構造を有する第
1障壁層と、(e)前記第2電極と前記中間電極の間に
存在し電子または正孔に対して障壁となる、柔構造を有
する第2障壁層と、(f)前記第1電極と、第1障壁層
と、中間電極と、第2障壁層と、第2電極との順に並ん
でいる二重トンネル接合を備え、(g)前記第1電極と
第2電極の間に電圧を加えた状態で、前記第1電極と中
間電極の間の電子または正孔の出入りに起因したクーロ
ン力の摂動と前記中間電極の機械的固有振動とが共振す
ることにより、前記二重トンネル接合を流れるトンネル
電流の電圧依存性が負性微分抵抗を発現する構造を有す
ることを特徴とする二重トンネル接合素子。
1. A double tunnel junction element having a flexible structure, wherein (a) a first electrode made of a conductive metal, semiconductor or organic material and (b) a first electrode made of a conductive metal, semiconductor or organic material. Two electrodes, (c) an intermediate electrode composed of a metal, a semiconductor, or an organic molecule that functions as a Coulomb island, and (d) a barrier existing between the first electrode and the intermediate electrode for electrons or holes. A first barrier layer having a flexible structure, and (e) a second barrier layer having a flexible structure, which is present between the second electrode and the intermediate electrode and serves as a barrier against electrons or holes, ( f) A double tunnel junction in which the first electrode, the first barrier layer, the intermediate electrode, the second barrier layer, and the second electrode are arranged in this order, and (g) the first electrode and the second electrode. Electrons between the first electrode and the intermediate electrode are applied with a voltage applied between the electrodes. Resonance between the perturbation of the Coulomb force due to the entrance and exit of holes and the mechanical natural vibration of the intermediate electrode causes the voltage dependence of the tunnel current flowing through the double tunnel junction to exhibit a negative differential resistance. A double tunnel junction device having a structure.
【請求項2】 柔構造を有する二重トンネル接合素子に
おいて、(a)導電性の金属、半導体または有機材料か
らなる第1電極と、(b)導電性の金属、半導体または
有機材料からなる第2電極と、(c)クーロン島として
機能する、金属、半導体または有機分子からなる中間電
極と、(d)前記第1電極と前記中間電極の間に存在し
電子または正孔に対して障壁となる、柔構造を有する第
1障壁層と、(e)前記第2電極と前記中間電極の間に
存在し電子または正孔に対して障壁となる、柔構造を有
する第2障壁層と、(f)前記第1電極と、第1障壁層
と、中間電極と、第2障壁層と、第2電極との順に並ん
でいる二重トンネル接合を備え、(g)前記第1電極と
第2電極の間に電圧を加えた状態で、前記第1電極から
中間電極に入った電子または正孔が中間電極から第2電
極に転送されることに起因したクーロン力の摂動と前記
中間電極の機械的固有振動とが共振することにより、前
記二重トンネル接合を流れるトンネル電流の電圧依存性
が負性微分抵抗を発現する構造を有することを特徴とす
る二重トンネル接合素子。
2. A double tunnel junction element having a flexible structure, wherein (a) a first electrode made of a conductive metal, semiconductor or organic material and (b) a first electrode made of a conductive metal, semiconductor or organic material. Two electrodes, (c) an intermediate electrode composed of a metal, a semiconductor, or an organic molecule that functions as a Coulomb island, and (d) a barrier existing between the first electrode and the intermediate electrode for electrons or holes. A first barrier layer having a flexible structure, and (e) a second barrier layer having a flexible structure, which is present between the second electrode and the intermediate electrode and serves as a barrier against electrons or holes, ( f) A double tunnel junction in which the first electrode, the first barrier layer, the intermediate electrode, the second barrier layer, and the second electrode are arranged in this order, and (g) the first electrode and the second electrode. With the voltage applied between the electrodes, the electric current from the first electrode into the intermediate electrode The voltage of the tunnel current flowing through the double tunnel junction due to the resonance of the Coulomb force perturbation caused by the transfer of the child or the hole from the intermediate electrode to the second electrode and the mechanical natural vibration of the intermediate electrode. A double tunnel junction device having a structure in which the dependence exhibits a negative differential resistance.
【請求項3】 請求項1又は2記載の二重トンネル接合
素子において、前記二重トンネル接合のトンネル電流の
電圧依存性がピークを有することを特徴とする二重トン
ネル接合素子。
3. The double tunnel junction element according to claim 1 or 2, wherein the voltage dependence of the tunnel current of the double tunnel junction has a peak.
JP2002084684A 2002-03-26 2002-03-26 Double tunnel junction element Expired - Lifetime JP3784740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084684A JP3784740B2 (en) 2002-03-26 2002-03-26 Double tunnel junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084684A JP3784740B2 (en) 2002-03-26 2002-03-26 Double tunnel junction element

Publications (2)

Publication Number Publication Date
JP2003282893A true JP2003282893A (en) 2003-10-03
JP3784740B2 JP3784740B2 (en) 2006-06-14

Family

ID=29231909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084684A Expired - Lifetime JP3784740B2 (en) 2002-03-26 2002-03-26 Double tunnel junction element

Country Status (1)

Country Link
JP (1) JP3784740B2 (en)

Also Published As

Publication number Publication date
JP3784740B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Meerwaldt et al. Probing the charge of a quantum dot with a nanomechanical resonator
Mahboob et al. Bit storage and bit flip operations in an electromechanical oscillator
Fletcher et al. Quantized acoustoelectric current transport through a static quantum dot using a surface acoustic wave
McCarthy et al. Incoherent dynamics of vibrating single-molecule transistors
US6635898B2 (en) Quantum computer
Erbe et al. A mechanically flexible tunneling contact operating at radio frequencies
US7214571B2 (en) Electromechanical electron transfer devices
CA3027982A1 (en) Electronic circuit for control or coupling of single charges or spins and methods therefor
Schwab Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor
Jung et al. Lateral electron transport through single self-assembled InAs quantum dots
Fuhrer et al. Single electron pumping in InAs nanowire double quantum dots
JP2002518850A (en) Single charge carrier transistor, method of retaining charge carriers in quantum dots, and detection method
Mintken et al. Nanogenerator and piezotronic inspired concepts for energy efficient magnetic field sensors
Götz et al. Nanomechanical characterization of the Kondo charge dynamics in a carbon nanotube
Joachim et al. A nanoscale single-molecule amplifier and its consequences
JP2003282893A (en) Double-tunnel junction element
US9450550B2 (en) Nanoscale electromechanical parametric amplifier
CN108491933B (en) Doped element nanowire multi-type mutual-embedding silicon carbide transistor
Willick et al. Self-driven oscillation in Coulomb blockaded suspended carbon nanotubes
JPWO2003049197A1 (en) Solid core spin quantum computing device
Junno et al. Single-electron tunneling effects in a metallic double dot device
Teh et al. Characteristics of a micromachined floating-gate high-electron-mobility transistor at 4.2 K
Willick Carbon nanotube electromechanical systems: Non-linear dynamics and self-oscillation
KR101562862B1 (en) Xor logic circuits using electron shuttle mechanism
JP2546128B2 (en) Electron wave interference element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Effective date: 20060315

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130324