JP2003282424A - Extreme ultraviolet light generator - Google Patents

Extreme ultraviolet light generator

Info

Publication number
JP2003282424A
JP2003282424A JP2002087935A JP2002087935A JP2003282424A JP 2003282424 A JP2003282424 A JP 2003282424A JP 2002087935 A JP2002087935 A JP 2002087935A JP 2002087935 A JP2002087935 A JP 2002087935A JP 2003282424 A JP2003282424 A JP 2003282424A
Authority
JP
Japan
Prior art keywords
extreme ultraviolet
ultraviolet light
mirror
light sources
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002087935A
Other languages
Japanese (ja)
Other versions
JP3791441B2 (en
Inventor
Mitsuru Ikeuchi
満 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2002087935A priority Critical patent/JP3791441B2/en
Publication of JP2003282424A publication Critical patent/JP2003282424A/en
Application granted granted Critical
Publication of JP3791441B2 publication Critical patent/JP3791441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain extreme ultraviolet light of large output by suppressing debris from being generated by employing a plurality of extreme ultraviolet light sources and by directing the extreme ultraviolet lights emitted from these light sources in the same direction by using a movable mirror. <P>SOLUTION: The extreme ultraviolet light sources 11-14 are arranged so that the optical axes of the outgoing lights hereof intersect at one point, and that an even interval is provided therebetween on the circumference with the intersection of the light axes as the center and with a reflecting surface 23 of the rotatable mirror 21 located on the intersection of the light axes. The reflecting surface 23 of the mirror 21 is arranged at an inclination so as to reflect the extreme ultraviolet light reflected from the mirror 21 in the same direction. When the mirror 21 is rotated by a driving mechanism (not shown), the reflecting surface 23 faces each light source 11-14 in turn. Then, the extreme ultraviolet lights are emitted from the light sources 11, 12, 13 and 14, whereby the extreme ultraviolet light is reflected by the mirror 21 and directed to a light exit 33. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体露光用装置
の光源に利用される極端紫外光発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extreme ultraviolet light generator used as a light source for a semiconductor exposure apparatus.

【0002】[0002]

【従来の技術】微細なパターンを有する半導体集積回路
などを製造する方法として縮小露光装置がある。従来か
ら、X線縮小露光装置が用いられており、例えば、特開
平9−115813号公報には、X線発生装置を用いた
露光装置が開示されている。上記露光装置は、X線発生
源、照明光学系、マスク、ウエハ等の全体を真空容器に
収納して真空に保ち、X線源発生源から回路パターンが
形成されたマスクにX線を照射して、マスクの像をウエ
ハに縮小投影し、その表面のレジストを露光してパター
ンを転写するものである。近年の半導体集積回路の微細
化に伴ない、より短波長の光が必要とされており、光源
として、KrFレーザー(248nm)からArFレー
ザー(193nm)と短波長光源の開発がなされてい
る。そして、Siデバイスの最後のリソグラフィといわ
れる50nm技術のEUVリソグラフィの技術が開発さ
れている。
2. Description of the Related Art There is a reduction exposure apparatus as a method for manufacturing a semiconductor integrated circuit having a fine pattern. Conventionally, an X-ray reduction exposure apparatus has been used. For example, Japanese Patent Laid-Open No. 9-15813 discloses an exposure apparatus using an X-ray generator. The above-mentioned exposure apparatus stores the entire X-ray generation source, illumination optical system, mask, wafer, etc. in a vacuum container to maintain a vacuum, and irradiates the mask on which the circuit pattern is formed with X-rays from the X-ray generation source. Then, the image of the mask is reduced and projected onto the wafer, the resist on the surface is exposed, and the pattern is transferred. With the miniaturization of semiconductor integrated circuits in recent years, shorter wavelength light is required, and as a light source, a KrF laser (248 nm) to an ArF laser (193 nm) and a short wavelength light source have been developed. Then, the EUV lithography technology of 50 nm technology, which is called the last lithography of Si devices, has been developed.

【0003】このEUVリソグラフィに用いられる光源
としては、波長が10〜13nm程度の極端紫外光を放
射するものである。このような、波長が10nm〜13
nm程度の極端紫外光を発生させる方式の一つとして、
放電プラズマを利用したものが知られている。その一つ
として、特開2001−42098号公報にはプラズマ
フォーカス式の極端紫外光源が記載されており、また、
他の技術として米国特許第6188076号明細書、W
O01/97575明細書にはキャピラリ放電を利用し
た極端紫外光源が開示されている。これらはいずれも、
放電によって高温高密度のプラズマを生成することによ
って極端紫外光を発生させるものである。
The light source used in this EUV lithography emits extreme ultraviolet light having a wavelength of about 10 to 13 nm. Such a wavelength is 10 nm to 13
As one of the methods to generate extreme ultraviolet light of about nm,
Those using discharge plasma are known. As one of them, Japanese Patent Application Laid-Open No. 2001-42098 describes a plasma focus type extreme ultraviolet light source.
As another technique, US Pat. No. 6,188,076, W
The specification of O01 / 97575 discloses an extreme ultraviolet light source using a capillary discharge. These are all
Extreme ultraviolet light is generated by generating high temperature and high density plasma by electric discharge.

【0004】上記極端紫外光源を用いた半導体露光装置
は、図7の概略図に示すように、キャピラリ放電等を利
用した極端紫外光源1、反射面に多層膜が設けられた集
光鏡2、反射型マスク3、投影光学系4、ウエハ5等を
真空容器中に収納したものであり、極端紫外光源1から
放出される極端紫外光を集光鏡2で集光して、反射型マ
スク3に照射し、マスク3の反射光を投影光学系4を介
して、ウエハ5の表面に縮小投影する。
As shown in the schematic view of FIG. 7, a semiconductor exposure apparatus using the above-mentioned extreme ultraviolet light source has an extreme ultraviolet light source 1 utilizing capillary discharge, a condenser mirror 2 having a reflective surface provided with a multilayer film, The reflective mask 3, the projection optical system 4, the wafer 5 and the like are housed in a vacuum container, and the extreme ultraviolet light emitted from the extreme ultraviolet light source 1 is condensed by a condenser mirror 2 to form the reflective mask 3 And the reflected light of the mask 3 is reduced and projected onto the surface of the wafer 5 via the projection optical system 4.

【0005】図8は上記キャピラリ放電を利用した極端
紫外光源の構成例を示す図であり、同図は極端紫外光源
から放出される極端紫外光の光軸を通る平面で切った断
面図を示している。同図に示すように、例えばタングス
テン製の第1の電極11(高圧側電極)、第2の電極1
2(接地側電極)の間に、キャピラリー構造体21が設
けられる。キャピラリ構造体21は例えば窒化ケイ素か
らなる円柱状の絶縁体であり、中心に直径3mmのキャ
ピラリ211を有する。第1,2の電極11,12に
は、電気導入線31,32を介して電源(図示せず)が
電気的に接続され、該電源から第1、第2の電極11,
12間にパルス的に高電圧が印加される。第2の電極
は、通常接地され、第1の電極にパルス的に例えば負の
高電圧を印加する。以下では、第1の電極を高圧側電
極、第2の電極を接地側電極という。上記高圧側電極、
接地側電極11,12は、それぞれ貫通孔111,12
1を備え、これらの貫通孔111,121と、前記キャ
ピラリ構造体21のキャピラリ211は同軸上に配置さ
れ連通している。
FIG. 8 is a diagram showing a configuration example of an extreme ultraviolet light source using the above-mentioned capillary discharge, and the figure shows a sectional view taken along a plane passing through the optical axis of the extreme ultraviolet light emitted from the extreme ultraviolet light source. ing. As shown in the figure, the first electrode 11 (high-voltage side electrode) and the second electrode 1 made of, for example, tungsten.
The capillary structure 21 is provided between the two (ground-side electrodes). The capillary structure 21 is a cylindrical insulator made of, for example, silicon nitride, and has a capillary 211 having a diameter of 3 mm at the center. A power source (not shown) is electrically connected to the first and second electrodes 11 and 12 via the electric introduction lines 31 and 32, and the first and second electrodes 11 and 12 are connected from the power source.
A high voltage is applied between 12 in a pulsed manner. The second electrode is normally grounded, and a high negative voltage, for example, is applied to the first electrode in a pulsed manner. Hereinafter, the first electrode is referred to as a high voltage side electrode, and the second electrode is referred to as a ground side electrode. The high-voltage side electrode,
The ground electrodes 11 and 12 have through holes 111 and 12 respectively.
1, the through holes 111 and 121 and the capillary 211 of the capillary structure 21 are coaxially arranged and communicate with each other.

【0006】上記高圧側電極11には絶縁板73に取り
付けられ、絶縁板73は仕切り円筒71に固定され、さ
らに仕切り円筒71は底板72に固定されており、高圧
側電極11および絶縁板73、仕切り円筒71、底板7
2により閉空間Saを構成する。上記底板72には、上
記電気導入線31,32が貫通する貫通孔、および上記
閉空間Saにガスを導入するガス導入口41、排気口4
2が設けられ、ガス導入口41から作動ガス、例えばキ
セノン(Xe)ガスを導入し、排気口42から排出する
ことにより、上記閉空間Sa内の圧力が適当な値になる
ように制御される。また、上記底板72は、外囲円筒8
1と気密に接合され、外部と遮断した空間Sbを形成し
ている。外囲円筒81には排気口82が設けられる。空
間Sa内の作動ガスは、電極11,12に形成された貫
通孔111,121、キャピラリ211を介して空間S
bに流出し、上記排気口82から排気される。上記排気
口82からの排気量を充分に大きくすることにより、空
間Sb内は高真空状態に保たれる。
The high voltage side electrode 11 is attached to an insulating plate 73, the insulating plate 73 is fixed to a partition cylinder 71, and the partition cylinder 71 is fixed to a bottom plate 72. The high voltage side electrode 11 and the insulating plate 73, Partition cylinder 71, bottom plate 7
2 constitutes a closed space Sa. The bottom plate 72 has a through hole through which the electric introduction wires 31 and 32 penetrate, a gas introduction port 41 for introducing gas into the closed space Sa, and an exhaust port 4.
2 is provided, and a working gas, for example, xenon (Xe) gas is introduced from the gas introduction port 41 and discharged from the exhaust port 42, so that the pressure in the closed space Sa is controlled to an appropriate value. . Further, the bottom plate 72 is the outer cylinder 8
1 is airtightly joined to form a space Sb that is shielded from the outside. An exhaust port 82 is provided in the outer cylinder 81. The working gas in the space Sa passes through the through holes 111 and 121 formed in the electrodes 11 and 12 and the capillary 211, and the space S
It flows out to b and is exhausted from the exhaust port 82. By sufficiently increasing the exhaust amount from the exhaust port 82, the inside of the space Sb is maintained in a high vacuum state.

【0007】図8において、上記貫通孔111,12
1、キャピラリ211に作動ガスを流しながら、高圧側
電極11、接地側電極12にパルス的に高電圧を印加す
ると、キャピラリ211内部でガス放電が生じ、高温プ
ラズマが形成される。これにより、波長が10〜13n
mの極端紫外光が発生し、この極端紫外光は、真空に保
持された空間Sbへ放射される。
In FIG. 8, the through holes 111 and 12 are formed.
1. When a high voltage is applied in a pulsed manner to the high voltage side electrode 11 and the ground side electrode 12 while flowing the working gas into the capillary 211, gas discharge occurs inside the capillary 211 and high temperature plasma is formed. As a result, the wavelength is 10 to 13n
m extreme ultraviolet light is generated, and this extreme ultraviolet light is radiated to the space Sb held in vacuum.

【0008】[0008]

【発明が解決しようとする課題】極端紫外光源は、上記
のようにパルス的に印加される高電圧により生ずるガス
放電により極端紫外光を発生するものであり、1回のパ
ルスあたりの電気入力エネルギーを10Jとすると、1
秒間に1000回(1000Hz)パルスを印加する
と、10000Wになる。つまり、極端紫外光源から放
射される光のパワーを大きくするには、1回のパルスあ
たりの電気入力エネルギーを大きくするか、単位時間あ
たりのパルス回数を大きくする必要がある。そして、光
源から放射される極端紫外光のパワーが大きいほど、露
光工程のスループットを向上させるのに有利になる。
The extreme ultraviolet light source generates extreme ultraviolet light by gas discharge generated by the high voltage applied in a pulsed manner as described above. Electric input energy per pulse is one. Is 10J, 1
When a pulse is applied 1000 times (1000 Hz) per second, it becomes 10,000 W. That is, in order to increase the power of light emitted from the extreme ultraviolet light source, it is necessary to increase the electric input energy per pulse or increase the number of pulses per unit time. The greater the power of the extreme ultraviolet light emitted from the light source, the more advantageous it is to improve the throughput of the exposure process.

【0009】上記のように、極端紫外光源から放射され
る光のパワーを大きくするには、1回のパルスあたりの
電気入力エネルギーを大きくするか、単位時間あたりの
パルス回数を大きくする必要があるが、どちらを採用し
たとしても、それに伴なって、図8に示した極端紫外光
源を構成する高圧側電極11、接地側電極12、キャピ
ラリ構造体21の温度が上昇してしまう。この結果、最
も高温となる放電プラズマの中心に対向するキャピラリ
構造体21の温度が異常に高くなり、キャピラリ構造体
21の表面が蒸発し、有害塵(以下、デブリと記す)が
発生することになる。発生したデブリは極端紫外光の透
過を妨げたり、露光光学系の反射ミラーの表面に堆積し
てその反射率を低下させるなど、露光装置のパフォーマ
ンスの低下、あるいは信頼性の低下といった悪影響をも
たらす。なお、高圧側電極11、接地側電極12は例え
ばタングステン製であり、容易に蒸発するものではない
が、極めて高い温度に上昇すると、キャピラリ構造体2
1と同様に、蒸発が起こりデブリが発生することとな
る。
As described above, in order to increase the power of light emitted from the extreme ultraviolet light source, it is necessary to increase the electric input energy per pulse or increase the number of pulses per unit time. However, whichever method is adopted, the temperatures of the high-voltage side electrode 11, the ground side electrode 12, and the capillary structure 21 which form the extreme ultraviolet light source shown in FIG. 8 rise accordingly. As a result, the temperature of the capillary structure 21 facing the center of the discharge plasma having the highest temperature becomes abnormally high, the surface of the capillary structure 21 evaporates, and harmful dust (hereinafter referred to as debris) is generated. Become. The generated debris hinders the transmission of extreme ultraviolet light or is deposited on the surface of the reflection mirror of the exposure optical system to reduce its reflectance, resulting in adverse effects such as a reduction in the performance of the exposure apparatus or a reduction in the reliability. The high-voltage side electrode 11 and the ground-side electrode 12 are made of, for example, tungsten and do not evaporate easily, but when the temperature rises to an extremely high temperature, the capillary structure 2
As with No. 1, evaporation occurs and debris is generated.

【0010】デブリの発生を抑えるともに、極端紫外光
源から放射される光のパワーを大きくするため、極端紫
外光源を複数設けて、これらを並列運転し、各光源が発
生する極端紫外光をミラー等を用いて同一方向に導くア
イデアも提案されている。しかし、従来においては、具
体的にどのような構成とすれば、各極端紫外光源から放
射される極端紫外光を効果的に重ね合わせて、一つの光
源から放射される光と同様に出力させることが可能であ
るかについては、明らかにされていなかった。本発明は
上記事情に鑑みなされたものであって、本発明の目的
は、複数の極端紫外光源を用い、これらの光源から放射
される極端紫外光を可動ミラーにより同一方向に導くこ
とにより、デブリの発生を抑えて大出力の極端紫外光を
得ることである。
In order to suppress the generation of debris and increase the power of the light emitted from the extreme ultraviolet light source, a plurality of extreme ultraviolet light sources are provided, and these are operated in parallel, and the extreme ultraviolet light generated by each light source is mirrored or the like. The idea of using the to guide in the same direction is also proposed. However, in the past, what is specifically configured is to effectively superimpose the extreme ultraviolet light emitted from each extreme ultraviolet light source and output the same as the light emitted from one light source. It wasn't clear what could be done. The present invention has been made in view of the above circumstances, and an object of the present invention is to use a plurality of extreme ultraviolet light sources, and to guide the extreme ultraviolet light emitted from these light sources in the same direction by a movable mirror to form debris. Is to obtain a large output extreme ultraviolet light.

【0011】[0011]

【課題を解決するための手段】本発明においては、上記
課題を次のようにして解決する。 (1)絶縁体を挟むように第1、第2の電極が配置さ
れ、当該第1、第2の電極および絶縁体には、それぞれ
の部材を貫通する貫通孔が形成され、それぞれの貫通孔
は同軸上に配置され連通しており、この連通した貫通孔
に発光ガスを流入させ、上記第1、第2の電極にパルス
電圧を印加して貫通孔内で発生する極端紫外光を放射す
る極端紫外光源を複数設ける。そして、上記複数の極端
紫外光源を、その出射光の光軸が一点で交わるように配
置し、該光軸の交点に回転移動するミラーを、複数の極
端紫外光源から放射され該ミラーで反射した極端紫外光
が同一方向に反射するように傾けて配置する。 (2)上記(1)において、上記ミラーの回転軸を、該
ミラーの反射光の光軸と一致させ、複数の極端紫外光源
を、上記ミラーの反射光の光軸に垂直な平面上であっ
て、前記光軸の交点から等しい距離に配置する。本発明
においては、上記構成としたので、複数の極端紫外光源
の出力の和を極端紫外光発生装置から出力させることが
できる。このため、例えば要求される出力パワーをPと
し、極端紫外光源の数をn個とすると、各極端紫外光源
の出力パワーをP/nとすることができ、各極端紫外光
源の出力パワーを小さくすることが可能となる。したが
って、1個の各極端紫外光源を用いて出力パワーPを得
る場合に比べ、キャピラリ構造体等の温度上昇を小さく
抑えることが可能となり、デブリの発生を抑えることが
可能となる。
In the present invention, the above problems are solved as follows. (1) First and second electrodes are arranged so as to sandwich the insulator, and through holes penetrating the respective members are formed in the first and second electrodes and the insulator. Are arranged coaxially and communicate with each other. A luminous gas is caused to flow into the communicating through-holes, and a pulse voltage is applied to the first and second electrodes to radiate the extreme ultraviolet light generated in the through-holes. Provide multiple extreme ultraviolet light sources. Then, the plurality of extreme ultraviolet light sources are arranged so that the optical axes of the emitted light intersect at one point, and a mirror rotatingly moved to the intersection of the optical axes is emitted from the plurality of extreme ultraviolet light sources and reflected by the mirror. Tilt so that extreme ultraviolet light is reflected in the same direction. (2) In (1) above, the rotation axis of the mirror is aligned with the optical axis of the reflected light of the mirror, and a plurality of extreme ultraviolet light sources are arranged on a plane perpendicular to the optical axis of the reflected light of the mirror. And arranged at the same distance from the intersection of the optical axes. In the present invention, because of the above configuration, the sum of the outputs of the plurality of extreme ultraviolet light sources can be output from the extreme ultraviolet light generator. Therefore, for example, if the required output power is P and the number of extreme ultraviolet light sources is n, the output power of each extreme ultraviolet light source can be P / n, and the output power of each extreme ultraviolet light source can be reduced. It becomes possible to do. Therefore, as compared with the case where the output power P is obtained by using one extreme ultraviolet light source, it is possible to suppress the temperature rise of the capillary structure and the like to be small, and it is possible to suppress the generation of debris.

【0012】[0012]

【発明の実施の形態】図1(a)は本発明の第1の実施
例の極端紫外光発生装置の断面構成(図1(b)のB−
B’断面)を示す図、図1(b)は図1(a)のA−
A’断面図である。図1において、1は本実施例の極端
紫外光発生装置、11,12,13,14は極端紫外光
源であり、極端紫外光源11〜14は、前記図8に示し
たものと同様の構成を有する。21はミラー、22は回
転軸受、24は回転軸であり、ミラー21は中心軸Zを
中心として回転自在に構成され、図示しない駆動機構に
より回転する。31は外囲円筒であり、外囲円筒31に
は上記極端紫外光源11〜14が取り付けられる。ま
た、外囲円筒31には排気口32と光出射口33が設け
られており、排気口32から高速に排気することにより
外囲円筒31内は高真空に維持される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a sectional view of the extreme ultraviolet light generator according to the first embodiment of the present invention (B- in FIG. 1B).
FIG. 1B is a view showing a B ′ cross section), and FIG.
It is an A'sectional view. In FIG. 1, reference numeral 1 is an extreme ultraviolet light generator of the present embodiment, 11, 12, 13, and 14 are extreme ultraviolet light sources, and the extreme ultraviolet light sources 11 to 14 have the same configuration as that shown in FIG. Have. Reference numeral 21 is a mirror, 22 is a rotary bearing, and 24 is a rotary shaft. The mirror 21 is configured to be rotatable about a central axis Z and is rotated by a drive mechanism (not shown). Reference numeral 31 is an outer cylinder, and the extreme ultraviolet light sources 11 to 14 are attached to the outer cylinder 31. Further, the outer cylinder 31 is provided with an exhaust port 32 and a light emission port 33, and high-vacuum is exhausted from the exhaust port 32 to maintain a high vacuum inside the outer cylinder 31.

【0013】極端紫外光源11,12,13,14は、
その出射光の光軸が一点で交わるように、かつ、該光軸
の交点を中心とする同一円周上に等しい間隔に配置さ
れ、光軸の交点に上記回転移動するミラー21の反射面
23が配置されている。すなわち、各極端紫外光源1
1,12,13,14は等間隔に、かつ、各極端紫外光
源の発光点と、光軸の交点(ミラー21の反射面23)
は等しい距離になるように配置される。また、ミラー2
1の反射面23は、複数の極端紫外光源11,12,1
3,14から放射され該ミラーで反射した極端紫外光が
同一方向に反射するように傾けて配置され、ミラー21
の回転軸24は、該ミラー21の反射光の光軸と一致し
ている。例えば、図1に示すように各極端紫外光源を同
一円周上に等しい間隔に配置し、各極端紫外光源から放
出される光の光軸が同一平面上にあるように配置した場
合には、ミラー21の反射面の角度は上記光軸を含む平
面に対して45°となり、ミラー21は上記反射光の光
軸に一致する回転軸24を軸として回転する。ミラー2
1が図示しない駆動機構により回転すると、その反射面
23は上記各極端紫外光源11,12,13,14に順
次対向し、そのとき各極端紫外光源11,12,13,
14から極端紫外光を放射させることにより、極端紫外
光がミラー21で反射して、光出射口33へ導かれる。
The extreme ultraviolet light sources 11, 12, 13, 14 are
The reflecting surfaces 23 of the mirrors 21 are arranged so that the optical axes of the emitted light intersect at one point, and are arranged at equal intervals on the same circumference with the intersection of the optical axes as the center, and rotate at the intersection of the optical axes. Are arranged. That is, each extreme ultraviolet light source 1
Reference numerals 1, 12, 13, 14 are evenly spaced, and the intersections of the light emitting points of the respective extreme ultraviolet light sources and the optical axis (reflection surface 23 of the mirror 21)
Are arranged to have equal distances. Also, mirror 2
The reflecting surface 23 of No. 1 has a plurality of extreme ultraviolet light sources 11, 12, 1
The extreme ultraviolet lights emitted from the mirrors 3 and 14 and reflected by the mirrors are arranged so as to be inclined in the same direction.
The rotation axis 24 of the mirror 21 coincides with the optical axis of the reflected light of the mirror 21. For example, when the extreme ultraviolet light sources are arranged at equal intervals on the same circumference as shown in FIG. 1 and the optical axes of the light emitted from the respective extreme ultraviolet light sources are arranged on the same plane, The angle of the reflecting surface of the mirror 21 is 45 ° with respect to the plane including the optical axis, and the mirror 21 rotates about the rotation axis 24 that coincides with the optical axis of the reflected light. Mirror 2
When 1 is rotated by a drive mechanism (not shown), its reflecting surface 23 sequentially faces the respective extreme ultraviolet light sources 11, 12, 13, 14 and at that time, the respective extreme ultraviolet light sources 11, 12, 13,
By radiating the extreme ultraviolet light from 14, the extreme ultraviolet light is reflected by the mirror 21 and guided to the light emitting port 33.

【0014】図2は、上記第1の実施例の変形例を示す
図であり、図2(a)は極端紫外線発生装置の断面構成
(図2(b)のB−B’断面)、図2(b)は図2
(a)のA−A’断面図である。図2において、図1に
示したものと同一のものには同一の符号が付されてお
り、本実施例は、第1の実施例の極端紫外光発生装置に
おいて、ミラー21の反射面23を曲面形状としたもの
である。本実施例においては、上記のように反射面23
を曲面形状としたので、ミラー21で反射した極端紫外
光を集光した状態で光出射口33へ導くことができる。
FIG. 2 is a view showing a modification of the first embodiment, and FIG. 2 (a) is a sectional view of an extreme ultraviolet ray generator (BB 'section in FIG. 2 (b)), FIG. 2 (b) is shown in FIG.
It is an AA 'sectional view of (a). In FIG. 2, the same components as those shown in FIG. 1 are designated by the same reference numerals. In this embodiment, in the extreme ultraviolet light generating device of the first embodiment, the reflecting surface 23 of the mirror 21 is omitted. It has a curved shape. In this embodiment, as described above, the reflecting surface 23
Is curved, it is possible to guide the extreme ultraviolet light reflected by the mirror 21 to the light exit port 33 in a condensed state.

【0015】図3は、上記図1および図2に示した極端
紫外光発生装置において、ミラー21をステップ状に回
転させた場合における、それぞれの極端紫外光源11,
12,13,14からの発光強度、反射面23の回転角
および光出射口33における極端紫外光の強度の時間変
化を模式的に示した図である。それぞれの極端紫外光源
11,12,13,14は繰り返し間隔Tでパルス動作
される。同図において、ミラー21の反射面23が極端
紫外光源11と正対したときをミラー回転角0°として
いる。極端紫外光源11から極端紫外光が発生する間は
ミラー回転角0°とし、次に極端紫外光源12から極端
紫外光が発生するまでにミラー回転角を90°とする。
以下、極端紫外光源13、14の順に極端紫外光を発生
させ、それに応じてミラー21を回転させ、ミラー21
が1回転した後に再び、極端紫外光源11から発光させ
る。光出射口33における極端紫外光の繰り返し間隔は
T/4となる。したがって、それぞれの極端紫外光源か
らの出力が同じ場合には、光出射口33からみた極端紫
外光の平均的な強度は、これらの極端紫外光源単独で動
作させた場合の4倍となる。すなわち、各極端紫外光源
の出力を、要求される出力の1/4とすることができ、
要求される出力を1個の極端紫外光源により発生する場
合に比べ、デブリの発生を抑えることが可能となる。
FIG. 3 shows the extreme ultraviolet light sources 11, 11 when the mirror 21 is rotated stepwise in the extreme ultraviolet light generator shown in FIGS. 1 and 2.
It is the figure which showed typically the light emission intensity from 12,13,14, the rotation angle of the reflective surface 23, and the time change of the intensity | strength of the extreme ultraviolet light in the light-exiting port 33. The respective extreme ultraviolet light sources 11, 12, 13, 14 are pulse-operated at the repeating interval T. In the figure, when the reflecting surface 23 of the mirror 21 faces the extreme ultraviolet light source 11, the mirror rotation angle is 0 °. The mirror rotation angle is set to 0 ° while the extreme ultraviolet light source 11 emits the extreme ultraviolet light, and the mirror rotation angle is set to 90 ° before the extreme ultraviolet light source 12 produces the extreme ultraviolet light.
In the following, the extreme ultraviolet light sources 13 and 14 generate extreme ultraviolet light in this order, and the mirror 21 is rotated accordingly, so that the mirror 21
Is rotated once, and the extreme ultraviolet light source 11 emits light again. The repeating interval of the extreme ultraviolet light at the light emission port 33 is T / 4. Therefore, when the outputs from the respective extreme ultraviolet light sources are the same, the average intensity of the extreme ultraviolet light seen from the light emission port 33 is four times that when these extreme ultraviolet light sources are operated alone. That is, the output of each extreme ultraviolet light source can be set to 1/4 of the required output,
The generation of debris can be suppressed as compared with the case where the required output is generated by one extreme ultraviolet light source.

【0016】図4は、各極端紫外光源11,12,1
3,14がn回発光する毎に、ミラー21をステップ状
に回転させた場合における、それぞれの極端紫外光源1
1,12,13,14からの発光強度、反射面23の回
転角および光出射口33における極端紫外光の強度の時
間変化を模式的に示した図である。それぞれの極端紫外
光源11,12,13,14は、続けてn回発光したの
ち、所定の期間休止し、再びn回発光する動作を繰り返
しており(この動作を以下バースト運転という)、極端
紫外光源11からnパルスの極端紫外光が発生する間は
ミラー回転角0°とし、次に極端紫外光源12から極端
紫外光が発生するまでにミラー回転角を90°とし、極
端紫外光源12からnパルスの極端紫外光が発生する
間、その角度に保持する。以下、極端紫外光源13、1
4の順にnパルスの極端紫外光を発生させ、それに応じ
てミラー21を回転させ、ミラー21が1回転した後に
再び、極端紫外光源11から発光させる。
FIG. 4 shows the extreme ultraviolet light sources 11, 12, 1
Each of the extreme ultraviolet light sources 1 in the case where the mirror 21 is rotated stepwise every time 3 and 14 emit light n times
It is the figure which showed typically the light emission intensity from 1,12,13,14, the rotation angle of the reflective surface 23, and the time change of the intensity | strength of the extreme ultraviolet light in the light emission port 33. Each of the extreme ultraviolet light sources 11, 12, 13, and 14 emits n times in succession, then pauses for a predetermined period of time, and repeats the operation of emitting n times again (this operation is referred to as a burst operation). The n-pulse extreme ultraviolet light is generated from the light source 11, the mirror rotation angle is 0 °, and the mirror rotation angle is 90 ° until the extreme ultraviolet light source 12 generates the extreme ultraviolet light. Hold at that angle while the extreme ultraviolet light of the pulse is generated. Hereinafter, extreme ultraviolet light sources 13 and 1
In the order of 4, n pulses of extreme ultraviolet light are generated, the mirror 21 is rotated accordingly, and after the mirror 21 makes one rotation, the extreme ultraviolet light source 11 emits light again.

【0017】図5は本発明の第2の実施例の極端紫外光
発生装置の構成を示す図であり、前記図1、図2と同
様、図5(a)は極端紫外線発生装置の断面構成(図5
(b)のB−B’断面)、図5(b)は図5(a)のA
−A’断面図である。図5において、図1、図2に示し
たものと同一のものには同一の符号が付されており、本
実施例においては、外囲円筒31に、8個の極端紫外光
源11〜18を取り付けたものである。極端紫外光源1
1〜18は、第1の実施例と同様、その出射光の光軸が
一点で交わるように、同一円周上に等しい間隔に配置さ
れ、光軸の交点に上記回転移動するミラー21の反射面
23が配置されており、各極端紫外光源11〜18の発
光点と、光軸の交点(ミラー21の反射面23)は等し
い距離になるように配置される。また、ミラー21の反
射面23は、各極端紫外光源11〜18から放射され該
ミラーで反射した極端紫外光が同一方向に反射するよう
に傾けて配置され、ミラー21の回転軸24は、該ミラ
ー21の反射光の光軸と一致している。例えば、図5に
示すように各極端紫外光源を同一円周上に等しい間隔に
配置し、各極端紫外光源から放出される光の光軸が同一
平面上にあるように配置した場合には、前記第1の実施
例と同様、ミラー21の反射面の角度は上記光軸を含む
平面に対して45°となり、ミラー21は上記反射光の
光軸に一致する回転軸24を軸として回転する。ミラー
21は前記第1の実施例と同様、中心軸Zを中心として
回転自在に構成され、ミラー21が図示しない駆動機構
により回転すると、その反射面23は上記各極端紫外光
源11〜18に順次対向し、そのとき各極端紫外光源1
1〜18から極端紫外光を放射させることにより、極端
紫外光がミラー21で反射して、光出射口33へ導かれ
る。
FIG. 5 is a diagram showing the structure of an extreme ultraviolet light generator according to a second embodiment of the present invention. As with FIGS. 1 and 2, FIG. 5 (a) is a sectional structure of the extreme ultraviolet light generator. (Fig. 5
(B) BB 'cross section), FIG.5 (b) is A of FIG.5 (a).
It is a -A 'sectional view. In FIG. 5, the same components as those shown in FIGS. 1 and 2 are designated by the same reference numerals, and in this embodiment, eight extreme ultraviolet light sources 11 to 18 are provided in the outer cylinder 31. It is attached. Extreme ultraviolet light source 1
1 to 18 are arranged at equal intervals on the same circumference so that the optical axes of the emitted light intersect at one point, as in the first embodiment, and the reflection of the rotationally moving mirror 21 at the intersection of the optical axes. The surface 23 is arranged, and the light emitting points of the respective extreme ultraviolet light sources 11 to 18 and the intersections of the optical axes (the reflecting surface 23 of the mirror 21) are arranged at equal distances. The reflecting surface 23 of the mirror 21 is tilted so that the extreme ultraviolet light emitted from each of the extreme ultraviolet light sources 11 to 18 and reflected by the mirror is reflected in the same direction, and the rotation axis 24 of the mirror 21 is It coincides with the optical axis of the reflected light of the mirror 21. For example, when the extreme ultraviolet light sources are arranged on the same circumference at equal intervals as shown in FIG. 5, and the optical axes of the light emitted from the extreme ultraviolet light sources are arranged on the same plane, Similar to the first embodiment, the angle of the reflecting surface of the mirror 21 is 45 ° with respect to the plane including the optical axis, and the mirror 21 rotates about the rotation axis 24 that coincides with the optical axis of the reflected light. . Similar to the first embodiment, the mirror 21 is configured to be rotatable about the central axis Z, and when the mirror 21 is rotated by a drive mechanism (not shown), its reflecting surface 23 is sequentially arranged on each of the extreme ultraviolet light sources 11-18. Face each other, then each extreme ultraviolet light source 1
By emitting the extreme ultraviolet light from 1 to 18, the extreme ultraviolet light is reflected by the mirror 21 and guided to the light emitting port 33.

【0018】図6は、図5に示した極端紫外光発生装置
において、ミラー21を連続的に回転させた場合におけ
る、それぞれの極端紫外光源11〜18からの発光強
度、反射面23の回転角および光出射口33における極
端紫外光の強度の時間変化を模式的に示した図である。
図6において、それぞれの極端紫外光源11〜18は繰
り返し間隔Tでパルス動作される。ミラー21は連続的
に回転しており、ミラー21の反射面23が極端紫外光
源11と正対したとき、極端紫外光源11を発光させ、
ついで、ミラー21の反射面23が極端紫外光源12に
正対したとき、極端紫外光源12を発光させる。以下同
様に、ミラー21を連続的に回転させながら極端紫外光
源13、14、15、16、17、18の順に極端紫外
光を発生させ、ミラー21が1回転した後に再び、極端
紫外光源11から発光させる。この場合、光出射口33
における極端紫外光の繰り返し間隔はT/8となる。し
たがって、それぞれの極端紫外光源からの出力が同じ場
合には、光出射口33からみた極端紫外光の平均的な強
度は、これらの極端紫外光源単独で動作させた場合の8
倍となる。
FIG. 6 shows the intensity of light emitted from each of the extreme ultraviolet light sources 11 to 18 and the rotation angle of the reflecting surface 23 when the mirror 21 is continuously rotated in the extreme ultraviolet light generator shown in FIG. FIG. 6 is a diagram schematically showing a temporal change in the intensity of extreme ultraviolet light at the light emission port 33.
In FIG. 6, each of the extreme ultraviolet light sources 11 to 18 is pulsed at a repeating interval T. The mirror 21 is continuously rotating, and when the reflecting surface 23 of the mirror 21 faces the extreme ultraviolet light source 11, the extreme ultraviolet light source 11 emits light,
Then, when the reflecting surface 23 of the mirror 21 faces the extreme ultraviolet light source 12, the extreme ultraviolet light source 12 is caused to emit light. Similarly, while the mirror 21 is continuously rotated, extreme ultraviolet light sources 13, 14, 15, 16, 17, 18 are generated in this order, and after the mirror 21 makes one rotation, the extreme ultraviolet light source 11 again emits the extreme ultraviolet light. Make it glow. In this case, the light output port 33
The extreme ultraviolet light has a repeating interval of T / 8. Therefore, when the outputs from the respective extreme ultraviolet light sources are the same, the average intensity of the extreme ultraviolet light seen from the light emission port 33 is 8 when the extreme ultraviolet light sources are operated independently.
Doubled.

【0019】なお、上記ではミラーを連続的に回転させ
た場合を示したが、図5に示した極端紫外光発生装置に
おいて、前記図3に示したように、ミラー21をステッ
プ状に回転させたり、また、図4に示したように、ミラ
ー21をステップ状に回転させ、各極端紫外光源11〜
18をバースト運転してもよい。同様に、前記図1およ
び図2に示した極端紫外光発生装置において、図6に示
したように、ミラー21を連続的に回転させてもよい。
また、上記実施例では、4個および8個の極端紫外光源
を用いた場合について説明したが、極端紫外光源の数
は、必要とされる出力パワーに応じて適宜選定すること
ができる。さらに、上記実施例では、各極端紫外光源か
ら放出される光の光軸が同一平面上にある場合について
説明したが、必ずしも各光軸が同一平面上にある必要は
なく、要するに、各極端紫外光源を、その出射光の光軸
が一点で交わるように配置し、各極端紫外光源の発光点
と光軸の交点が等しい距離になるようにし、光軸の交点
に、各極端紫外光源から放出される極端紫外光が同一方
向に反射するように回転移動するミラーの反射面を配置
し、該ミラーの回転軸を、該ミラーの反射光の光軸と一
致させればよい。具体的には、複数の極端紫外光源を、
ミラーの反射光の光軸に垂直な平面上であって、前記光
軸の交点から等しい距離に配置すればよい。
In the above description, the case where the mirror is continuously rotated is shown. However, in the extreme ultraviolet light generator shown in FIG. 5, the mirror 21 is rotated stepwise as shown in FIG. Alternatively, as shown in FIG. 4, the mirror 21 is rotated stepwise so that each of the extreme ultraviolet light sources 11 to 11
18 may be operated in burst. Similarly, in the extreme ultraviolet light generator shown in FIGS. 1 and 2, the mirror 21 may be continuously rotated as shown in FIG.
Further, in the above embodiment, the case where four and eight extreme ultraviolet light sources are used has been described, but the number of extreme ultraviolet light sources can be appropriately selected according to the required output power. Further, in the above embodiment, the case where the optical axes of the light emitted from the respective extreme ultraviolet light sources are on the same plane has been described, but the respective optical axes do not necessarily have to be on the same plane. The light sources are arranged so that the optical axes of the emitted light intersect at one point so that the emission points of the extreme ultraviolet light sources and the intersections of the optical axes have the same distance, and the extreme ultraviolet light sources emit at the intersections of the optical axes. It suffices to dispose the reflecting surface of the mirror that rotates so that the extreme ultraviolet light described above is reflected in the same direction, and make the rotation axis of the mirror coincide with the optical axis of the reflected light of the mirror. Specifically, multiple extreme ultraviolet light sources,
The mirrors may be arranged on a plane perpendicular to the optical axis of the reflected light and at the same distance from the intersection of the optical axes.

【0020】[0020]

【発明の効果】以上説明したように、本発明において
は、極端紫外光源を複数設け、複数の極端紫外光源を、
その出射光の光軸が一点で交わるように配置し、該光軸
の交点に回転移動するミラーを、複数の極端紫外光源か
ら放射され該ミラーで反射した極端紫外光が同一方向に
反射するように傾けて配置したので、複数の極端紫外光
源の出力の和を極端紫外光発生装置から出力させること
ができる。このため、各極端紫外光源の出力パワーを小
さくすることが可能となり、1個の各極端紫外光源を用
いて要求される出力パワーを得る場合に比べ、デブリの
発生を抑えることが可能となる。
As described above, in the present invention, a plurality of extreme ultraviolet light sources are provided, and a plurality of extreme ultraviolet light sources are provided.
Arranged so that the optical axes of the emitted light intersect at one point, and rotating a mirror to the intersection of the optical axes so that the extreme ultraviolet light emitted from a plurality of extreme ultraviolet light sources and reflected by the mirrors is reflected in the same direction. Since it is arranged so as to be tilted to, the sum of the outputs of the plurality of extreme ultraviolet light sources can be output from the extreme ultraviolet light generator. Therefore, the output power of each extreme ultraviolet light source can be reduced, and the occurrence of debris can be suppressed as compared with the case where the required output power is obtained by using one extreme ultraviolet light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の極端紫外光発生装置の
断面構成を示す図である。を示す図である。
FIG. 1 is a diagram showing a cross-sectional configuration of an extreme ultraviolet light generator according to a first embodiment of the present invention. FIG.

【図2】第1の実施例の変形例を示す図である。FIG. 2 is a diagram showing a modification of the first embodiment.

【図3】ミラーをステップ状に回転させた場合の反射面
の回転角、光出射口における極端紫外光の強度等の時間
変化を模式的に示した図である。
FIG. 3 is a diagram schematically showing a change over time in a rotation angle of a reflecting surface, an intensity of extreme ultraviolet light at a light exit port, and the like when a mirror is rotated stepwise.

【図4】各極端紫外光源がn回発光する毎に、ミラーを
ステップ状に回転させた場合の反射面の回転角、光出射
口における極端紫外光の強度等の時間変化を模式的に示
した図である。
FIG. 4 schematically shows a time change of the rotation angle of the reflecting surface, the intensity of the extreme ultraviolet light at the light exit port, etc. when the mirror is rotated stepwise each time each extreme ultraviolet light source emits light n times. It is a figure.

【図5】本発明の第2の実施例の極端紫外光発生装置の
断面構成を示す図である。
FIG. 5 is a diagram showing a sectional configuration of an extreme ultraviolet light generator according to a second embodiment of the present invention.

【図6】図7においてミラーを連続的に回転させた場合
における反射面の回転角、光出射口における極端紫外光
の強度等の時間変化を模式的に示した図である。
FIG. 6 is a diagram schematically showing changes over time in the rotation angle of the reflecting surface, the intensity of extreme ultraviolet light at the light exit port, and the like when the mirror is continuously rotated in FIG.

【図7】極端紫外光源を用いた半導体露光装置の概略構
成を示す図である。
FIG. 7 is a diagram showing a schematic configuration of a semiconductor exposure apparatus using an extreme ultraviolet light source.

【図8】キャピラリ放電を利用した極端紫外光源の構成
例を示す図である。
FIG. 8 is a diagram showing a configuration example of an extreme ultraviolet light source that uses capillary discharge.

【符号の説明】[Explanation of symbols]

11〜18 極端紫外光源 21 ミラー 22 回転軸受 24 回転軸 31 外囲円筒 32 排気口 33 光出射口 11-18 Extreme ultraviolet light source 21 mirror 22 rotary bearing 24 rotation axis 31 Surrounding cylinder 32 exhaust port 33 Light exit port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体を挟むように第1、第2の電極が
配置され、当該第1、第2の電極および絶縁体には、そ
れぞれの部材を貫通する貫通孔が形成され、それぞれの
貫通孔は同軸上に配置され連通しており、この連通した
貫通孔に発光ガスを流入させ、上記第1、第2の電極に
パルス電圧を印加して貫通孔内で発生する極端紫外光を
放射する極端紫外光源を複数有し、 上記複数の極端紫外光源は、出射光の光軸が一点で交わ
るように配置され、 上記光軸の交点には回転移動するミラーが配置され、該
ミラーは、複数の極端紫外光源から放射され該ミラーで
反射した極端紫外光が同一方向に反射するように傾けて
配置されていることを特徴とする極端紫外光発生装置。
1. A first electrode and a second electrode are arranged so as to sandwich an insulator, and a through hole penetrating each member is formed in the first electrode, the second electrode, and the insulator. The through holes are coaxially arranged and communicate with each other. A luminescent gas is caused to flow into the communicating through holes, and a pulse voltage is applied to the first and second electrodes so that the extreme ultraviolet light generated in the through holes is emitted. Having a plurality of extreme ultraviolet light sources for radiating, the plurality of extreme ultraviolet light sources are arranged so that the optical axes of the emitted light intersect at one point, and a rotating mirror is arranged at the intersection of the optical axes. An extreme ultraviolet light generation device, wherein the extreme ultraviolet light emitted from a plurality of extreme ultraviolet light sources and reflected by the mirror is arranged so as to be inclined so as to be reflected in the same direction.
【請求項2】 前記ミラーの回転軸は、該ミラーの反射
光の光軸と一致しており、前記複数の極端紫外光源は、
上記ミラーの反射光の光軸に垂直な平面上であって、前
記光軸の交点から等しい距離に配置されていることを特
徴とする請求項1の極端紫外光発生装置。
2. The rotation axis of the mirror coincides with the optical axis of the reflected light of the mirror, and the plurality of extreme ultraviolet light sources are
The extreme ultraviolet light generator according to claim 1, wherein the extreme ultraviolet light generators are arranged on a plane perpendicular to the optical axis of the reflected light of the mirror and at the same distance from the intersection of the optical axes.
JP2002087935A 2002-03-27 2002-03-27 Extreme ultraviolet light generator Expired - Fee Related JP3791441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087935A JP3791441B2 (en) 2002-03-27 2002-03-27 Extreme ultraviolet light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087935A JP3791441B2 (en) 2002-03-27 2002-03-27 Extreme ultraviolet light generator

Publications (2)

Publication Number Publication Date
JP2003282424A true JP2003282424A (en) 2003-10-03
JP3791441B2 JP3791441B2 (en) 2006-06-28

Family

ID=29233961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087935A Expired - Fee Related JP3791441B2 (en) 2002-03-27 2002-03-27 Extreme ultraviolet light generator

Country Status (1)

Country Link
JP (1) JP3791441B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201466A (en) * 2006-01-24 2007-08-09 Xtreme Technologies Gmbh Device and method for generating euv radiation of high average output
US7352842B2 (en) 2004-12-01 2008-04-01 Canon Kabushiki Kaisha X-ray generator and exposure apparatus having the same
WO2011027699A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source system
JP2012191040A (en) * 2011-03-11 2012-10-04 Ihi Corp Plasma light source system
CN103017899A (en) * 2012-11-23 2013-04-03 北京振兴计量测试研究所 Convergent mirror
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
JP2018097105A (en) * 2016-12-12 2018-06-21 株式会社Ihi Plasma light source system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352842B2 (en) 2004-12-01 2008-04-01 Canon Kabushiki Kaisha X-ray generator and exposure apparatus having the same
JP2007201466A (en) * 2006-01-24 2007-08-09 Xtreme Technologies Gmbh Device and method for generating euv radiation of high average output
NL1033276C2 (en) * 2006-01-24 2008-02-25 Xtreme Tech Gmbh Device and method for generating EUV radiation with a high cross-sectional capacity.
JPWO2011027699A1 (en) * 2009-09-01 2013-02-04 株式会社Ihi Plasma light source system
CN102484045A (en) * 2009-09-01 2012-05-30 株式会社Ihi Plasma light source system
WO2011027699A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source system
TWI423734B (en) * 2009-09-01 2014-01-11 Ihi Corp Plasma light source system
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
KR101370615B1 (en) 2009-09-01 2014-03-06 가부시키가이샤 아이에이치아이 Plasma light source system
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
JP2012191040A (en) * 2011-03-11 2012-10-04 Ihi Corp Plasma light source system
CN103017899A (en) * 2012-11-23 2013-04-03 北京振兴计量测试研究所 Convergent mirror
JP2018097105A (en) * 2016-12-12 2018-06-21 株式会社Ihi Plasma light source system

Also Published As

Publication number Publication date
JP3791441B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP4332648B2 (en) Light source device
TWI569689B (en) Extreme ultraviolet radiation source module, extreme ultraviolet lithography system and extreme ultraviolet lithography process
US6590959B2 (en) High-intensity sources of short-wavelength electromagnetic radiation for microlithography and other uses
US6307913B1 (en) Shaped source of soft x-ray, extreme ultraviolet and ultraviolet radiation
JP4320999B2 (en) X-ray generator and exposure apparatus
US6677600B2 (en) EUV radiation source
KR100748447B1 (en) Lithographic projection apparatus and particle barrier for use in said apparatus
JP5076349B2 (en) Extreme ultraviolet light collector mirror and extreme ultraviolet light source device
JP4381094B2 (en) Radiation source, lithographic apparatus, and device manufacturing method
US6861656B2 (en) High-luminosity EUV-source devices for use in extreme ultraviolet (soft X-ray) lithography systems and other EUV optical systems
JP2003022950A (en) Debris remover for x-ray light source and aligner comprising it
JPH10319195A (en) Plasma focus high-energy photon source
JP3662574B2 (en) Lithographic projection apparatus and reflector assembly for use in said apparatus
WO2005096680A1 (en) Light source unit, illumination optical device and exposing method
KR20100102170A (en) Radiation source, lithographic apparatus and device manufacturing method
JP5098126B2 (en) X-ray generator, exposure apparatus, exposure method, and device manufacturing method
JP4424748B2 (en) Lithographic apparatus, device manufacturing method and radiation system
KR20120034124A (en) Plasma light source system
JP2003282424A (en) Extreme ultraviolet light generator
TWI687778B (en) Method and light source for generating light in lithography exposure process
JPH11330592A (en) Laser optical source and aligner having the same
US6885015B2 (en) Thermionic-cathode for pre-ionization of an extreme ultraviolet (EUV) source supply
JPH08241847A (en) Aligner and its method
JP2005294608A (en) Electric discharge light source unit, lighting optical device, aligner, and exposure method
JP7395729B2 (en) Device and method for combining multiple laser beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees