JP2003281795A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2003281795A
JP2003281795A JP2002309844A JP2002309844A JP2003281795A JP 2003281795 A JP2003281795 A JP 2003281795A JP 2002309844 A JP2002309844 A JP 2002309844A JP 2002309844 A JP2002309844 A JP 2002309844A JP 2003281795 A JP2003281795 A JP 2003281795A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic layer
layer
domain wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309844A
Other languages
Japanese (ja)
Inventor
Masahiro Tabata
正浩 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2002309844A priority Critical patent/JP2003281795A/en
Priority to US10/337,297 priority patent/US7092318B2/en
Publication of JP2003281795A publication Critical patent/JP2003281795A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve jitter characteristics by making magnetic domain wall movement prompt. <P>SOLUTION: In a first magneto-optical recording medium 10A, a first magnetic layer 13 is made of a material using a Gd-Fe film or a Gd-Fe-Co film as a base so that a magnetic field normalized based on saturation magnetization of a magnetic domain wall driving field can be >1, and an element concentration ratio (in percent) of Gd to Fe or Fe-Co is set in a range of 28.0≤Gd≤29.0. A second magnetic layer 14 is made of a material using a Tb-Fe film or a Dy-Fe film as a base, to which a non-magnetic element such as Al and Cr, and Co are added. A third magnetic layer 15 is made of a material using a Tb-Fe-Co film or a Dy-Fe-Co film as a base, and an element concentration ratio (in percent) of Tb or Dy to Fe-Co is set in a range of 23.5≤Tb≤25.5 or 25.5≤Dy≤28.5. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザービームを
照射することにより磁壁移動を生じさせながら情報信号
の再生を行う光磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium that reproduces an information signal while causing domain wall movement by irradiating a laser beam.

【0002】[0002]

【従来の技術】光磁気記録方式は、フェリ磁性薄膜を局
部的にキュリ−点または補償点近傍にまで昇温し、この
部分の保磁力を減少させて、記録すべき情報信号に対し
て外部からの印加記録磁界の方向に磁化の向きを反転さ
せることを基本原理とするものである。磁化の反転した
部分すなわち情報ビットは磁区を形成し、それを磁気カ
−効果によって読み出す光磁気記録再生においては、記
録密度の向上のために、記録ビット長の短縮化すなわち
情報信号を磁区の形態で記録した場合に磁区の微小化を
図ることが必要となる。しかしながら、磁区(情報信
号)の再生分解能は、ほとんど再生光学系のレーザー光
源の波長λと対物レンズの開口数NAで決まり、空間周
波数2NA/λが再生限界となる。そこで、記録密度を
上げるためにレーザー光源の波長λを短くすることや、
高NAの対物レンズを用いて再生装置側のレーザービー
ムのスポット径を小さくすることが考えられる。しかし
ながら、現在実用レベルにあるレ−ザ−光源の波長は6
40nm程度にすぎず、また、高NAの対物レンズを用
いると焦点深度が浅くなり、対物レンズと光磁気記録媒
体(光ディスクや光カード)との距離に精度が要求さ
れ、光磁気記録媒体の製造精度が厳しくなる。したがっ
て、対物レンズのNAはあまり高くできず、実用化可能
な対物レンズのNAはせいぜい0.6である。すなわ
ち、レーザー光源の波長λや対物レンズの開口数NAに
よる記録密度の向上には限界がある。
2. Description of the Related Art In a magneto-optical recording system, a ferrimagnetic thin film is locally heated to near a Curie point or a compensation point, and the coercive force of this portion is reduced so that an external information signal to be recorded can be obtained. The basic principle is to reverse the direction of the magnetization in the direction of the applied recording magnetic field from. In the magneto-optical recording / reproducing in which the portion where the magnetization is reversed, that is, the information bit forms a magnetic domain, and the magnetic domain is used to read it, the recording bit length is shortened, that is, the information signal is formed in the form of the magnetic domain in order to improve recording density. It is necessary to reduce the size of the magnetic domain when recording is performed with. However, the reproduction resolution of the magnetic domain (information signal) is almost determined by the wavelength λ of the laser light source of the reproduction optical system and the numerical aperture NA of the objective lens, and the spatial frequency 2NA / λ is the reproduction limit. Therefore, in order to increase the recording density, shorten the wavelength λ of the laser light source,
It is conceivable to use a high NA objective lens to reduce the spot diameter of the laser beam on the reproducing device side. However, the wavelength of the laser light source currently in practical use is 6
It is only about 40 nm, and when a high NA objective lens is used, the depth of focus becomes shallow, and precision is required for the distance between the objective lens and the magneto-optical recording medium (optical disk or optical card). The accuracy becomes severe. Therefore, the NA of the objective lens cannot be made very high, and the NA of the objective lens that can be put to practical use is at most 0.6. That is, there is a limit in improving the recording density by the wavelength λ of the laser light source and the numerical aperture NA of the objective lens.

【0003】そこで、この様な再生時の条件から規定さ
れる記録密度の問題点を解決するものとして、磁性層を
3層構造に構成した磁性記録媒体(=光磁気記録媒体)
を再生する磁性記録媒体の信号再生方法がある(例え
ば、特許文献1参照)。また、磁性層を4層構造に構成
した磁性記録媒体(=光磁気記録媒体)もある(例え
ば、特許文献2参照)。
Therefore, as a means for solving the problem of the recording density defined by such a reproducing condition, a magnetic recording medium having a three-layer magnetic layer structure (= magneto-optical recording medium)
There is a signal reproducing method of a magnetic recording medium for reproducing the data (for example, see Patent Document 1). There is also a magnetic recording medium (= magneto-optical recording medium) having a four-layer magnetic layer structure (for example, refer to Patent Document 2).

【0004】[0004]

【特許文献1】特開平11−86372号公報(第4
頁、第1図)
[Patent Document 1] Japanese Patent Laid-Open No. 11-86372 (4th
(Page, Fig. 1)

【0005】[0005]

【特許文献2】特開2000−187898号公報(第
3−4頁、第1図)
[Patent Document 2] Japanese Patent Laid-Open No. 2000-187898 (page 3-4, FIG. 1)

【0006】図21は従来の光磁気記録媒体の一例を説
明するための図であり、(a)は光磁気記録媒体の層構
成を模式的に示し、(b)はレーザービームを照射した
時に光磁気記録媒体上の温度分布を示した図、図22は
従来の光磁気記録媒体の他例を説明するための図であ
り、(a)は光磁気記録媒体の層構成を模式的に示し、
(b)はレーザービームを照射した時に光磁気記録媒体
上の温度分布を示した図である。
FIG. 21 is a diagram for explaining an example of a conventional magneto-optical recording medium. (A) schematically shows the layer structure of the magneto-optical recording medium, and (b) shows when a laser beam is irradiated. FIG. 22 is a diagram showing the temperature distribution on the magneto-optical recording medium, FIG. 22 is a diagram for explaining another example of the conventional magneto-optical recording medium, and FIG. 22A is a schematic diagram showing the layer structure of the magneto-optical recording medium. ,
(B) is a diagram showing a temperature distribution on the magneto-optical recording medium when a laser beam is irradiated.

【0007】図21に示した従来の一例の光磁気記録媒
体110は上記した特許文献1(特開平11−8637
2号公報)に開示されているものであり、また、図22
に示した従来の他例の光磁気記録媒体120は上記した
特許文献2(特開2000−187898号公報)に開
示されているものであり、ここでは特許文献1,2を参
照して簡略に説明する。
An example of the conventional magneto-optical recording medium 110 shown in FIG.
No. 2), and FIG.
Another example of the conventional magneto-optical recording medium 120 shown in FIG. 1 is disclosed in the above-mentioned Patent Document 2 (Japanese Patent Laid-Open No. 2000-187898). explain.

【0008】まず、図21(a),(b)に示した如
く、従来の一例の光磁気記録媒体110では、第1〜第
3磁性層111〜113が室温において交換結合して順
次積層されており、再生用のレーザービームを照射する
側に設けられて磁壁移動層となる第1磁性層111は、
記録層となる第3磁性層113に比べて相対的に磁壁抗
磁力が小さな磁性膜からなり、第2磁性層112は、第
1磁性層111及び第3磁性層113よりもキュリー温
度の低い磁性膜からなっている。
First, as shown in FIGS. 21A and 21B, in the conventional magneto-optical recording medium 110, the first to third magnetic layers 111 to 113 are exchange-coupled at room temperature and sequentially laminated. The first magnetic layer 111, which is provided on the side irradiated with the reproducing laser beam and serves as the domain wall motion layer, is
The second magnetic layer 112 is made of a magnetic film having a domain wall coercive force relatively smaller than that of the third magnetic layer 113 serving as a recording layer, and the second magnetic layer 112 has a lower Curie temperature than that of the first magnetic layer 111 and the third magnetic layer 113. It consists of a membrane.

【0009】より具体的には、上記した第1〜第3磁性
層111〜113は、例えば、Pr,Nd,Sm,E
u,Gd,Tb,Dy,Ho,Erなどの希土類金属元
素の一種類あるいは二種類以上が10〜40原子%と、
Fe,Co,Niなどの鉄族元素の一種類あるいは二種
類以上が60〜90原子%とで構成される希土類−鉄族
非晶質合金によって構成されている。また、耐食性向上
などのために、これらの合金にCr,Mn,Cu,T
i,Al,Si,Pt,Inなどの元素を少量添加して
も良いと記載されている。
More specifically, the above-mentioned first to third magnetic layers 111 to 113 are made of, for example, Pr, Nd, Sm, E.
10 to 40 atom% of one or more rare earth metal elements such as u, Gd, Tb, Dy, Ho and Er,
It is composed of a rare earth-iron group amorphous alloy composed of 60 to 90 atomic% of one or more iron group elements such as Fe, Co and Ni. In addition, in order to improve the corrosion resistance and the like, these alloys may contain Cr, Mn, Cu, T
It is described that elements such as i, Al, Si, Pt and In may be added in small amounts.

【0010】上記のように構成した光磁気記録媒体11
0において、記録時にはレーザービームを第1磁性層1
11側から照射しながら図示しない磁気ヘッドにより情
報信号を第3磁性層113に記録することで、矢印向き
の磁化反転領域(以下、磁区と記す)として保存され、
更に、記録後でレーザービームの非照射時には、第3磁
性層113に記録した磁区が第2磁性層112を介して
第1磁性層111に交換結合されている。この際、第1
〜第3磁性層111〜113中の縦矢印ASは原子スピ
ンの向きを表している。スピンの向きが相互に逆向きの
領域の境界部には磁壁DWが形成されている。
The magneto-optical recording medium 11 constructed as described above.
0, the laser beam is applied to the first magnetic layer 1 during recording.
By recording an information signal in the third magnetic layer 113 by a magnetic head (not shown) while irradiating from the 11 side, it is preserved as a magnetization reversal region in the arrow direction (hereinafter referred to as a magnetic domain),
Furthermore, when the laser beam is not irradiated after recording, the magnetic domain recorded in the third magnetic layer 113 is exchange-coupled to the first magnetic layer 111 via the second magnetic layer 112. At this time, the first
The vertical arrow AS in the third magnetic layers 111 to 113 represents the direction of atomic spin. A domain wall DW is formed at the boundary between regions where the spin directions are opposite to each other.

【0011】ここで、再生時にレーザービームを第1磁
性層111上に照射すると、レーザービームに対して図
示の位置X1と位置X2との間で媒体温度が第2磁性層
112のキュリー温度Ts以上に達する。これに伴っ
て、位置X1と位置X2と間の領域では、第2磁性層1
12がキュリー温度Ts以上に昇温されているために第
2磁性層112の磁化が消失されて、第1磁性層111
と第3磁性層113との間の交換結合が切断されてお
り、この領域を結合切断領域という。
Here, when the first magnetic layer 111 is irradiated with a laser beam during reproduction, the medium temperature between the position X1 and the position X2 shown in the figure with respect to the laser beam is equal to or higher than the Curie temperature Ts of the second magnetic layer 112. Reach Accordingly, in the region between the position X1 and the position X2, the second magnetic layer 1
Since the temperature of 12 has been raised to the Curie temperature Ts or higher, the magnetization of the second magnetic layer 112 disappears, and the first magnetic layer 111
The exchange coupling between the third magnetic layer 113 and the third magnetic layer 113 is broken, and this region is called a bond breaking region.

【0012】そして、結合切断領域内に第1磁性層11
1中に存在する磁壁DWが侵入すると、この磁壁DWが
第1磁性層111中で矢印に示すように温度のピークに
向かって移動するので磁壁移動DWMが発生し、この磁
壁移動DWMに伴って第1磁性層111内で交換結合し
た磁区が再生用のレーザービームによって拡大して読み
出される。一方、記録層となる第3磁性層113は保磁
力(磁壁抗磁力)が十分に大きいので、第3磁性層11
3中の磁壁は移動することなく記録状態を保ったままと
なる。これにより、通常の再生分解能では再生不可能な
微小な磁区を拡大して再生を行うことで、記録密度の飛
躍的な向上を図るものである。
Then, the first magnetic layer 11 is formed in the bond breaking region.
When the domain wall DW existing in 1 enters, the domain wall DW moves toward the peak of temperature in the first magnetic layer 111 as indicated by the arrow, so that the domain wall movement DWM occurs, and along with this domain wall movement DWM. The magnetic domains exchange-coupled in the first magnetic layer 111 are expanded and read by the reproducing laser beam. On the other hand, since the coercive force (domain wall coercive force) of the third magnetic layer 113, which is the recording layer, is sufficiently large, the third magnetic layer 11
The domain wall in 3 remains in the recorded state without moving. As a result, the recording density is remarkably improved by enlarging and reproducing the minute magnetic domain that cannot be reproduced by the normal reproduction resolution.

【0013】次に、図22(a),(b)に示した如
く、従来の他例の光磁気記録媒体120は、上記した一
例の光磁気記録媒体110よりも磁性層を1層増加して
成膜することで、とくに、レーザービームの照射によ
り、磁壁移動可能な温度領域のレーザービームの移動方
向前方(矢印I1方向)からの磁壁の移動と、移動方向
後方(矢印I2方向)からの磁壁の移動とが共に生じる
ことなく、移動方向前方(矢印I1方向)からの磁壁の
移動のみをレーザービームのスポットで拡大して読み出
すことができるように性能向上を図ったものである。
Next, as shown in FIGS. 22A and 22B, another conventional magneto-optical recording medium 120 has one more magnetic layer than the above-described magneto-optical recording medium 110. By forming a film by the laser beam irradiation, particularly, when the laser beam is irradiated, the domain wall moves from the front (direction of arrow I1) in the moving direction of the laser beam in the temperature domain where the domain wall can move, and from the back (direction of arrow I2) in the moving direction. This is intended to improve the performance so that only the movement of the domain wall from the front in the moving direction (the direction of arrow I1) can be expanded and read out by the spot of the laser beam without the movement of the domain wall occurring together.

【0014】この光磁気記録媒体120では、第1〜第
4磁性層121〜124が室温において交換結合して順
次積層されており、再生用のレーザービームを照射する
側に設けられて磁壁移動層となる第1磁性層121は室
温において第2〜第4磁性層122〜124よりも磁壁
抗磁力が小さく、第2磁性層122は室温において第1
磁性層121よりも磁壁エネルギー密度が高く、第3磁
性層113はキュリー温度が室温よりも高く、第1,第
2,第4磁性層121,122,124のキュリー温度
よりも低く設定され、第4磁性層124が記録層として
構成されている。
In this magneto-optical recording medium 120, the first to fourth magnetic layers 121 to 124 are exchange-coupled at room temperature and sequentially laminated, and the domain wall displacement layer is provided on the side where the reproducing laser beam is irradiated. The first magnetic layer 121 has a domain wall coercive force smaller than that of the second to fourth magnetic layers 122 to 124 at room temperature, and the second magnetic layer 122 has the first magnetic layer at room temperature.
The domain wall energy density is higher than that of the magnetic layer 121, the Curie temperature of the third magnetic layer 113 is higher than room temperature, and lower than the Curie temperatures of the first, second, and fourth magnetic layers 121, 122, and 124. The 4-magnetic layer 124 is configured as a recording layer.

【0015】より具体的には、上記した第1〜第4磁性
層121〜124は、前記した光磁気記録媒体110に
おける第1〜第3磁性層111〜113と略同様に、例
えば、Pr,Nd,Sm,Eu,Gd,Tb,Dy,H
o,Er等の希土類金属元素の一種類あるいは二種類以
上が10〜40原子%と、Fe,Co,Ni等の鉄族元
素の一種類あるいは二種類以上が60〜90原子%とで
構成される希土類−鉄族非晶質合金によって構成されて
いる。また、耐食性向上等のために、これらの合金にC
r,Mn,Cu,Ti,Al,Si,Pt,In等の元
素を少量添加しても良いと記載されている。更に、Pt
/C,Pd/Co等の白金族−鉄族周期構造膜や、白金
族−鉄族合金膜、Co−Ni−OやFe−Rh系合金等
の反強磁性材料、磁性ガーネット等の材料も使用可能で
ある旨が記載されている。
More specifically, the above-mentioned first to fourth magnetic layers 121 to 124 are substantially the same as the above-mentioned first to third magnetic layers 111 to 113 in the magneto-optical recording medium 110, for example, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
One or two or more rare earth metal elements such as o and Er are composed of 10 to 40 atomic%, and one or two or more kinds of iron group elements such as Fe, Co and Ni are composed of 60 to 90 atomic%. It is composed of a rare earth-iron group amorphous alloy. In addition, in order to improve corrosion resistance, etc., C should be added to these alloys.
It is described that elements such as r, Mn, Cu, Ti, Al, Si, Pt and In may be added in small amounts. Furthermore, Pt
/ C, Pd / Co and other platinum group-iron group periodic structure films, platinum group-iron group alloy films, antiferromagnetic materials such as Co-Ni-O and Fe-Rh alloys, and materials such as magnetic garnet. It states that it can be used.

【0016】上記のように構成した光磁気記録媒体12
0において、記録時にはレーザービームを第1磁性層1
21側から照射しながら図示しない磁気ヘッドにより情
報信号を第4磁性層124に記録することで、矢印向き
の磁区として保存され、更に、記録後でレーザービーム
の非照射時には、第4磁性層124に記録した磁区が第
2,第3磁性層122,123を介して第1磁性層12
1に交換結合されている。この際、第1〜第4磁性層1
21〜124中の縦矢印ASは原子スピンの向きを表し
ている。スピンの向きが相互に逆向きの領域の境界部に
は磁壁DWが形成されている。
The magneto-optical recording medium 12 constructed as described above.
0, the laser beam is applied to the first magnetic layer 1 during recording.
An information signal is recorded in the fourth magnetic layer 124 by a magnetic head (not shown) while irradiating from the 21st side, so that the magnetic domains are preserved as magnetic domains in the direction of the arrow. Further, after recording, when the laser beam is not irradiated, the fourth magnetic layer 124 The magnetic domain recorded in the first magnetic layer 12 via the second and third magnetic layers 122 and 123.
Exchange coupled to 1. At this time, the first to fourth magnetic layers 1
The vertical arrows AS in 21 to 124 represent the directions of atomic spins. A domain wall DW is formed at the boundary between regions where the spin directions are opposite to each other.

【0017】ここで、再生時にレーザービームを第1磁
性層121上に照射すると、レーザービームに対して図
示の位置X1と位置X2との間で媒体温度が第3磁性層
123のキュリー温度Ts以上に達する。これに伴っ
て、位置X1と位置X2と間の領域では、第3磁性層1
12がキュリー温度Ts以上に昇温されているために第
3磁性層123の磁化が消失されて、第1,第2磁性層
121,122と第4磁性層124との間の交換結合が
切断されており、この領域を結合切断領域という。
Here, when the first magnetic layer 121 is irradiated with a laser beam during reproduction, the medium temperature is higher than the Curie temperature Ts of the third magnetic layer 123 between the position X1 and the position X2 shown in the figure with respect to the laser beam. Reach Accordingly, in the region between the position X1 and the position X2, the third magnetic layer 1
Since the temperature of 12 is raised to the Curie temperature Ts or higher, the magnetization of the third magnetic layer 123 disappears, and the exchange coupling between the first and second magnetic layers 121 and 122 and the fourth magnetic layer 124 is broken. This region is referred to as the bond cleavage region.

【0018】そして、結合切断領域内に第1,第2磁性
層121,122中に存在する磁壁DWが侵入すると、
この磁壁DWが第1,第2磁性層121,122中で矢
印に示すように温度のピークに向かって移動するので磁
壁移動DWMが発生し、この磁壁移動DWMに伴って第
1磁性層121内で交換結合した磁区が再生用のレーザ
ービームによって拡大して読み出される。一方、記録層
となる第4磁性層124は保磁力(磁壁抗磁力)が十分
に大きいので、第4磁性層124中の磁壁は移動するこ
となく記録状態を保ったままとなる。これにより、通常
の再生分解能では再生不可能な微小な磁区を拡大して再
生を行うことで、記録密度の飛躍的な向上を図るもので
ある。
When the domain wall DW existing in the first and second magnetic layers 121 and 122 enters the bond breaking region,
Since the domain wall DW moves toward the temperature peak in the first and second magnetic layers 121 and 122 as shown by the arrows, the domain wall movement DWM occurs, and the domain wall movement DWM causes the inside of the first magnetic layer 121 to move. The magnetic domains exchange-coupled with each other are expanded and read by the reproducing laser beam. On the other hand, the coercive force (domain wall coercive force) of the fourth magnetic layer 124, which is the recording layer, is sufficiently large, so that the domain wall in the fourth magnetic layer 124 remains in the recorded state without moving. As a result, the recording density is remarkably improved by enlarging and reproducing the minute magnetic domain that cannot be reproduced by the normal reproduction resolution.

【0019】尚、上記した特開2000−187898
号公報中には、磁壁移動DWMが第1,第2磁性層12
1,122で生じるように記載されているものの、一般
的に第2磁性層122は極めて薄く成膜されるものであ
るから第2磁性層122が磁壁移動層として機能する
か、それとも交換結合を制御する層として機能するかは
定かではなく、従って、再生時にレーザービームの照射
による昇温で少なくとも第3磁性層123の磁化が消失
されて第1磁性層121内で交換結合した磁区を拡大さ
せるように磁壁移動を生じさせるものと考えれば良いも
のである。
Incidentally, the above-mentioned Japanese Patent Laid-Open No. 2000-187898.
In the publication, the domain wall motion DWM is described as the first and second magnetic layers 12
However, since the second magnetic layer 122 is generally formed to be extremely thin, the second magnetic layer 122 functions as a domain wall motion layer or exchange coupling is performed. It is not clear whether or not it functions as a control layer, and therefore at least the magnetization of the third magnetic layer 123 disappears due to the temperature rise due to the irradiation of the laser beam during reproduction, and the exchange-coupled magnetic domains in the first magnetic layer 121 are expanded. It can be considered that it causes the domain wall movement.

【0020】[0020]

【発明が解決しようとする課題】ところで、図21,図
22にそれぞれ示した従来の光磁気記録媒体110,1
20において、磁壁移動DWMによる磁区拡大再生技術
は、超高密度記録媒体を実現する上で有効な技術である
ものの、磁壁移動再生特有の再生信号の時間軸上のズ
レ、いわゆるジッター特性悪化の問題がある。このジッ
ター特性を改善するためには、磁壁移動DWMの開始タ
イミングを俊敏なものとし、且つ、磁壁移動DWMが完
了するまでにかかる時間を短縮することが必要である。
By the way, the conventional magneto-optical recording media 110, 1 shown in FIGS. 21 and 22, respectively.
In FIG. 20, the domain expansion reproduction technique by the domain wall displacement DWM is an effective technique for realizing an ultra-high density recording medium, but there is a problem of a deviation of a reproduction signal peculiar to the domain wall displacement reproduction on the time axis, so-called jitter characteristic deterioration. There is. In order to improve this jitter characteristic, it is necessary to make the start timing of the domain wall motion DWM agile and to shorten the time required to complete the domain wall motion DWM.

【0021】しかしながら、従来の光磁気記録媒体11
0,120中の第1〜第3磁性層111〜113,第1
〜第4磁性層121〜124の各膜組成では、前述した
如く、いずれの磁性層においても、希土類金属元素の一
種類あるいは二種類以上が10〜40原子%と、Fe,
Co,Ni等の鉄族元素の一種類あるいは二種類以上が
60〜90原子%とで構成されているにすぎず、これに
基づいて試料を作製して実験を試みたがこの組成では再
生時のジッター特性を改善するに至らなかった。
However, the conventional magneto-optical recording medium 11
1st to 3rd magnetic layers 111 to 113 and 1st in 0, 120
As described above, in each of the magnetic compositions of the fourth magnetic layers 121 to 124, one kind or two or more kinds of rare earth metal elements are 10 to 40 atomic% in each magnetic layer, and Fe,
Only one type or two or more types of iron group elements such as Co and Ni are composed of 60 to 90 atom%, and a sample was prepared based on this, and an experiment was attempted. Did not improve the jitter characteristics of.

【0022】そこで、本発明は、磁性層が3層構造の光
磁気記録媒体と、磁性層が4層構造の光磁気記録媒体と
において、とくに、磁壁移動層となる第1磁性層と、記
録層となる第3磁性層又は第4磁性層との間の交換相互
作用による特性変化を、その各々の層の組成変化に対し
て明確にし、その組成範囲の厳密な組み合わせを行うこ
とによって、0.1μmより小さい磁区(記録マーク)
での再生信号特性の一つであるジッター特性をより改善
し、且つ、磁壁移動により再生を行う温度領域で記録層
となる第3磁性層又は第4磁性層から磁壁移動層となる
第1磁性層に漏洩する浮遊磁界を小さくすることでジッ
ター特性をより改善すると共に、同時に記録磁界感度向
上を実現することができる高密度な光磁気記録媒体を提
供するものである。
Therefore, according to the present invention, in a magneto-optical recording medium having a magnetic layer of a three-layer structure and a magneto-optical recording medium having a magnetic layer of a four-layer structure, particularly, a first magnetic layer serving as a domain wall displacement layer and recording are provided. By clarifying the characteristic change due to the exchange interaction between the layer and the third magnetic layer or the fourth magnetic layer with respect to the composition change of each layer, and by strictly combining the composition ranges, Magnetic domain smaller than 1 μm (record mark)
In the temperature region where reproduction is performed by moving the domain wall, the first magnetic layer serving as the domain wall moving layer is changed from the third magnetic layer or the fourth magnetic layer serving as the recording layer in the temperature range where reproduction is performed by the domain wall moving. It is intended to provide a high-density magneto-optical recording medium capable of improving the jitter characteristic and simultaneously improving the recording magnetic field sensitivity by reducing the stray magnetic field leaking to the layer.

【0023】[0023]

【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであり、第1の発明は、レーザービーム
の照射側から第1,第2,第3磁性層を順に成膜し、且
つ、記録時に前記レーザービームを照射しながら外部磁
界によって情報信号を垂直な方向に磁化容易軸を持った
前記第3磁性層に磁区の形態で記録した後に前記磁区が
前記第2磁性層を介して前記第1磁性層に交換結合さ
れ、再生時に前記レーザービームの照射による昇温で前
記第2磁性層の磁化が消失されて前記第1磁性層内で交
換結合した前記磁区を拡大させるように磁壁移動を生じ
させる光磁気記録媒体において、前記第1磁性層は、磁
壁駆動磁界を飽和磁化に基づいて規格化した規格化磁界
が1より大きくなるようにGd−Fe膜又はGd−Fe
−Co膜をベースとする材料で成膜し、且つ、GdのF
e又はFe−Coに対する元素濃度比(at.%比)を
28.0≦Gd≦29.0の範囲に設定し、前記第2磁
性層は、Tb−Fe膜又はDy−Fe膜をベースとする
材料を用いて、Al,Crなどの非磁性元素やCoを添
加して成膜し、前記第3磁性層は、Tb−Fe−Co膜
又はDy−Fe−Co膜をベースとする材料で成膜し、
且つ、Tb又はDyのFe−Coに対する元素濃度比
(at.%比)を23.5≦Tb≦25.5又は25.
5≦Dy≦28.5の範囲に設定すると共に、各磁性層
に対してCoや非磁性元素の添加量を調節して前記第
1,第2,第3磁性層の各キュリー温度Tc11,Tc
12,Tc13がTc13>Tc11>Tc12になる
ように設定したことを特徴とする光磁気記録媒体であ
る。
The present invention has been made in view of the above problems, and the first invention is to sequentially form first, second and third magnetic layers from the laser beam irradiation side. In addition, after recording the information signal in the form of magnetic domains in the third magnetic layer having an easy axis of magnetization in the vertical direction by an external magnetic field while irradiating the laser beam during recording, the magnetic domains form the second magnetic layer. Exchange-coupled to the first magnetic layer through the magnetic field, and the magnetization of the second magnetic layer disappears due to a temperature rise caused by irradiation of the laser beam during reproduction, so that the magnetic domains exchange-coupled in the first magnetic layer are expanded. In the magneto-optical recording medium that causes the domain wall motion in the first magnetic layer, the first magnetic layer is a Gd-Fe film or a Gd-Fe film so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is greater than 1.
-A film based on a Co film is formed, and F of Gd is formed.
The element concentration ratio (at.% ratio) to e or Fe-Co is set in the range of 28.0≤Gd≤29.0, and the second magnetic layer is based on a Tb-Fe film or a Dy-Fe film. Film is formed by adding a non-magnetic element such as Al or Cr or Co, and the third magnetic layer is a material based on a Tb-Fe-Co film or a Dy-Fe-Co film. Film formation,
In addition, the element concentration ratio (at.% Ratio) of Tb or Dy to Fe—Co is 23.5 ≦ Tb ≦ 25.5 or 25.
The Curie temperatures Tc11 and Tc of the first, second and third magnetic layers are adjusted by setting the range of 5 ≦ Dy ≦ 28.5 and adjusting the amount of Co or non-magnetic element added to each magnetic layer.
12, Tc13 is set so that Tc13>Tc11> Tc12 is set, which is a magneto-optical recording medium.

【0024】また、第2の発明は、レーザービームの照
射側から第1,第2,第3,第4磁性層を順に成膜し、
且つ、記録時に前記レーザービームを照射しながら外部
磁界によって情報信号を垂直な方向に磁化容易軸を持っ
た前記第4磁性層に磁区の形態で記録した後に前記磁区
が前記第2,第3磁性層を介して前記第1磁性層に交換
結合され、再生時に前記レーザービームの照射による昇
温で少なくとも前記第3磁性層の磁化が消失されて前記
第1磁性層内で交換結合した前記磁区を拡大させるよう
に磁壁移動を生じさせる光磁気記録媒体において、前記
第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて規格
化した規格化磁界が1より大きくなるようにGd−Fe
膜又はGd−Fe−Co膜をベースとする材料で成膜
し、且つ、GdのFe又はFe−Coに対する元素濃度
比(at.%比)を28.0≦Gd≦29.0の範囲に
設定し、前記第2,第3磁性層は、Tb−Fe膜又はD
y−Fe膜をベースとする材料を用いて、Al,Crな
どの非磁性元素やCoを添加して成膜し、前記第4磁性
層は、Tb−Fe−Co膜又はDy−Fe−Co膜をベ
ースとする材料で成膜し、且つ、Tb又はDyのFe−
Coに対する元素濃度比(at.%比)を23.5≦T
b≦25.5又は25.5≦Dy≦28.5の範囲に設
定すると共に、各磁性層に対してCoや非磁性元素の添
加量を調節して前記第1,第2,第3,第4磁性層の各
キュリー温度Tc21,Tc22,Tc23,Tc24
がTc24>Tc21>Tc22>Tc23になるよう
に設定したことを特徴とする光磁気記録媒体である。
In the second invention, the first, second, third and fourth magnetic layers are sequentially formed from the laser beam irradiation side,
In addition, after recording the information signal in the form of magnetic domains on the fourth magnetic layer having an easy axis of magnetization in the vertical direction by an external magnetic field while irradiating the laser beam during recording, the magnetic domains are changed to the second and third magnetic layers. The magnetic domains exchange-coupled in the first magnetic layer are exchange-coupled to the first magnetic layer through a layer, and at least the magnetization of the third magnetic layer disappears due to a temperature rise caused by irradiation of the laser beam during reproduction. In the magneto-optical recording medium in which the domain wall motion is caused to expand, the first magnetic layer is Gd-Fe so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is larger than 1.
Film or a material based on a Gd-Fe-Co film is formed, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. And the second and third magnetic layers are formed of a Tb-Fe film or D
A material based on the y-Fe film is used to form a film by adding a non-magnetic element such as Al and Cr or Co, and the fourth magnetic layer is a Tb-Fe-Co film or a Dy-Fe-Co film. A film-based material is formed, and Tb or Dy Fe-
The element concentration ratio (at.% Ratio) to Co is 23.5 ≦ T
It is set in the range of b ≦ 25.5 or 25.5 ≦ Dy ≦ 28.5 and the addition amount of Co or a non-magnetic element is adjusted to each magnetic layer to adjust the first, second, third, Curie temperatures Tc21, Tc22, Tc23, Tc24 of the fourth magnetic layer
Is set to satisfy Tc24>Tc21>Tc22> Tc23.

【0025】また、第3の発明は、レーザービームの照
射側から第1,第2,第3磁性層を順に成膜し、且つ、
記録時に前記レーザービームを照射しながら外部磁界に
よって情報信号を垂直な方向に磁化容易軸を持った前記
第3磁性層に磁区の形態で記録した後に前記磁区が前記
第2磁性層を介して前記第1磁性層に交換結合され、再
生時に前記レーザービームの照射による昇温で前記第2
磁性層の磁化が消失されて前記第1磁性層内で交換結合
した前記磁区を拡大させるように磁壁移動を生じさせる
光磁気記録媒体において、前記第1磁性層は、磁壁駆動
磁界を飽和磁化に基づいて規格化した規格化磁界が1よ
り大きくなるようにGd−Fe膜又はGd−Fe−Co
膜をベースとする材料で成膜し、且つ、GdのFe又は
Fe−Coに対する元素濃度比(at.%比)を28.
0≦Gd≦29.0の範囲に設定し、前記第2磁性層
は、Tb−Fe膜又はDy−Fe膜をベースとする材料
を用いて、Al,Crなどの非磁性元素やCoを添加し
て成膜し、前記第3磁性層は、Tb−Fe−Co膜とG
d−Fe−Co膜とによる二層膜で成膜し、且つ、前記
第1磁性層内での磁壁移動により再生を行う温度領域で
前記二層膜の磁化の方向が互いに逆向きの時に安定とな
るアンチパラレル結合を保つようにしたことを特徴とす
る光磁気記録媒体である。
A third aspect of the invention is to form the first, second and third magnetic layers in order from the laser beam irradiation side, and
During recording, an information signal is recorded in the form of magnetic domains on the third magnetic layer having an easy axis of magnetization in the vertical direction by irradiating the laser beam with the external magnetic field, and then the magnetic domains are recorded via the second magnetic layer. The second magnetic layer is exchange-coupled to the first magnetic layer and is heated by the irradiation of the laser beam during reproduction.
In a magneto-optical recording medium in which the magnetization of a magnetic layer disappears to cause domain wall movement so as to expand the exchange-coupled magnetic domains in the first magnetic layer, the first magnetic layer converts a domain wall driving magnetic field into saturation magnetization. Gd-Fe film or Gd-Fe-Co so that the normalized magnetic field standardized based on
A film-based material is formed, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is 28.
It is set in the range of 0 ≦ Gd ≦ 29.0, and the second magnetic layer is made of a material based on a Tb-Fe film or a Dy-Fe film, and a non-magnetic element such as Al or Cr or Co is added. Then, the third magnetic layer is formed of a Tb-Fe-Co film and a G layer.
Stable when the magnetization directions of the two-layer film are opposite to each other in the temperature region where the two-layer film including the d-Fe-Co film is formed and the reproduction is performed by the domain wall movement in the first magnetic layer. The magneto-optical recording medium is characterized in that the antiparallel coupling is maintained.

【0026】更に、第4の発明は、レーザービームの照
射側から第1,第2,第3,第4磁性層を順に成膜し、
且つ、記録時に前記レーザービームを照射しながら外部
磁界によって情報信号を垂直な方向に磁化容易軸を持っ
た前記第4磁性層に磁区の形態で記録した後に前記磁区
が前記第2,第3磁性層を介して前記第1磁性層に交換
結合され、再生時に前記レーザービームの照射による昇
温で少なくとも前記第3磁性層の磁化が消失されて前記
第1磁性層内で交換結合した前記磁区を拡大させるよう
に磁壁移動を生じさせる光磁気記録媒体において、前記
第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて規格
化した規格化磁界が1より大きくなるようにGd−Fe
膜又はGd−Fe−Co膜をベースとする材料で成膜
し、且つ、GdのFe又はFe−Coに対する元素濃度
比(at.%比)を28.0≦Gd≦29.0の範囲に
設定し、前記第2,第3磁性層は、Tb−Fe膜又はD
y−Fe膜をベースとする材料を用いて、Al,Crな
どの非磁性元素やCoを添加して成膜し、前記第4磁性
層は、Tb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜し、且つ、前記第1磁性層内での磁壁移
動により再生を行う温度領域で前記二層膜の磁化の方向
が互いに逆向きの時に安定となるアンチパラレル結合を
保つようにしたことを特徴とする光磁気記録媒体であ
る。
Further, in the fourth invention, the first, second, third and fourth magnetic layers are sequentially formed from the laser beam irradiation side,
In addition, after recording the information signal in the form of magnetic domains on the fourth magnetic layer having an easy axis of magnetization in the vertical direction by an external magnetic field while irradiating the laser beam during recording, the magnetic domains are changed to the second and third magnetic layers. The magnetic domains exchange-coupled in the first magnetic layer are exchange-coupled to the first magnetic layer through a layer, and at least the magnetization of the third magnetic layer disappears due to a temperature rise caused by irradiation of the laser beam during reproduction. In the magneto-optical recording medium in which the domain wall motion is caused to expand, the first magnetic layer is Gd-Fe so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is larger than 1.
Film or a material based on a Gd-Fe-Co film is formed, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. And the second and third magnetic layers are formed of a Tb-Fe film or D
A material based on the y-Fe film is used to form a film by adding a non-magnetic element such as Al or Cr or Co. The fourth magnetic layer is formed of a Tb-Fe-Co film and a Gd-Fe-Co film. Anti-parallel coupling, which is stable when the directions of magnetization of the two-layer film are opposite to each other in the temperature region where reproduction is performed by domain wall movement in the first magnetic layer, and the two-layer film is formed by It is a magneto-optical recording medium characterized in that

【0027】[0027]

【発明の実施の形態】以下に本発明に係る光磁気記録媒
体の一実施例を図1乃至図20を参照して詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a magneto-optical recording medium according to the present invention will be described below in detail with reference to FIGS.

【0028】まず、始めに本発明に係る光磁気記録媒体
の層構成について、図1,図2を用いて説明する。
First, the layer structure of the magneto-optical recording medium according to the present invention will be described with reference to FIGS.

【0029】図1は本発明に係る第1の光磁気記録媒体
の層構成を模式的に示した断面図、図2は本発明に係る
第2の光磁気記録媒体の層構成を模式的に示した断面図
である。
FIG. 1 is a sectional view schematically showing the layer structure of a first magneto-optical recording medium according to the present invention, and FIG. 2 is a schematic view of the layer structure of a second magneto-optical recording medium according to the present invention. It is the sectional view shown.

【0030】図1に示した如く、本発明に係る第1の光
磁気記録媒体10Aは、先に従来技術で説明した一例の
光磁気記録媒体110(図21)と同様に磁性層を3層
構造に構成することで、従来の光磁気記録媒体110と
同様に磁壁移動を生じさせるものであるが、本発明に係
る第1の光磁気記録媒体10Aでは各磁性層の組成を従
来の光磁気記録媒体110よりも厳密化することで、磁
壁移動を迅速にして再生信号特性の一つであるジッター
特性に対して大幅な改良を図ったものである。
As shown in FIG. 1, the first magneto-optical recording medium 10A according to the present invention has three magnetic layers similar to the magneto-optical recording medium 110 (FIG. 21) of the example described in the prior art. With the structure, the domain wall motion is generated similarly to the conventional magneto-optical recording medium 110. However, in the first magneto-optical recording medium 10A according to the present invention, the composition of each magnetic layer is the same as that of the conventional magneto-optical recording medium. By making it more strict than that of the recording medium 110, the domain wall movement can be swiftly performed, and the jitter characteristic, which is one of the reproduction signal characteristics, can be greatly improved.

【0031】従って、本発明に係る第1の光磁気記録媒
体10Aも、先に説明した従来の光磁気記録媒体110
(図21)と同様に、レーザービームの照射側から第
1,第2,第3磁性層13,14,15を順に成膜し、
且つ、記録時に前記レーザービームを照射しながら外部
磁界によって情報信号を垂直な方向に磁化容易軸を持っ
た前記第3磁性層15に磁区の形態で記録した後に前記
磁区が前記第2磁性層14を介して前記第1磁性層13
に交換結合され、再生時に前記レーザービームの照射に
よる昇温で前記第2磁性層14の磁化が消失されて前記
第1磁性層13内で交換結合した前記磁区を拡大させる
ように磁壁移動を生じさせるものである。
Therefore, the first magneto-optical recording medium 10A according to the present invention is also the conventional magneto-optical recording medium 110 described above.
Similarly to (FIG. 21), first, second, and third magnetic layers 13, 14, and 15 are sequentially formed from the laser beam irradiation side,
In addition, an information signal is recorded in the form of magnetic domains in the third magnetic layer 15 having an easy axis of magnetization in the vertical direction by an external magnetic field while irradiating the laser beam during recording, and then the magnetic domains are changed to the second magnetic layer 14. Through the first magnetic layer 13
Is exchange-coupled with the first magnetic layer 13 and the magnetization of the second magnetic layer 14 disappears due to a temperature rise caused by irradiation of the laser beam during reproduction, and a domain wall movement is generated so as to expand the exchange-coupled magnetic domain in the first magnetic layer 13. It is what makes me.

【0032】即ち、本発明に係る第1の光磁気記録媒体
10Aは、外形が円盤状の光ディスク又はカード状の光
カードとして形成されており、情報信号を超高密度に記
録再生可能に構成されている。
That is, the first magneto-optical recording medium 10A according to the present invention is formed as an optical disk having a disk-shaped outer shape or a card-shaped optical card, and is configured to record and reproduce information signals at an extremely high density. ing.

【0033】上記した第1の光磁気記録媒体10Aで
は、透明なガラス板又は透明なポリカーボネイト等を用
いて形成した光透過性基板11上に、保護膜または多重
干渉膜となる透明な第1誘電体層12を介して第1磁性
層13,第2磁性層14,第3磁性層15を、真空中で
例えば連続スパッタリング等により順次積層して、3層
構造の磁性層として成膜している。更に、第3磁性層1
5上に非磁性金属膜あるいは誘電体膜よりなる第2誘電
体層16を成膜し、且つ、この第2誘電体層16上に必
要に応じてUV硬化樹脂等による保護層17を成膜して
構成されている。この際、第1の光磁気記録媒体10A
へのレーザービームの照射は光透過性基板11側から第
1磁性層13〜第3磁性層15に向かって行われてい
る。
In the above-described first magneto-optical recording medium 10A, the transparent first dielectric film serving as the protective film or the multiple interference film is formed on the light-transmissive substrate 11 formed by using the transparent glass plate or the transparent polycarbonate. The first magnetic layer 13, the second magnetic layer 14, and the third magnetic layer 15 are sequentially laminated in the vacuum by, for example, continuous sputtering or the like via the body layer 12 to form a magnetic layer having a three-layer structure. . Furthermore, the third magnetic layer 1
5, a second dielectric layer 16 made of a non-magnetic metal film or a dielectric film is formed, and a protective layer 17 made of a UV curable resin or the like is formed on the second dielectric layer 16 if necessary. Is configured. At this time, the first magneto-optical recording medium 10A
Irradiation of the laser beam to the first magnetic layer 13 to the third magnetic layer 15 is performed from the light transmissive substrate 11 side.

【0034】ここで、第1の光磁気記録媒体10Aにお
いて、3層構造の第1〜第3磁性層13〜15の磁性層
のうちで、レーザービームの照射側となる第1磁性層1
3は、レーザービームの照射によって作られた温度勾配
により磁壁の移動を容易にするために磁気異方性の小さ
い膜であり、磁壁移動層として機能している。
Here, in the first magneto-optical recording medium 10A, of the magnetic layers of the first to third magnetic layers 13 to 15 having the three-layer structure, the first magnetic layer 1 on the laser beam irradiation side.
Reference numeral 3 is a film having a small magnetic anisotropy in order to facilitate the movement of the domain wall due to the temperature gradient created by the irradiation of the laser beam, and functions as a domain wall moving layer.

【0035】この第1磁性層13は、垂直方向(膜面に
垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁
化膜となる重希土類−鉄族金属から成るアモルファス薄
膜として成膜されており、Gd−Fe膜又はGd−Fe
−Co膜をベースとする材料を使用している。そして、
後述するように第1磁性層13内での磁壁移動動作がW
alkerの限界を大きく越えた場合として取り扱うこ
とができるように成膜しており、具体的には第1磁性層
13中での重希土類(Gd)の鉄族金属(Fe又はFe
−Co)に対する元素濃度比(at.%比)を28.0
≦Gd≦29.0の範囲に設定することで、磁壁駆動磁
界を飽和磁化に基づいて規格化した規格化磁界が1より
大きくなるように成膜しているが、この元素濃度比の範
囲については後述する。この際、第1磁性層13中でC
oの添加量を調節したり、更に、AlやCr等の非磁性
元素を添加することで、第1磁性層13のキュリー温度
Tc11を調節している。尚、ここで添加されるAlや
Cr等の非磁性元素は元素の周期表中で比較的低い原子
番号のものが適用されている。
The first magnetic layer 13 is formed as a film having a direction of easy magnetization in the vertical direction (direction perpendicular to the film surface), that is, an amorphous thin film made of a heavy rare earth-iron group metal, which is a so-called vertical magnetization film. , Gd-Fe film or Gd-Fe
-A material based on a Co film is used. And
As will be described later, the domain wall moving operation in the first magnetic layer 13 is W
The film is formed so that it can be handled in the case where the limit of Alker is greatly exceeded. Specifically, the iron group metal (Fe or Fe) of the heavy rare earth (Gd) in the first magnetic layer 13 is specifically formed.
The element concentration ratio (at.% Ratio) to —Co) is 28.0.
By setting the range of ≦ Gd ≦ 29.0, the film is formed so that the standardized magnetic field obtained by standardizing the domain wall drive magnetic field based on the saturation magnetization is larger than 1. About the range of the element concentration ratio Will be described later. At this time, C in the first magnetic layer 13
The Curie temperature Tc11 of the first magnetic layer 13 is adjusted by adjusting the addition amount of o and further adding a nonmagnetic element such as Al and Cr. The non-magnetic element such as Al and Cr added here has a relatively low atomic number in the periodic table of the elements.

【0036】次に、第2磁性層14は、第3磁性層15
から第1磁性層13に磁区(記録マーク)を転写する時
の交換結合力を制御する膜として機能している。この第
2磁性層14も、垂直方向(膜面に垂直な方向)に磁化
容易方向を持つ膜、いわゆる垂直磁化膜となる重希土類
−鉄族金属から成るアモルファス薄膜として成膜されて
おり、Tb−Fe膜又はDy−Fe膜をベースとする材
料を用いて、AlやCrなどの非磁性元素やCoを添加
して第2磁性層14のキュリー温度Tc12を調節しな
がら成膜している。
Next, the second magnetic layer 14 is formed into the third magnetic layer 15
To function as a film for controlling the exchange coupling force when the magnetic domain (recording mark) is transferred to the first magnetic layer 13. The second magnetic layer 14 is also formed as a film having a magnetization easy direction in the vertical direction (direction perpendicular to the film surface), that is, an amorphous thin film made of a heavy rare earth-iron group metal that serves as a so-called perpendicular magnetization film, and Tb. Using a material based on a -Fe film or a Dy-Fe film, a nonmagnetic element such as Al or Cr or Co is added to form a film while adjusting the Curie temperature Tc12 of the second magnetic layer 14.

【0037】次に、第3磁性層15は、記録時にレーザ
ービームを照射しながら図示しない磁気ヘッドなどの外
部磁界によって情報信号を垂直な方向に磁化容易軸を持
った膜面に磁区(磁化反転領域)の形態で記録した後
に、室温において記録した磁区を安定に保持するために
充分な保磁力を有し、且つ、情報信号を記録するために
適したキュリー温度Tc13を持つ膜であることが必要
であり、記録層(メモリ層)として機能している。
Next, in the third magnetic layer 15, a magnetic domain (magnetization reversal) is formed on a film surface having an easy axis of magnetization in the direction perpendicular to the information signal by an external magnetic field such as a magnetic head (not shown) while irradiating a laser beam during recording. Area)), and has a coercive force sufficient to stably hold the recorded magnetic domain at room temperature and a Curie temperature Tc13 suitable for recording an information signal. It is necessary and functions as a recording layer (memory layer).

【0038】この第3磁性層15も、垂直方向(膜面に
垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁
化膜となる重希土類−鉄族金属から成るアモルファス薄
膜として成膜されており、Tb−Fe−Co膜又はDy
−Fe−Co膜をベースとする材料を使用し、更に、A
lやCr等の非磁性元素を添加して第3磁性層15のキ
ュリー温度Tc13を調整していると共に、第3磁性層
15中での重希土類(Tb又はDy)の鉄族金属(Fe
−Co)に対する元素濃度比(at.%比)を23.5
≦Tb≦25.5又は25.5≦Dy≦28.5の範囲
に設定しており、この元素濃度比の範囲については後述
する。
The third magnetic layer 15 is also formed as an amorphous thin film composed of a heavy rare earth-iron group metal which is a film having a magnetization easy direction in the vertical direction (direction perpendicular to the film surface), that is, a so-called perpendicular magnetization film. , Tb-Fe-Co film or Dy
A material based on a —Fe—Co film is used.
The Curie temperature Tc13 of the third magnetic layer 15 is adjusted by adding a non-magnetic element such as 1 or Cr, and the iron group metal (Fe) of heavy rare earth (Tb or Dy) in the third magnetic layer 15 is adjusted.
The element concentration ratio (at.% Ratio) to -Co) is 23.5
The range of ≦ Tb ≦ 25.5 or 25.5 ≦ Dy ≦ 28.5 is set, and the range of the element concentration ratio will be described later.

【0039】そして、上記のように構成した第1の光磁
気記録媒体10Aに対してレーザービームに依る記録お
よび再生時の昇温状態を考慮して、第1,第2,第3磁
性層13,14,15の各キュリー温度Tc11,Tc
12,Tc13は、約530K,約420K,約590
K近傍とすることが望ましい。ここで、第1,第2,第
3磁性層13,14,15の各キュリー温度Tc11,
Tc12,Tc13は、各磁性層中でのCoの添加量を
増加することでキュリー温度を上昇させることができ、
一方、各磁性層の磁性特性を大きく変化させることのな
いAlやCr等の非磁性元素の添加量を増加することで
キュリー温度を低下させることができるので、各磁性層
に対してCoや非磁性元素の添加量を調節して上述の各
キュリー温度Tc11,Tc12,Tc13をTc13
>Tc11>Tc12になるように設定している。
Then, the first, second and third magnetic layers 13 are taken into consideration in consideration of the temperature rising state at the time of recording and reproducing by the laser beam with respect to the first magneto-optical recording medium 10A having the above structure. , 14 and 15 Curie temperatures Tc11 and Tc
12, Tc13 is about 530K, about 420K, about 590
It is desirable to be near K. Here, the Curie temperatures Tc11 of the first, second and third magnetic layers 13, 14, 15 are
Tc12 and Tc13 can increase the Curie temperature by increasing the amount of Co added in each magnetic layer,
On the other hand, the Curie temperature can be lowered by increasing the addition amount of a nonmagnetic element such as Al or Cr that does not significantly change the magnetic characteristics of each magnetic layer. The above Curie temperatures Tc11, Tc12, and Tc13 are adjusted to Tc13 by adjusting the addition amount of the magnetic element.
>Tc11> Tc12 is set.

【0040】更に、第1,第2,第3磁性層13,1
4,15の各膜厚t11,t12,t13は、それぞれ
約30nm,約10nm,約60〜80nm近傍に設定
することが望ましい。
Furthermore, the first, second and third magnetic layers 13, 1
It is desirable that the film thicknesses t11, t12, and t13 of 4 and 15 are set to about 30 nm, about 10 nm, and about 60 to 80 nm, respectively.

【0041】次に、図2に示した如く、本発明に係る第
2の光磁気記録媒体20Aは、先に従来技術で説明した
他例の光磁気記録媒体120(図22)と同様に磁性層
を4層構造に構成することで、従来の光磁気記録媒体1
20と同様に、レーザービームの照射により、磁壁移動
可能な温度領域(約430K〜約490K)のレーザー
ビームの移動方向前方からの磁壁の移動のみを生じさせ
るものであるが、本発明に係る第2の光磁気記録媒体2
0Aでは各磁性層の組成を従来の光磁気記録媒体120
よりも厳密化することで、磁壁移動を迅速にして再生信
号特性の一つであるジッター特性に対してより大幅な改
良を図ったものである。
Next, as shown in FIG. 2, the second magneto-optical recording medium 20A according to the present invention is magnetic like the magneto-optical recording medium 120 (FIG. 22) of another example described in the prior art. A conventional magneto-optical recording medium 1 having a four-layer structure
Similar to 20, the irradiation of the laser beam causes only the movement of the domain wall from the front in the moving direction of the laser beam in the temperature region (about 430K to about 490K) in which the domain wall can move. 2 magneto-optical recording medium 2
At 0 A, the composition of each magnetic layer is the same as that of the conventional magneto-optical recording medium 120.
By making it more rigorous, the domain wall movement can be made quicker, and the jitter characteristic, which is one of the reproduction signal characteristics, can be greatly improved.

【0042】従って、本発明に係る第2の光磁気記録媒
体20Aも、先に説明した従来の光磁気記録媒体120
(図22)と同様に、レーザービームの照射側から第
1,第2,第3,第4磁性層23,24,25,26を
順に成膜し、且つ、記録時に前記レーザービームを照射
しながら外部磁界によって情報信号を垂直な方向に磁化
容易軸を持った前記第4磁性層26に磁区の形態で記録
した後に前記磁区が前記第2,第3磁性層24,25を
介して前記第1磁性層23に交換結合され、再生時に前
記レーザービームの照射による昇温で少なくとも前記第
3磁性層25の磁化が消失されて前記第1磁性層23内
で交換結合した前記磁区を拡大させるように磁壁移動を
生じさせるものである。
Therefore, the second magneto-optical recording medium 20A according to the present invention is also the conventional magneto-optical recording medium 120 described above.
Similarly to (FIG. 22), the first, second, third and fourth magnetic layers 23, 24, 25 and 26 are sequentially formed from the laser beam irradiation side, and the laser beam is irradiated during recording. Meanwhile, an information signal is recorded in the form of magnetic domains in the fourth magnetic layer 26 having an easy axis of magnetization in the vertical direction by an external magnetic field, and then the magnetic domains are recorded via the second and third magnetic layers 24 and 25. One magnetic layer 23 is exchange-coupled, and at the time of reproduction, the magnetization of at least the third magnetic layer 25 disappears due to a temperature rise caused by irradiation with the laser beam, so that the exchange-coupled magnetic domains in the first magnetic layer 23 are expanded. It causes the domain wall movement.

【0043】即ち、本発明に係る第2の光磁気記録媒体
20Aは、外形が円盤状の光ディスク又はカード状の光
カードとして形成されており、情報信号を超高密度に記
録再生可能に構成されている。
That is, the second magneto-optical recording medium 20A according to the present invention is formed as an optical disk having a disk-shaped outer shape or a card-shaped optical card, and is configured to record / reproduce information signals at an extremely high density. ing.

【0044】上記した第2の光磁気記録媒体20Aで
は、透明なガラス板又は透明なポリカーボネイト等を用
いて形成した光透過性基板21上に、保護膜または多重
干渉膜となる透明な第1誘電体層22を介して第1磁性
層23,第2磁性層24,第3磁性層25,第4磁性層
26を、真空中で例えば連続スパッタリング等により順
次積層して4層構造の磁性層として成膜している。更
に、第4磁性層26上に非磁性金属膜あるいは誘電体膜
よりなる第2誘電体層27を成膜し、且つ、この第2誘
電体層27上に必要に応じてUV硬化樹脂等による保護
層28を成膜して構成されている。この際、第2の光磁
気記録媒体20Aへのレーザービームの照射は、光透過
性基板21側から第1磁性層23〜第4磁性層26に向
かって行われている。
In the above-mentioned second magneto-optical recording medium 20A, the transparent first dielectric film serving as the protective film or the multiple interference film is formed on the light-transmissive substrate 21 formed by using the transparent glass plate or the transparent polycarbonate or the like. A first magnetic layer 23, a second magnetic layer 24, a third magnetic layer 25, and a fourth magnetic layer 26 are sequentially laminated in a vacuum by, for example, continuous sputtering or the like to form a four-layer magnetic layer. The film is being formed. Further, a second dielectric layer 27 made of a non-magnetic metal film or a dielectric film is formed on the fourth magnetic layer 26, and a UV curable resin or the like is used on the second dielectric layer 27 if necessary. The protective layer 28 is formed. At this time, the irradiation of the laser beam to the second magneto-optical recording medium 20A is performed from the light transmissive substrate 21 side toward the first magnetic layer 23 to the fourth magnetic layer 26.

【0045】ここで、第2の光磁気記録媒体20Aにお
いて、4層構造の第1〜第4磁性層23〜26のうち
で、レーザービームの照射側となる第1磁性層23は、
前述した第1の光磁気記録媒体10Aに成膜した第1磁
性層13と同様に、レーザービームの照射によって作ら
れた温度勾配により磁壁の移動を容易にするために磁気
異方性の小さい膜であり、磁壁移動層として機能してい
る。
Here, in the second magneto-optical recording medium 20A, of the first to fourth magnetic layers 23 to 26 having the four-layer structure, the first magnetic layer 23 on the laser beam irradiation side is
Similar to the first magnetic layer 13 formed on the first magneto-optical recording medium 10A described above, a film having a small magnetic anisotropy for facilitating the movement of the domain wall due to the temperature gradient created by the irradiation of the laser beam. And functions as a domain wall displacement layer.

【0046】この第1磁性層23は、垂直方向(膜面に
垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁
化膜となる重希土類−鉄族金属から成るアモルファス薄
膜として成膜されており、Gd−Fe膜又はGd−Fe
−Co膜をベースとする材料を使用している。そして、
ここでも、後述するように第1磁性層23内での磁壁移
動動作がWalkerの限界を大きく越えた場合として
取り扱うことができるように成膜しており、具体的には
第1磁性層23中での重希土類(Gd)の鉄族金属(F
e又はFe−Co)に対する元素濃度比(at.%比)
を28.0≦Gd≦29.0の範囲に設定することで、
磁壁駆動磁界を飽和磁化に基づいて規格化した規格化磁
界が1より大きくなるように成膜しているが、この元素
濃度比の範囲については後述する。この際、第1磁性層
23中でCoの添加量を調節したり、更に、AlやCr
等の非磁性元素を添加することで、第1磁性層23のキ
ュリー温度Tc11を調節している。
The first magnetic layer 23 is formed as a film having a magnetization easy direction in the vertical direction (direction perpendicular to the film surface), that is, an amorphous thin film made of a heavy rare earth-iron group metal which is a so-called vertical magnetization film. , Gd-Fe film or Gd-Fe
-A material based on a Co film is used. And
Also here, as described later, the film is formed so that it can be handled as a case where the domain wall motion in the first magnetic layer 23 greatly exceeds the Walker's limit. Specifically, in the first magnetic layer 23 Heavy rare earth (Gd) iron group metal (F
e or Fe-Co) element concentration ratio (at.% ratio)
By setting the range of 28.0 ≦ Gd ≦ 29.0,
The film is formed so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is larger than 1. The range of the element concentration ratio will be described later. At this time, the amount of Co added in the first magnetic layer 23 is adjusted, and further, Al or Cr is added.
The Curie temperature Tc11 of the first magnetic layer 23 is adjusted by adding a non-magnetic element such as.

【0047】次に、第2,第3磁性層24,25は、前
述した第1の光磁気記録媒体10Aに成膜した第2磁性
層14とは異なって2層に成膜されており、第2,第3
磁性層24,25のうちで第2磁性層24を極めて薄膜
に成膜することで、この第2磁性層24は磁壁移動可能
な温度領域(約430K〜約490K)のレーザービー
ムの移動方向前方からの磁壁の移動のみを生じさせる機
能を備えている。
Next, the second and third magnetic layers 24 and 25 are formed in two layers differently from the second magnetic layer 14 formed in the above-mentioned first magneto-optical recording medium 10A. Second, third
By forming the second magnetic layer 24 of the magnetic layers 24 and 25 as an extremely thin film, the second magnetic layer 24 is moved forward in the moving direction of the laser beam in the temperature region (about 430K to about 490K) where the domain wall can move. It has the function of causing only the movement of the domain wall from.

【0048】また、第2,第3磁性層24,25のうち
で少なくとも第3磁性層25は、後述する第4磁性層2
6に記録された磁区が第2,第3磁性層24,25を介
して第1磁性層23に交換結合されている場合に、再生
時にレーザービームの照射による昇温で磁化が消失され
る膜として機能している。この第2,第3磁性層24,
25も、垂直方向(膜面に垂直な方向)に磁化容易方向
を持つ膜、いわゆる垂直磁化膜となる重希土類−鉄族金
属から成るアモルファス薄膜として成膜されており、T
b−Fe膜又はDy−Fe膜をベースとする材料を用い
て、AlやCrなどの非磁性元素やCoを添加して第
2,第3磁性層24,25のキュリー温度Tc22,T
c23をそれぞれ調節しながら成膜している。
Of the second and third magnetic layers 24 and 25, at least the third magnetic layer 25 is the fourth magnetic layer 2 described later.
When the magnetic domain recorded in 6 is exchange coupled to the first magnetic layer 23 through the second and third magnetic layers 24 and 25, the magnetization disappears due to the temperature rise due to the irradiation of the laser beam during reproduction. Is functioning as. The second and third magnetic layers 24,
25 is also a film having an easy magnetization direction in the vertical direction (direction perpendicular to the film surface), that is, is formed as an amorphous thin film made of a heavy rare earth-iron group metal that serves as a so-called perpendicular magnetization film, and T
A material based on a b-Fe film or a Dy-Fe film is used, and a non-magnetic element such as Al or Cr or Co is added to the Curie temperatures Tc22, T of the second and third magnetic layers 24, 25.
The film is formed while adjusting c23.

【0049】次に、第4磁性層26は、前述した第1の
光磁気記録媒体10Aに成膜した第3磁性層15と同様
に、記録時にレーザービームを照射しながら図示しない
磁気ヘッドなどの外部磁界によって情報信号を垂直な方
向に磁化容易軸を持った膜面に磁区(磁化反転領域)の
形態で記録した後に、室温において記録した磁区を安定
に保持するために充分な保磁力を有し、且つ、情報信号
を記録するために適したキュリー温度Tc24を持つ膜
であることが必要であり、記録層(メモリ層)として機
能している。
Next, the fourth magnetic layer 26, like the third magnetic layer 15 formed on the first magneto-optical recording medium 10A described above, is irradiated by a laser beam during recording and is used for a magnetic head (not shown) or the like. After an information signal is recorded in the form of magnetic domains (magnetization reversal regions) on a film surface having an easy axis of magnetization in the vertical direction by an external magnetic field, it has a sufficient coercive force to stably hold the recorded magnetic domains at room temperature. In addition, the film needs to have a Curie temperature Tc24 suitable for recording an information signal, and functions as a recording layer (memory layer).

【0050】この第4磁性層26も、垂直方向(膜面に
垂直な方向)に磁化容易方向を持つ膜、いわゆる垂直磁
化膜となる重希土類−鉄族金属から成るアモルファス薄
膜として成膜されており、Tb−Fe−Co膜又はDy
−Fe−Co膜をベースとする材料を使用し、更に、A
lやCr等の非磁性元素を添加して第4磁性層26のキ
ュリー温度Tc24を調整していると共に、第4磁性層
26中での重希土類(Tb又はDy)の鉄族金属(Fe
−Co)に対する元素濃度比(at.%比)を23.5
≦Tb≦25.5又は25.5≦Dy≦28.5の範囲
に設定しており、この元素濃度比の範囲については後述
する。
The fourth magnetic layer 26 is also formed as an amorphous thin film made of a heavy rare earth-iron group metal, which is a film having a magnetization easy direction in the vertical direction (direction perpendicular to the film surface), that is, a so-called vertical magnetization film. , Tb-Fe-Co film or Dy
A material based on a —Fe—Co film is used.
The Curie temperature Tc24 of the fourth magnetic layer 26 is adjusted by adding a non-magnetic element such as 1 or Cr, and the iron group metal (Fe) of heavy rare earth (Tb or Dy) in the fourth magnetic layer 26 is adjusted.
The element concentration ratio (at.% Ratio) to -Co) is 23.5
The range of ≦ Tb ≦ 25.5 or 25.5 ≦ Dy ≦ 28.5 is set, and the range of the element concentration ratio will be described later.

【0051】そして、上記のように構成した第2の光磁
気記録媒体20Aに対してレーザービームに依る記録お
よび再生時の昇温状態を考慮して、第1,第2,第3,
第4磁性層23,24,25,26の各キュリー温度T
c21,Tc22,Tc23,Tc24は、約530
K,約430K,約420K,約590K近傍とするこ
とが望ましい。ここで、第1,第2,第3,第4磁性層
23,24,25,26の各キュリー温度Tc21,T
c22,Tc23,Tc24は、各磁性層中でのCoの
添加量を増加することでキュリー温度上昇させることが
でき、一方、各磁性層の磁性特性を大きく変化させるこ
とのないAlやCr等の非磁性元素の添加量を増加する
ことでキュリー温度を低下させることができるので、各
磁性層に対してCoや非磁性元素の添加量を調節して上
述の各キュリー温度Tc21,Tc22,Tc23,T
24をTc24>Tc21>Tc22>Tc23になる
ように設定している。
Then, the first, second, third, and so on are taken into consideration in consideration of the temperature rising state at the time of recording and reproducing by the laser beam with respect to the second magneto-optical recording medium 20A configured as described above.
Curie temperature T of the fourth magnetic layer 23, 24, 25, 26
c21, Tc22, Tc23, Tc24 is about 530
K, about 430K, about 420K, and about 590K are desirable. Here, the Curie temperatures Tc21 and Tc of the first, second, third and fourth magnetic layers 23, 24, 25 and 26, respectively.
c22, Tc23, and Tc24 can increase the Curie temperature by increasing the amount of Co added in each magnetic layer, while Al, Cr, etc. which do not significantly change the magnetic characteristics of each magnetic layer. Since the Curie temperature can be lowered by increasing the addition amount of the non-magnetic element, the addition amount of Co or the non-magnetic element is adjusted for each magnetic layer to adjust the above Curie temperatures Tc21, Tc22, Tc23, T
24 is set so that Tc24>Tc21>Tc22> Tc23.

【0052】更に、第1,第2,第3,第4磁性層2
3,24,25,26の各膜厚t21,t22,t2
3,t24は、それぞれ約30nm,約5〜15nm,
約10nm,約60〜80nm近傍に設定することが望
ましい。
Further, the first, second, third and fourth magnetic layers 2
Film thickness t21, t22, t2 of 3, 24, 25, 26
3, t24 is about 30 nm, about 5 to 15 nm,
It is desirable to set the thickness to about 10 nm and about 60 to 80 nm.

【0053】ここで、上記した本発明に係る第1,第2
の光磁気記録媒体10A,20Aにおいて、第1磁性層
13又は第1磁性層23の磁壁移動について詳述する。
Here, the first and second aspects of the present invention described above.
In the magneto-optical recording media 10A and 20A, the domain wall movement of the first magnetic layer 13 or the first magnetic layer 23 will be described in detail.

【0054】図3は本発明に係る第1,第2の光磁気記
録媒体において、第1磁性層(磁壁移動層)の磁壁移動
を説明するための図である。
FIG. 3 is a diagram for explaining the domain wall motion of the first magnetic layer (domain wall motion layer) in the first and second magneto-optical recording media according to the present invention.

【0055】本発明に係る第1,第2の光磁気記録媒体
10A,20Aにおいて、前述したように、とくに、第
1磁性層13又は第1磁性層23はGd−Fe膜又はG
d−Fe−Co膜をベースとする材料を使用して、Gd
のFe又はFe−Coに対する元素濃度比(at.%
比)を28.0≦Gd≦29.0の範囲に設定し、且
つ、第3磁性層15又は第4磁性層26はTb−Fe−
Co膜又はDy−Fe−Co膜をベースとする材料を使
用して、Tb又はDyのFe−Coに対する元素濃度比
(at.%比)を23.5≦Tb≦25.5又は25.
5≦Dy≦28.5に設定することで、後述するWal
kerの限界を大きく越えた場合として取り扱い得るも
のであり、これにより磁壁移動を迅速にして再生信号特
性の一つであるジッター特性に対して大幅な改良を図っ
たものである。
In the first and second magneto-optical recording media 10A and 20A according to the present invention, as described above, especially, the first magnetic layer 13 or the first magnetic layer 23 is the Gd-Fe film or the Gd-Fe film.
Using a material based on a d-Fe-Co film, Gd
Element ratio of Fe to Fe or Fe-Co (at%)
Ratio) is set in the range of 28.0 ≦ Gd ≦ 29.0, and the third magnetic layer 15 or the fourth magnetic layer 26 is made of Tb-Fe-.
Using a material based on a Co film or a Dy-Fe-Co film, the element concentration ratio (at.% Ratio) of Tb or Dy to Fe-Co is 23.5≤Tb≤25.5 or 25.
By setting 5 ≦ Dy ≦ 28.5, a Wal described later will be obtained.
This can be handled as a case where the limit of ker is greatly exceeded, whereby the domain wall movement is swiftly performed, and the jitter characteristic, which is one of the reproduction signal characteristics, is greatly improved.

【0056】以下に、マイクロマグネティクスの理論に
基づく計算結果及びそれを検証する実験結果を示し、本
発明の有効性を説明する。理論計算は、分子場近似によ
り行っているが、そのパラメーターは、上述の一例とし
て示した各磁性層の温度特性を実測し、その値に計算曲
線をフィッティングすることで計算に用いるパラメータ
を決定している。また、磁壁移動速度は、フェリ磁性体
のLandau−Lifshitz−Gilbert方
程式を単磁区構造に対して解くことにより計算した。
The effectiveness of the present invention will be described below by showing the calculation results based on the theory of micromagnetics and the experimental results for verifying the results. The theoretical calculation is performed by the molecular field approximation, but the parameter is determined by actually measuring the temperature characteristics of each magnetic layer shown as an example above and fitting the calculation curve to the value to determine the parameter used for the calculation. ing. The domain wall moving velocity was calculated by solving the Landau-Lifshitz-Gilbert equation of the ferrimagnet for the single domain structure.

【0057】さて、一般的に、光磁気記録媒体におい
て、第1磁性層(磁壁移動層)13又は23の磁壁移動
は、下記する数1の関係が成立したところで開始する。
Generally, in the magneto-optical recording medium, the domain wall motion of the first magnetic layer (domain wall motion layer) 13 or 23 starts when the relationship of the following expression 1 is established.

【0058】[0058]

【数1】 この数1中で、σは磁区磁壁エネルギーを示し、σ
は磁壁移動層(第1磁性層)と記録層(第3磁性層又は
第4磁性層)間の交換結合による界面磁壁エネルギーを
示し、χはトラック方向の位置座標を示し、M
,tはそれぞれ磁壁移動層の磁化、磁壁抗磁力、膜
厚である。また、数1中の左辺は、磁壁移動の駆動力で
あり、数1中の右辺は磁壁移動を阻止する力であり、上
記した数1中の左辺と右辺とを分離した状態で図3に示
した場合に、左辺のカーブ特性と右辺のカーブ特性とが
交差する点から図示の左側(Position 0側)に向かっ
て磁壁移動が開始することになる。
[Equation 1] In this equation 1, σ D indicates domain wall energy, and σ W
Represents the interface domain wall energy due to exchange coupling between the domain wall displacement layer (first magnetic layer) and the recording layer (third magnetic layer or fourth magnetic layer), χ represents the position coordinate in the track direction, M s ,
H w and t are the magnetization, domain wall coercive force, and film thickness of the domain wall displacement layer, respectively. Further, the left side in the equation 1 is a driving force for the domain wall movement, the right side in the equation 1 is a force for preventing the domain wall movement, and the left side and the right side in the above equation 1 are separated from each other. In the case shown, the domain wall movement starts from the intersection of the curve characteristic on the left side and the curve characteristic on the right side to the left side (Position 0 side) in the figure.

【0059】図3に示した各特性カーブは本発明に係る
第1,第2の光磁気記録媒体10A,20Aにおける結
果である。尚、図3中に示した横軸は、再生レーザービ
ームのスポット中心を原点0として再生レーザービーム
の進行方向を正とした位置座標であり、縦軸は磁壁移動
の駆動力及び磁壁移動を阻止する力を示している。
The characteristic curves shown in FIG. 3 are the results for the first and second magneto-optical recording media 10A and 20A according to the present invention. The horizontal axis shown in FIG. 3 is the position coordinates with the origin of the spot center of the reproducing laser beam as the origin 0 and the traveling direction of the reproducing laser beam as positive, and the vertical axis indicates the driving force of the domain wall movement and the domain wall movement. It shows the power to do.

【0060】ここで、磁壁移動速度を考えるためには、
Landau−Lifshitz−Gilbert(L
LG)方程式を適用しなければならない。磁壁移動は、
磁化反転の連続により実現するが、磁気モーメントは、
電子の軌道とスピンの磁気の和として得られるものであ
り、角運動量を伴っているため、その反転動作ではラー
モアの歳差運動(=磁気モーメントの軸線方向が変わる
運動)が起こることになる。従って、磁気回転比の導入
により、このダイナミックな磁化機構を説明したLLG
方程式が必要となる。更に、磁壁の駆動磁界が小さい場
合に磁壁はその構造を保ったまま移動するが、磁壁の駆
動磁界が大きくなると磁壁構造自体が変化しながら移動
する。前者(磁壁の駆動磁界が小さい場合)では、磁壁
移動速度は駆動磁界にほぼ比例するが、後者(磁壁の駆
動磁界が大きい場合)では、磁壁移動速度は駆動磁界に
対して複雑な挙動を示し、前者と後者の境をWalke
rの限界と呼ぶ。
Here, in order to consider the domain wall moving speed,
Landau-Lifshitz-Gilbert (L
LG) equation must be applied. Domain wall movement is
It is realized by continuous magnetization reversal, but the magnetic moment is
It is obtained as the sum of the orbits of electrons and the magnetism of spins, and because it is accompanied by angular momentum, Lermore's precession motion (= motion in which the axial direction of the magnetic moment changes) occurs in its reversal motion. Therefore, the introduction of the gyromagnetic ratio explained the dynamic magnetization mechanism of the LLG.
An equation is needed. Furthermore, when the drive magnetic field of the domain wall is small, the domain wall moves while maintaining its structure, but when the drive magnetic field of the domain wall increases, the domain wall structure itself moves while changing. In the former (when the domain wall drive magnetic field is small), the domain wall moving speed is almost proportional to the drive magnetic field, but in the latter (when the domain wall driving magnetic field is large), the domain wall moving speed shows a complicated behavior with respect to the drive magnetic field. Walke the border between the former and the latter
Call it the limit of r.

【0061】ここで、本発明に係る光磁気記録媒体10
A,20Aにおける磁壁移動速度Vは、共にWalke
rの限界を大きく超えた場合として取り扱うことが可能
であるので、下記の数2及び数3により求めることがで
き、且つ、数2及び数3のうちで数2により求めた磁壁
移動速度Vが主となるものである。
Here, the magneto-optical recording medium 10 according to the present invention.
The domain wall moving velocity V in A and 20 A are both Walke
Since it can be handled as a case where the limit of r is greatly exceeded, it can be obtained by the following equations 2 and 3, and the domain wall moving velocity V obtained by the equation 2 among the equations 2 and 3 is It is the main one.

【0062】[0062]

【数2】 [Equation 2]

【数3】 上記した数2及び数3では、磁壁駆動磁界Hを、定数2
πと飽和磁化MとGilbertのダンピン定数α
eff とで規格化して、規格化磁界hの値が1<h
か、又は、h<1かに応じて磁壁移動速度Vをそれぞれ
求めており、この規格化磁界hが1より大きくなった時
に数2で求めた磁壁移動速度Vが主として本発明に係る
光磁気記録媒体10A,20Aにおける磁壁移動速度で
あるとみなしている。
[Equation 3] In the above Equations 2 and 3, the domain wall drive magnetic field H is set to the constant 2
π, saturation magnetization M s, and Gilbert's damping constant α
eff And the value of the standardized magnetic field h is 1 <h
Or the magnetic domain wall moving speed V is determined depending on whether h <1, and when the standardized magnetic field h becomes larger than 1, the magnetic domain wall moving speed V obtained by the equation 2 is mainly the magneto-optical characteristic according to the present invention. It is considered to be the domain wall moving speed in the recording media 10A and 20A.

【0063】上記したWalkerの限界以上の現象と
それ以下の現象は、磁壁移動層の磁化の温度特性の違い
によるものであり、その特性差に起因して実際の磁壁移
動は、前者の場合は規格化磁界が、1<hの時に実現す
ることになり、後者の場合は規格化磁界が、h<1の時
に実現する。
The phenomenon above the Walker's limit and the phenomenon below it are due to the difference in the temperature characteristics of the magnetization of the domain wall displacement layer. Due to the characteristic difference, the actual domain wall displacement is The normalized magnetic field is realized when 1 <h, and in the latter case, the normalized magnetic field is realized when h <1.

【0064】ここで、Gilbertのダンピング定数
αeff は、Landau−Lifshitzの損失
定数λeff により、下記の数4のように表すことが
できる。
Here, Gilbert's damping constant α eff Is the Landau-Lifshitz loss constant λ eff. Can be expressed by the following equation 4.

【0065】[0065]

【数4】 今回の近似計算においては、λeff /γeff =略
10(emu/cm)としている。また、磁壁駆動磁
界Hは、磁壁抗磁力の小さい磁壁移動層では、下記の数
5のようになる。
[Equation 4] In this approximation calculation, λ eff / Γ eff = About 10 (emu / cm 3 ). Further, the domain wall drive magnetic field H is expressed by the following equation 5 in the domain wall moving layer having a small domain wall coercive force.

【0066】[0066]

【数5】 従って、実行的異方性定数K>>2πM のもとで、
これら数4と数5から、前記した数2は数6に示したよ
うに変形することができる。
[Equation 5] Therefore, under the effective anisotropy constant K >> 2πM s 2 ,
From these equations 4 and 5, the above equation 2 can be transformed as shown in equation 6.

【0067】[0067]

【数6】 上記した数6から、飽和磁化Mを小さくしてWalk
erの限界より非常に大きい磁界で磁壁を動かす場合
は、飽和磁化M=0で磁壁移動速度が最も速くなるこ
とがわかる。この特徴は、言い換えると、飽和磁化M
=0から外れると磁壁移動速度が遅くなるということを
意味している。従って、磁壁移動の実現する温度範囲の
飽和磁化は、フェリ磁性体である磁壁移動層の重希土類
元素含有量に大きく依存することから、良好な磁壁移動
を実現するためには、磁壁移動層の重希土類(Gd)元
素の組成を厳密にコントロールすることが必要となる。
そこで、磁壁移動速度の計算結果から、磁壁移動が完了
するまでの時間を算出し、その磁壁移動層の組成依存性
を検討した。
[Equation 6] From Equation 6 above, the saturation magnetization M s is reduced to make Walk
It can be seen that when the domain wall is moved by a magnetic field much larger than the limit of er, the domain wall moving speed becomes highest at the saturation magnetization M s = 0. This feature is, in other words, the saturation magnetization M s
When it deviates from = 0, it means that the domain wall moving speed becomes slow. Therefore, since the saturation magnetization in the temperature range where the domain wall motion is realized largely depends on the heavy rare earth element content of the domain wall motion layer which is a ferrimagnetic material, in order to realize good domain wall motion, It is necessary to strictly control the composition of the heavy rare earth (Gd) element.
Therefore, from the calculation result of the domain wall motion velocity, the time until the domain wall motion is completed was calculated, and the composition dependence of the domain wall motion layer was examined.

【0068】図4は本発明に係る光磁気記録媒体におい
て、第1磁性層(磁壁移動層)内での磁壁移動速度の変
化と磁壁位置の変化を時間に対してプロットした図であ
る。図4中において、縦軸のポジションは、再生レーザ
ービームのスポットの中心を原点0とし、再生レーザー
ビームの進行方向を正としたトラック方向の位置座標で
ある。ここでの、磁壁移動層となる第1磁性層13又は
第1磁性層23に含まれる重希土類(Gd)の鉄族金属
(Fe又はFe−Co)に対する元素濃度比は28.5
at.%である。磁区(記録マーク)を拡大再生するた
めの磁壁移動は、再生レーザービームの中心から(ビー
ム進行方向を前方として)やや後方で完了することが、
この結果からもわかる。そして、この磁壁移動が途中で
止まってしまったり、完了するまでに長い時間を必要と
する場合に、磁壁移動再生の信号品質が損なわれること
になる。
FIG. 4 is a diagram in which the change in the domain wall moving speed and the change in the domain wall position in the first magnetic layer (domain wall moving layer) in the magneto-optical recording medium according to the present invention are plotted against time. In FIG. 4, the position on the vertical axis is the position coordinate in the track direction with the origin of the spot of the reproduction laser beam as the origin 0 and the traveling direction of the reproduction laser beam as the positive direction. Here, the element concentration ratio of the heavy rare earth (Gd) contained in the first magnetic layer 13 or the first magnetic layer 23 serving as the domain wall displacement layer to the iron group metal (Fe or Fe—Co) is 28.5.
at. %. The domain wall movement for magnifying and reproducing the magnetic domain (record mark) can be completed slightly behind the center of the reproduction laser beam (with the beam traveling direction as the front).
You can see from this result. Then, when the domain wall movement stops halfway or a long time is required to complete it, the signal quality of the domain wall movement reproduction is impaired.

【0069】図5は本発明に係る光磁気記録媒体におい
て、再生レーザービームの中心近傍(−0.05μm,
0.00μm,+0.05μm)に移動磁壁が到達する
のに要する時間の変化を、第1磁性層(磁壁移動層)中
の重希土類(Gd)の組成に対してプロットした結果を
示した図である。
FIG. 5 shows, in the magneto-optical recording medium according to the present invention, near the center of the reproducing laser beam (-0.05 μm,
The figure which showed the result of having plotted the change of the time required for a moving magnetic domain wall to reach 0.00 micrometer, +0.05 micrometer) with respect to the composition of heavy rare earth (Gd) in a 1st magnetic layer (domain wall moving layer). Is.

【0070】図5に示した如く、磁壁移動層となる第1
磁性層13又は第1磁性層23中で磁壁移動が完了に要
する時間は、重希土類(Gd)の組成の変化に対し、大
きく変動することがわかる。この結果から、磁壁移動層
となる第1磁性層13又は第1磁性層23中の重希土類
(Gd)の鉄族金属(Fe−Co)に対する元素濃度比
(at.%比)は、28.0≦Gd≦29.0の範囲に
あることが、望ましいと言える。
As shown in FIG. 5, the first magnetic domain wall displacement layer is formed.
It can be seen that the time required for the completion of the domain wall movement in the magnetic layer 13 or the first magnetic layer 23 varies greatly with the change in the composition of the heavy rare earth (Gd). From this result, the element concentration ratio (at.% Ratio) of the heavy rare earth (Gd) to the iron group metal (Fe—Co) in the first magnetic layer 13 or the first magnetic layer 23, which is the domain wall displacement layer, is 28. It can be said that it is desirable that the range is 0 ≦ Gd ≦ 29.0.

【0071】他方、本発明に係る光磁気記録媒体10
A,20Aのように、Walkerの限界を大きく超え
た磁壁駆動磁界での磁壁移動においては、前述したよう
に、磁壁駆動磁界が大きくなるにつれて複雑な挙動を示
すことになる。従って、磁壁移動をスムーズに行うため
には、その妨げとなる浮遊磁界を考慮に入れる必要があ
る。磁壁移動開始位置近傍では、磁壁の進行方向の領域
が高温であり、磁壁移動領域はその他の領域と比較して
磁化が小さくなるため、拡大する磁区領域の浮遊磁界が
大きいことになる。磁化の大きいところに磁壁ができた
方が静磁エネルギーが小さくなり安定となるため、浮遊
磁界が磁壁移動を妨げる作用をもつことになる。他方、
磁壁移動完了位置近傍では、ひとつ前の信号の磁区磁壁
からの反発力の大きさが浮遊磁界に比例して大きくなる
ので、浮遊磁界が大きい場合に磁壁移動範囲が制限さ
れ、再生信号のS/Nが低下する。本発明の場合、磁壁
移動層となる第1磁性層13又は第1磁性層23中での
重希土類(Gd)元素の組成が、上述の範囲にあり、磁
壁移動の起こる温度領域(約430K〜約490K)で
の磁壁移動層の飽和磁化は極めて小さいため、磁壁移動
層からの浮遊磁界の影響は、ほとんど無いと考えられる
が、記録層となる第3磁性層15又は第4磁性層26か
らの浮遊磁界の影響については考慮する必要がある。
On the other hand, the magneto-optical recording medium 10 according to the present invention.
As described above, in the domain wall movement in the domain wall drive magnetic field that greatly exceeds the Walker's limit, such as A and 20A, as the domain wall drive magnetic field increases, a complicated behavior is exhibited. Therefore, in order to smoothly move the domain wall, it is necessary to take into consideration the stray magnetic field that hinders the movement. In the vicinity of the domain wall movement start position, the region in the traveling direction of the domain wall is at a high temperature, and the domain wall movement region has a smaller magnetization than the other regions, so that the stray magnetic field in the expanding domain region is large. Since the magnetostatic energy becomes smaller and becomes stable when the domain wall is formed in a place where the magnetization is large, the stray magnetic field has an effect of hindering the domain wall movement. On the other hand,
In the vicinity of the domain wall movement completion position, the magnitude of the repulsive force from the domain domain wall of the previous signal increases in proportion to the stray magnetic field, so the domain wall movement range is limited when the stray magnetic field is large, and the S / N decreases. In the case of the present invention, the composition of the heavy rare earth (Gd) element in the first magnetic layer 13 or the first magnetic layer 23 which becomes the domain wall motion layer is within the above range, and the temperature region where the domain wall motion occurs (about 430K to Since the saturation magnetization of the domain wall motion layer at about 490 K) is extremely small, it is considered that there is almost no influence of the stray magnetic field from the domain wall motion layer, but from the third magnetic layer 15 or the fourth magnetic layer 26 which is the recording layer. It is necessary to consider the effect of stray magnetic fields.

【0072】そこで、本発明に係る第1,第2光磁気記
録媒体10A,20Aでは、この問題を解決するため、
記録層となる第3磁性層15又は第4磁性層26の改良
について以下のごとく検討した。
Therefore, in the first and second magneto-optical recording media 10A and 20A according to the present invention, in order to solve this problem,
The improvement of the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer was examined as follows.

【0073】以下、本発明に係る第1,第2光磁気記録
媒体10A,20Aにおける第3磁性層15又は第4磁
性層26について、図6〜図10を用いて説明する。
The third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media 10A and 20A according to the present invention will be described below with reference to FIGS. 6 to 10.

【0074】図6は本発明に係る第1,第2光磁気記録
媒体において、第3磁性層15又は第4磁性層26に含
まれる重希土類(Tb)の鉄族金属(Fe−Co)に対
する元素濃度比が27.5at.%の場合の浮遊磁界の
変化を示した図、図7は本発明に係る第1,第2光磁気
記録媒体において、第3磁性層15又は第4磁性層26
に含まれる重希土類(Tb)の鉄族金属(Fe−Co)
に対する元素濃度比が26.5at.%の場合の浮遊磁
界の変化を示した図、図8は本発明に係る第1,第2光
磁気記録媒体において、第3磁性層15又は第4磁性層
26に含まれる重希土類(Tb)の鉄族金属(Fe−C
o)に対する元素濃度比が25.5at.%の場合の浮
遊磁界の変化を示した図、図9は本発明に係る第1,第
2光磁気記録媒体において、第3磁性層15又は第4磁
性層26に含まれる重希土類(Tb)の鉄族金属(Fe
−Co)に対する元素濃度比が24.5at.%の場合
の浮遊磁界の変化を示した図、図10は本発明に係る第
1,第2光磁気記録媒体において、第3磁性層15又は
第4磁性層26に含まれる重希土類(Tb)の鉄族金属
(Fe−Co)に対する元素濃度比が23.5at.%
の場合の浮遊磁界の変化を示した図である。
FIG. 6 shows the heavy rare earth (Tb) iron group metal (Fe—Co) contained in the third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media according to the present invention. The element concentration ratio is 27.5 at. FIG. 7 is a diagram showing a change in stray magnetic field in the case of%, FIG. 7 shows the third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media according to the present invention.
Heavy rare earth (Tb) iron group metal (Fe-Co) contained in
Element concentration ratio to 26.5 at. FIG. 8 is a diagram showing a change in stray magnetic field in the case of%, FIG. 8 is a heavy rare earth element (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media according to the present invention. Iron group metal (Fe-C
The element concentration ratio to o) is 25.5 at. FIG. 9 is a diagram showing the change of the stray magnetic field in the case of%, FIG. 9 is a heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media according to the present invention. Iron group metal (Fe
-Co) has an element concentration ratio of 24.5 at. FIG. 10 is a diagram showing a change in stray magnetic field in the case of%, and FIG. 10 shows heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 in the first and second magneto-optical recording media according to the present invention. Element concentration ratio to the iron group metal (Fe—Co) of 23.5 at. %
It is a figure showing the change of the stray magnetic field in case of.

【0075】本発明に係る第1,第2光磁気記録媒体1
0A,20Aにおいて、記録層となる第3磁性層15又
は第4磁性層26の組成変化に対して、第3磁性層15
又は第4磁性層26からの浮遊磁界(Stray fi
eld)の変化について検討を行い、その結果を、図6
〜図10に示している。図6〜図10中では記録層とな
る第3磁性層15又は第4磁性層26は、Tb−Fe−
Co膜を成膜した場合の例であり、横軸のポジション
は、再生レーザービームのスポットの中心を原点0とし
てレーザービームの進行方向を正としたトラック方向の
位置座標である。この際、横軸のポジショ位置は再生レ
ーザービームのガウス分布による温度変化をも間接的に
示しているものである。
First and second magneto-optical recording media 1 according to the present invention
At 0 A and 20 A, the third magnetic layer 15 is changed with respect to the composition change of the third magnetic layer 15 or the fourth magnetic layer 26 which becomes the recording layer.
Alternatively, a stray magnetic field from the fourth magnetic layer 26 (Stray fi
Eld) is examined and the results are shown in FIG.
~ Is shown in FIG. In FIGS. 6 to 10, the third magnetic layer 15 or the fourth magnetic layer 26 serving as a recording layer is Tb-Fe-
This is an example of the case where a Co film is formed, and the position on the horizontal axis is position coordinates in the track direction with the origin of the spot of the reproduction laser beam as the origin 0 and the traveling direction of the laser beam as positive. At this time, the position on the horizontal axis indirectly indicates the temperature change due to the Gaussian distribution of the reproduction laser beam.

【0076】また、図6〜図10中には、Stray
field(浮遊磁界)と共に、その浮遊磁界を発生す
る第3磁性層15又は第4磁性層26のSaturat
ionMagnetization(飽和磁化)を参考
として合わせて示してある。尚、Stray fiel
d及びSaturation Magnetizati
onをそれぞれ示す縦軸は、+方向が上向きの磁化なら
ば一方向が下向きの磁化を示していると共に、Satu
ration Magnetizationの目盛り単
位は図10のみが図6〜図9に対して2倍になってい
る。
In addition, in FIGS.
Saturat of the third magnetic layer 15 or the fourth magnetic layer 26 that generates the stray magnetic field together with the field (stray magnetic field)
IonMagnification (saturation magnetization) is also shown for reference. It should be noted that the Trace field
d and Saturation Magnetizati
The vertical axes indicating on respectively indicate magnetization in one direction if the + direction is upward magnetization, and
Only the scale unit of the ratio Magnification in FIG. 10 is double that in FIGS. 6 to 9.

【0077】ここで、記録層となる第3磁性層15又は
第4磁性層26に記録した微小な記録マークの磁壁は、
一つ前の記録マークに向かって移動してゆくことになる
ため、記録層となる第3磁性層15又は第4磁性層26
にランダム変調信号を記録する場合、その一つ前の記録
マークの磁壁からの反発力も考慮に入れなくてはならな
い。従って、ここでの検討は、再生レーザービームの中
心直下(トラック方向位置座標の原点位置)の第3磁性
層15又は第4磁性層26に磁壁が存在する場合を考え
ている。図6〜図10に示した結果は、それぞれ、第3
磁性層15又は第4磁性層26に含まれる重希土類(T
b)の鉄族金属(Fe−Co)に対する元素濃度比が、
27.5at.%, 26.5at.%, 25.5a
t.%,24.5at.%, 23.5at.%の場合
にそれぞれ対応している。図6〜図10からわかるよう
に元素濃度比を減少させていくと、磁壁移動開始位置で
の浮遊磁界が小さくなるが、移動磁壁の最終到達点とな
る原点付近での浮遊磁界が大きくなる。
Here, the domain wall of the minute recording mark recorded on the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer is
Since it moves toward the previous recording mark, the third magnetic layer 15 or the fourth magnetic layer 26 to be a recording layer.
When a random modulation signal is recorded in, the repulsive force from the domain wall of the recording mark immediately before that must be taken into consideration. Therefore, the study here considers the case where a domain wall exists in the third magnetic layer 15 or the fourth magnetic layer 26 immediately below the center of the reproduction laser beam (the origin position of the position coordinate in the track direction). The results shown in FIG. 6 to FIG.
Heavy rare earth (T) contained in the magnetic layer 15 or the fourth magnetic layer 26.
The element concentration ratio of b) to the iron group metal (Fe—Co) is
27.5 at. %, 26.5 at. %, 25.5a
t. %, 24.5 at. %, 23.5 at. % Corresponds to each case. As can be seen from FIGS. 6 to 10, although the stray magnetic field at the domain wall movement start position decreases as the element concentration ratio decreases, the stray magnetic field near the origin, which is the final arrival point of the domain wall, increases.

【0078】次に、図11は本発明に係る光磁気記録媒
体において、トラック方向位置座標に対する磁壁駆動磁
界を示した図、図12は本発明に係る光磁気記録媒体に
おいて、記録層となる第3磁性層又は第4磁性層中に含
まれる重希土類(Tb)の鉄族金属(Fe−Co)に対
する元素濃度比を変化させた時に規格化Jitterを
測定した結果を示した図である。
Next, FIG. 11 is a diagram showing a magnetic domain wall driving magnetic field with respect to position coordinates in the track direction in the magneto-optical recording medium according to the present invention. FIG. 12 is a recording layer in the magneto-optical recording medium according to the present invention. It is the figure which showed the result of having measured the standardized Jitter when changing the element concentration ratio of the heavy rare earth (Tb) contained in the 3rd magnetic layer or the 4th magnetic layer with respect to the iron group metal (Fe-Co).

【0079】図11に示したように、磁壁駆動磁界は、
ボジションが0.3μm近傍の磁壁移動開始位置で比較
的小さく、磁壁移動開始位置から最高温度位置(移動磁
壁の最終到達点)に向かって急激に大きくなる。従っ
て、浮遊磁界による影響は、移動開始位置において考慮
することが重要である。磁壁の移動開始位置における浮
遊磁界は、図6から図10に示したように記録層となる
第3磁性層15又は第4磁性層26中に含まれる重希土
類(Tb)の鉄族金属(Fe−Co)に対する元素濃度
比が、少なくなるにつれて小さくなっている。それに対
し、最高温度位置での浮遊磁界は、逆に急激に大きくな
っている。本発明において磁壁移動層となる第1磁性層
13又は第1磁性層23は、磁壁移動温度領域(約43
0K〜約490K)内で重希土類副格子の磁化が優勢で
あるので、記録層となる第3磁性層15又は第4磁性層
26からの浮遊磁界がマイナスの場合は、浮遊磁界は磁
壁移動層の磁壁移動を助ける方向に働く。図9及び図1
0の場合、磁壁移動層が僅かに移動すると、記録層から
の浮遊磁界は、磁壁移動を助ける方向に変わる。しかし
ながら、最高温度位置直前で、浮遊磁界は、磁壁移動を
妨げる方向に変わり急激に大きくなる。従って、移動磁
壁は、磁壁駆動磁界が大きくなると、磁壁構造自体が変
化しながら複雑な挙動を示すことを考慮にいれれば、こ
れ以上重希土類(Tb)の組成を減らすことは好ましく
なく、図9及び図10の場合が、望ましい状態であると
考えられる。
As shown in FIG. 11, the domain wall drive magnetic field is
The position is relatively small at the domain wall movement start position in the vicinity of 0.3 μm, and rapidly increases from the domain wall movement start position to the maximum temperature position (final reaching point of the moving domain wall). Therefore, it is important to consider the influence of the stray magnetic field at the movement start position. As shown in FIGS. 6 to 10, the stray magnetic field at the movement start position of the domain wall causes the heavy rare earth (Tb) iron group metal (Fe) contained in the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer. The element concentration ratio with respect to —Co) decreases as it decreases. On the other hand, the stray magnetic field at the maximum temperature position, on the contrary, suddenly increases. In the present invention, the first magnetic layer 13 or the first magnetic layer 23 serving as the domain wall displacement layer has a domain wall displacement temperature region (about 43 mm).
Since the magnetization of the heavy rare earth sublattice is predominant in the range of 0 K to about 490 K), when the stray magnetic field from the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer is negative, the stray magnetic field is the domain wall motion layer. It works in the direction of helping the domain wall movement. 9 and 1
In the case of 0, when the domain wall displacement layer slightly moves, the stray magnetic field from the recording layer changes to a direction that assists the domain wall displacement. However, immediately before the highest temperature position, the stray magnetic field changes to a direction in which domain wall movement is hindered and rapidly increases. Therefore, it is not preferable to further reduce the composition of the heavy rare earth (Tb), considering that the moving domain wall exhibits complicated behavior while the domain wall structure itself changes when the domain wall driving magnetic field increases. And, the case of FIG. 10 is considered to be a desirable state.

【0080】上記した結果を実証するため、磁壁移動層
となる第1磁性層13又は第1磁性層23中に含まれる
重希土類(Gd)の鉄族金属(Fe又はFe−Co)に
対する元素濃度比を28.5at.%とした状態で、記
録層となる第3磁性層15又は第4磁性層26中に含ま
れる重希土類(Tb)の鉄族金属(Fe−Co)に対す
る元素濃度比を変化させた場合の規格化Jitterを
測定し、比較した結果を図12に示す。ここでは、最短
マーク長0.08μmの変調信号を記録し、磁壁移動再
生の評価を行った。記録層となる第3磁性層15又は第
4磁性層26に含まれる重希土類(Tb)の鉄族金属
(Fe−Co)に対する元素濃度比が、24.5at.
%の時に最良のジッター値を示し、重希土類(Tb)の
組成が増える場合も減る場合も、ジッター特性は、悪化
する傾向を示している。この結果は上述の浮遊磁界の考
察結果を裏付けるものであり、これにより、第3磁性層
15又は第4磁性層26中の重希土類(Tb)の鉄族金
属(Fe−Co)に対する元素濃度比(at.%比)
は、23.5≦Tb≦25.5の範囲にあることが望ま
しいと言える。
In order to verify the above results, the element concentration of the heavy rare earth (Gd) contained in the first magnetic layer 13 or the first magnetic layer 23 serving as the domain wall displacement layer with respect to the iron group metal (Fe or Fe-Co). The ratio is 28.5 at. % When the element concentration ratio of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer to the iron group metal (Fe—Co) is changed. FIG. 12 shows the results of measuring and comparing the modified Jitter. Here, the modulation signal having the shortest mark length of 0.08 μm was recorded, and the domain wall movement reproduction was evaluated. The element concentration ratio of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer to the iron group metal (Fe—Co) is 24.5 at.
%, The best jitter value is shown, and the jitter characteristics tend to deteriorate when the composition of heavy rare earth (Tb) increases or decreases. This result supports the above-mentioned consideration result of the stray magnetic field, whereby the element concentration ratio of the heavy rare earth (Tb) in the third magnetic layer 15 or the fourth magnetic layer 26 to the iron group metal (Fe—Co). (At.% Ratio)
Can be said to be in the range of 23.5 ≦ Tb ≦ 25.5.

【0081】尚、上記した図6〜図10及び図12中の
各特性は、記録層となる第3磁性層15又は第4磁性層
26にTb−Fe−Co膜を成膜した場合であるが、第
3磁性層15又は第4磁性層26にDy−Fe−Co膜
を成膜した場合でも上記と同様に検討したところ、第3
磁性層15又は第4磁性層26にDy−Fe−Co膜を
用いた時にDyのFe−Coに対する元素濃度比(a
t.%比)は、25.5≦Dy≦28.5の範囲にある
ことが望ましいと判明した。
Each of the characteristics shown in FIGS. 6 to 10 and FIG. 12 is the case where a Tb-Fe-Co film is formed on the third magnetic layer 15 or the fourth magnetic layer 26 serving as a recording layer. However, when the Dy-Fe-Co film was formed on the third magnetic layer 15 or the fourth magnetic layer 26, the same examination as above was performed.
When a Dy-Fe-Co film is used for the magnetic layer 15 or the fourth magnetic layer 26, the element concentration ratio of Dy to Fe-Co (a
t. It has been found that the (% ratio) is preferably in the range of 25.5 ≦ Dy ≦ 28.5.

【0082】上述の組成範囲内において、光磁気記録媒
体10A中での第1磁性層13と第3磁性層15との組
み合わせ、又は、光磁気記録媒体20A中での第1磁性
層23と第4磁性層26とのとの組み合わせにより、浮
遊磁界からの影響を低減し、常に速い磁壁移動速度を持
った本発明に係る光磁気記録媒体10A,20Aが実現
し、再生信号特性の一つであるジッター特性が大幅に改
善されることになる。
Within the above composition range, a combination of the first magnetic layer 13 and the third magnetic layer 15 in the magneto-optical recording medium 10A, or a combination of the first magnetic layer 23 and the first magnetic layer 23 in the magneto-optical recording medium 20A is used. In combination with the four magnetic layers 26, the magneto-optical recording media 10A and 20A according to the present invention, which have a high magnetic domain wall movement speed, reduce the influence from the stray magnetic field, and are one of the reproduction signal characteristics. A certain jitter characteristic will be greatly improved.

【0083】次に、記録層となる第3磁性層15又は第
4磁性層26から磁壁移動層となる第1磁性層13又は
第1磁性層23に漏洩する浮遊磁界を低減でき、且つ、
同時に記録磁界感度向上を図ることができる他の改善例
について、図13〜図20を用いて説明する。
Next, it is possible to reduce the stray magnetic field leaking from the third magnetic layer 15 or the fourth magnetic layer 26 serving as the recording layer to the first magnetic layer 13 or the first magnetic layer 23 serving as the domain wall motion layer, and
At the same time, another improvement example capable of improving the recording magnetic field sensitivity will be described with reference to FIGS.

【0084】図13は本発明に係る第1の光磁気記録媒
体を一部変形させた変形例1の層構成を模式的に示した
断面図、図14は本発明に係る第2の光磁気記録媒体を
一部変形させた変形例2の層構成を模式的に示した断面
図、図15は変形例1の光磁気記録媒体(又は変形例2
の光磁気記録媒体)において、第3磁性層(又は第4磁
性層)をTb−Fe−Co膜とGd−Fe−Co膜とに
よる二層膜で成膜した際に、二層膜の磁化の方向が互い
に逆向きの時に安定となるアンチパラレル結合を模式的
に示した図、図16は変形例1の光磁気記録媒体(又は
変形例2の光磁気記録媒体)において、第3磁性層(又
は第4磁性層)をTb−Fe−Co膜とGd−Fe−C
o膜とによる二層膜で成膜した際に、二層膜の磁化の方
向が互いに同じ向きの時に安定となる希土類優勢(RE
−rich)のパラレル結合を模式的に示した図、図1
7は変形例1の光磁気記録媒体(又は変形例2の光磁気
記録媒体)において、第3磁性層(又は第4磁性層)を
Tb−Fe−Co膜とGd−Fe−Co膜とによる二層
膜で成膜した際に、二層膜の磁化の方向が互いに同じ向
きの時に安定となる鉄族優勢(TM−rich)のパラ
レル結合を模式的に示した図、図18は変形例1の光磁
気記録媒体(又は変形例2の光磁気記録媒体)におい
て、第3磁性層(又は第4磁性層)をTb−Fe−Co
膜とGd−Fe−Co膜とによる二層膜で成膜した際
に、室温からキュリー温度まで常にアンチパラレル結合
を保つ二層膜の特性図、図19は変形例1の光磁気記録
媒体(又は変形例2の光磁気記録媒体)において、第3
磁性層(又は第4磁性層)をTb−Fe−Co膜とGd
−Fe−Co膜とによる二層膜で成膜した際に、室温か
ら約385K(aの補償温度)まではRE−rich膜
のパラレル結合、約385Kから約530K(bの補償
温度)まではアンチパラレル結合、約530Kからキュ
リー温度まではTM−rich膜のパラレル結合となる
二層膜の特性図、図20は変形例1の光磁気記録媒体
(又は変形例2の光磁気記録媒体)において、Tb−F
e−Co膜とGd−Fe−Co膜とによる第3磁性層
(又は第4磁性層)の記録磁界の低減結果を示した図で
ある。
FIG. 13 is a sectional view schematically showing the layer structure of Modification 1 in which the first magneto-optical recording medium according to the present invention is partially modified, and FIG. 14 is the second magneto-optical recording medium according to the present invention. FIG. 15 is a cross-sectional view schematically showing the layer structure of Modification 2 in which the recording medium is partially modified, and FIG. 15 is a magneto-optical recording medium of Modification 1 (or Modification 2).
In the magneto-optical recording medium), when the third magnetic layer (or the fourth magnetic layer) is formed of a two-layer film including a Tb-Fe-Co film and a Gd-Fe-Co film, the magnetization of the two-layer film FIG. 16 is a diagram schematically showing an anti-parallel coupling that becomes stable when the directions are opposite to each other. FIG. 16 shows the third magnetic layer in the magneto-optical recording medium of Modified Example 1 (or the magneto-optical recording medium of Modified Example 2). (Or the fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-C film.
In the case of forming a two-layer film composed of an o film and a two-layer film, it becomes stable when the magnetization directions of the two-layer film are the same as each other.
-Rich) parallel coupling diagram, FIG.
In the magneto-optical recording medium of Modified Example 1 (or the magneto-optical recording medium of Modified Example 2), 7 is a third magnetic layer (or a fourth magnetic layer) made of a Tb-Fe-Co film and a Gd-Fe-Co film. FIG. 18 is a diagram schematically showing an iron group dominant (TM-rich) parallel coupling that becomes stable when the magnetization directions of the two-layer film are the same when the two-layer film is formed. In the magneto-optical recording medium of No. 1 (or the magneto-optical recording medium of Modified Example 2), the third magnetic layer (or the fourth magnetic layer) is made of Tb-Fe-Co.
FIG. 19 is a characteristic diagram of the two-layer film that always maintains antiparallel coupling from room temperature to the Curie temperature when the two-layer film including the film and the Gd-Fe-Co film is formed. FIG. Alternatively, in the magneto-optical recording medium of Modification 2, the third
The magnetic layer (or fourth magnetic layer) is composed of a Tb-Fe-Co film and a Gd.
When a two-layer film including a -Fe-Co film is formed, room temperature to about 385K (compensation temperature of a) is parallel-coupled to the RE-rich film, and about 385K to about 530K (compensation temperature of b) FIG. 20 is a characteristic diagram of a two-layer film which is an anti-parallel coupling, which is a parallel coupling of the TM-rich film from about 530 K to the Curie temperature, and FIG. , Tb-F
FIG. 9 is a diagram showing a result of reducing the recording magnetic field of the third magnetic layer (or the fourth magnetic layer) by the e-Co film and the Gd-Fe-Co film.

【0085】まず、図13に示した如く、本発明に係る
第1の光磁気記録媒体を一部変形させた変形例1の光磁
気記録媒体10Bは、先に図1を用いて説明した第1の
光磁気記録媒体10Aに対して第3磁性層15の成膜法
が異なるだけであり、他の構成は同じであるので異なる
点についてのみ述べると、この変形例1では、第3磁性
層15がTb−Fe−Co膜15aとGd−Fe−Co
膜15bとによる二層膜で成膜されており、これにより
第3磁性層15は重希土類−鉄族金属からなるフェリ磁
性垂直磁化膜となっている。この際、Tb−Fe−Co
膜15aとGd−Fe−Co膜15bとによる第3磁性
層15中において、磁気異方性が大きいTb−Fe−C
o膜15a側をレーザービームの照射側に成膜すること
が望ましく、これに伴ってGd−Fe−Co膜15bは
Tb−Fe−Co膜15a上に積層されている。
First, as shown in FIG. 13, a magneto-optical recording medium 10B according to Modification 1 in which the first magneto-optical recording medium according to the present invention is partially modified, is the same as the magneto-optical recording medium 10B described above with reference to FIG. The third magnetic layer 15 is different from the first magneto-optical recording medium 10A only in the film forming method, and other configurations are the same. 15 is a Tb-Fe-Co film 15a and Gd-Fe-Co.
The third magnetic layer 15 is a ferrimagnetic perpendicular magnetization film made of a heavy rare earth-iron group metal because it is formed as a two-layer film including the film 15b. At this time, Tb-Fe-Co
In the third magnetic layer 15 including the film 15a and the Gd-Fe-Co film 15b, Tb-Fe-C having a large magnetic anisotropy.
It is desirable to form the film 15a side on the laser beam irradiation side, and accordingly, the Gd-Fe-Co film 15b is laminated on the Tb-Fe-Co film 15a.

【0086】次に、図14に示した如く、本発明に係る
第2の光磁気記録媒体を一部変形させた変形例2の光磁
気記録媒体20Bも、先に図2を用いて説明した第2の
光磁気記録媒体20Aに対して第4磁性層26の成膜法
が異なるだけであり、他の構成は同じであるので異なる
点についてのみ述べると、この変形例2では、第4磁性
層26がTb−Fe−Co膜26aとGd−Fe−Co
膜26bとによる二層膜で成膜されており、これにより
第4磁性層26は重希土類−鉄族金属からなるフェリ磁
性垂直磁化膜となっている。この際、Tb−Fe−Co
膜26aとGd−Fe−Co膜26bとによる第4磁性
層26中において、磁気異方性が大きいTb−Fe−C
o膜26a側をレーザービームの照射側に成膜すること
が望ましく、これに伴ってGd−Fe−Co膜26bは
Tb−Fe−Co膜26a上に積層されている。
Next, as shown in FIG. 14, a magneto-optical recording medium 20B according to Modification 2 in which the second magneto-optical recording medium according to the present invention is partially modified has also been described with reference to FIG. The film forming method of the fourth magnetic layer 26 is different from that of the second magneto-optical recording medium 20A, and the other configurations are the same. Therefore, only different points will be described. The layer 26 is a Tb-Fe-Co film 26a and a Gd-Fe-Co film.
The fourth magnetic layer 26 is a two-layer film including the film 26b, and thus the fourth magnetic layer 26 is a ferrimagnetic perpendicular magnetization film made of a heavy rare earth-iron group metal. At this time, Tb-Fe-Co
In the fourth magnetic layer 26 composed of the film 26a and the Gd-Fe-Co film 26b, Tb-Fe-C having a large magnetic anisotropy.
It is desirable to form the o film 26a side on the laser beam irradiation side, and accordingly, the Gd-Fe-Co film 26b is laminated on the Tb-Fe-Co film 26a.

【0087】ここで、図15〜図17に示した如く、T
b−Fe−Co膜15a(又は26a)とGd−Fe−
Co膜15b(又は26b)とからなる第3磁性層15
(又は第4磁性層26)において、○印のない矢印が鉄
属副格子の磁気モーメントを示し、且つ、○印の付いた
矢印が希土類副格子の磁気モーメントを示すと共に、各
副格子の磁気モーメントを示す矢印の長さは各副格子磁
化の大きさを示している。更に、希土類副格子及び鉄属
副格子の矢印を含んだ中抜きの大きな矢印が磁化の向き
を示している。この際、希土類金属(Rare Ear
th Metal)の方が鉄属の遷移金属(Trans
ition Metal)よりも優勢である場合を希土
類優勢(RE−ritch)と呼称し、一方、鉄属の遷
移金属の方が希土類金属よりも優勢である場合を鉄族優
勢(TM−ritch)と呼称している。
Here, as shown in FIGS.
b-Fe-Co film 15a (or 26a) and Gd-Fe-
Third magnetic layer 15 including Co film 15b (or 26b)
In (or the fourth magnetic layer 26), the arrow without a circle indicates the magnetic moment of the iron group sublattice, the arrow with a circle indicates the magnetic moment of the rare earth sublattice, and The length of the arrow indicating the moment indicates the magnitude of each sublattice magnetization. Further, a large hollow arrow including the arrows of the rare earth sublattice and the iron group sublattice indicates the direction of magnetization. At this time, rare earth metal (Rare Ear)
th Metal) is a transition metal of the iron group (Trans
in which the transition metal of the iron group is more predominant than the rare earth metal is referred to as the iron group predominance (TM-rich). is doing.

【0088】そして、第3磁性層15(又は第4磁性層
26)中のTb−Fe−Co膜15a(又は26a)と
Gd−Fe−Co膜15b(又は26b)は、図15に
示したように二層膜の磁化の向きが互いに逆向きで反平
行状態の時が安定であるアンチパラレル結合、又は、図
16に示したように、二層膜の磁化の向きが同じ向きで
平行状態の時が安定である希土類優勢(RE−ric
h)のパラレル結合、もしくは、図17に示したよう
に、二層膜の磁化の向きが同じ向きで平行状態の時が安
定である鉄族優勢(TE−rich)のパラレル結合の
いずれかを、下記する図18又は図19に示す条件に応
じて取り得るものである。
The Tb-Fe-Co film 15a (or 26a) and the Gd-Fe-Co film 15b (or 26b) in the third magnetic layer 15 (or the fourth magnetic layer 26) are shown in FIG. The anti-parallel coupling in which the magnetization directions of the bilayer film are opposite to each other and stable when in the antiparallel state, or, as shown in FIG. 16, the bilayer film has the same magnetization direction and the parallel state. Rare earth dominance (RE-ric
h) parallel coupling, or, as shown in FIG. 17, the iron group-dominant (TE-rich) parallel coupling in which the magnetization directions of the two-layer film are stable in the same direction and in the parallel state. , Which can be taken according to the conditions shown in FIG. 18 or FIG. 19 described below.

【0089】即ち、図18に示した如く、第3磁性層1
5(又は第4磁性層26)の二層膜において、aは鉄族
優勢(TE−rich)であるTb−Fe−Co膜15
a(又は26a)の温度特性を示し、且つ、bは希土類
優勢(RE−rich)であるGd−Fe−Co膜15
b(又は26b)の温度特性を示している。そして、両
膜15a,15b(又は26a,26b)は、300K
近傍の室温からTb−Fe−Co膜15a(又は26
a)のキュリー温度までは常に図15に示したようなア
ンチパラレル結合を保つ二層膜になっている。
That is, as shown in FIG. 18, the third magnetic layer 1
5 (or the fourth magnetic layer 26), a is a Tb-Fe-Co film 15 in which a is iron group dominant (TE-rich).
a (or 26a) temperature characteristics, and b is a rare earth dominant (RE-rich) Gd-Fe-Co film 15
The temperature characteristic of b (or 26b) is shown. And both films 15a and 15b (or 26a and 26b) are 300K
From room temperature near the Tb-Fe-Co film 15a (or 26
Up to the Curie temperature of a), the double-layer film always maintains the antiparallel coupling as shown in FIG.

【0090】ここで、第3磁性層15(又は第4磁性層
26)の二層膜がアンチパラレル結合を保っている時に
は、鉄族優勢(TE−rich)であるTb−Fe−C
o膜15a(又は26a)の温度特性aと、希土類優勢
(RE−rich)であるGd−Fe−Co膜15b
(又は26b)の温度特性bとの差分c=a−bを演算
することで、見かけ上の磁化の温度特性cが得られる。
Here, when the two-layer film of the third magnetic layer 15 (or the fourth magnetic layer 26) maintains anti-parallel coupling, Tb-Fe-C which is iron group dominant (TE-rich).
o Temperature characteristic a of the film 15a (or 26a) and Gd-Fe-Co film 15b which is a rare earth dominant (RE-rich) film.
By calculating the difference c = ab between the temperature characteristic b of (or 26b) and the temperature characteristic b, the apparent temperature characteristic c of the magnetization can be obtained.

【0091】そして、第1磁性層13(又は23)内で
の磁壁移動により再生を行う温度領域すなわち約430
Kから約490Kでは、第3磁性層15(又は第4磁性
層26)の二層膜がアンチパラレル結合であるために、
上記した見かけ上の磁化が約20emu/cm以下と
小さく抑えられていることが図示から明らかである。こ
の際、鉄族優勢(TE−rich)であるTb−Fe−
Co膜15a(又は26a)と、希土類優勢(RE−r
ich)であるGd−Fe−Co膜15b(又は26
b)とは原子同士のミクロな相互作用である交換結合力
が作用しているのに対し、記録層となる第3磁性層15
(又は第4磁性層26)から磁壁移動層となる第1磁性
層13(又は23)に漏洩する浮遊磁界による力は静磁
気的なマクロな力であり、このようなアンチパラレル二
層膜での浮遊磁界は、各膜15a,15b(又は26
a,26b)の磁化の向きが互いに逆でそれぞれの磁化
の差を小さくすることで、すなわち見かけ上の磁化を小
さくすることで低減可能であることがわかる。従って、
第1磁性層13(又は23)内での磁壁移動により再生
を行う温度領域(約430K〜約490K)で、第3磁
性層15(又は第4磁性層26)の二層膜の磁化の方向
が互いに逆向きの時に安定となるアンチパラレル結合を
保つことによって、記録層から磁壁移動層に漏洩する浮
遊磁界を小さくすることが可能になる。
Then, the temperature region for reproducing by the domain wall motion in the first magnetic layer 13 (or 23), that is, about 430.
From K to about 490 K, since the two-layer film of the third magnetic layer 15 (or the fourth magnetic layer 26) has anti-parallel coupling,
It is clear from the drawing that the apparent magnetization described above is suppressed to a small value of about 20 emu / cm 3 or less. At this time, Tb-Fe- which is an iron group dominant (TE-rich)
Co film 15a (or 26a) and rare earth predominant (RE-r
ich) Gd-Fe-Co film 15b (or 26)
b) means that the exchange coupling force, which is a microscopic interaction between atoms, acts, whereas the third magnetic layer 15 serving as a recording layer.
The force due to the stray magnetic field leaking from (or the fourth magnetic layer 26) to the first magnetic layer 13 (or 23) serving as the domain wall displacement layer is a magnetostatic macroscopic force. Stray magnetic field of each film 15a, 15b (or 26
It is understood that the magnetization directions of a and 26b) are opposite to each other and can be reduced by reducing the difference between the magnetizations, that is, by reducing the apparent magnetization. Therefore,
In the temperature region (about 430K to about 490K) in which reproduction is performed by moving the domain wall in the first magnetic layer 13 (or 23), the direction of magnetization of the bilayer film of the third magnetic layer 15 (or the fourth magnetic layer 26). By maintaining the anti-parallel coupling which becomes stable when the two are opposite to each other, it is possible to reduce the stray magnetic field leaking from the recording layer to the domain wall displacement layer.

【0092】次に、図18に示した第3磁性層15(又
は第4磁性層26)の二層膜に対して、Tb−Fe−C
o膜15a(又は26a)中のTbの量を増加させ、且
つ、Gd−Fe−Co膜15b(又は26b)中のGd
の量を減少させた場合に、図19に示した特性の第3磁
性層15(又は第4磁性層26)の二層膜が得られる。
この図19中で、aはTb−Fe−Co膜15a(又は
26a)の温度特性を示し、且つ、bはGd−Fe−C
o膜15b(又は26b)の温度特性を示している。更
に、cはTb−Fe−Co膜15a(又は26a)の温
度特性aとGd−Fe−Co膜15b(又は26b)の
温度特性bとによる見かけ上の磁化の温度特性を示して
いる。
Next, for the two-layer film of the third magnetic layer 15 (or the fourth magnetic layer 26) shown in FIG. 18, Tb-Fe-C was used.
o The amount of Tb in the film 15a (or 26a) is increased, and Gd in the Gd-Fe-Co film 15b (or 26b) is increased.
When the amount of is reduced, a two-layer film of the third magnetic layer 15 (or the fourth magnetic layer 26) having the characteristics shown in FIG. 19 is obtained.
In FIG. 19, a indicates the temperature characteristics of the Tb-Fe-Co film 15a (or 26a), and b indicates Gd-Fe-C.
The temperature characteristics of the o film 15b (or 26b) are shown. Further, c indicates the apparent temperature characteristic of magnetization due to the temperature characteristic a of the Tb-Fe-Co film 15a (or 26a) and the temperature characteristic b of the Gd-Fe-Co film 15b (or 26b).

【0093】この図19に示した例において、第3磁性
層15(又は第4磁性層26)のTb−Fe−Co膜1
5a(又は26a)は約385K近傍に保磁力が最大と
なり希土類と鉄族の副格子磁化が略等しくなる補償温度
があり、一方、Gd−Fe−Co膜15b(又は26
b)は約530K近傍に保磁力が最大となり希土類と鉄
族の副格子磁化が略等しくなる補償温度がある。そし
て、上記した各補償温度おいては、希土類金属及び鉄族
金属それぞれの副格子磁化の大小関係で決まる磁化の向
きが補償温度を境にして反転する特性を有している。
In the example shown in FIG. 19, the Tb-Fe-Co film 1 of the third magnetic layer 15 (or the fourth magnetic layer 26) is used.
5a (or 26a) has a compensation temperature at which the coercive force is maximized and the sublattice magnetizations of the rare earth and the iron group are approximately equal to each other in the vicinity of 385K, while the Gd-Fe-Co film 15b (or 26a).
In the case of b), there is a compensation temperature in the vicinity of about 530 K at which the coercive force becomes maximum and the sublattice magnetizations of the rare earth and the iron group become substantially equal. At each compensation temperature described above, the direction of magnetization determined by the magnitude relationship of the sublattice magnetizations of the rare earth metal and the iron group metal is reversed at the compensation temperature.

【0094】より具体的には、第3磁性層15(又は第
4磁性層26)において、300K近傍の室温から約3
85K(aの補償温度)までは図16に示したようなR
E−rich膜のパラレル結合となり、このRE−ri
ch膜のパラレル結合時に見かけ上の磁化の温度特性c
はTb−Fe−Co膜15a(又は26a)の温度特性
aとGd−Fe−Co膜15b(又は26b)の温度特
性bとを加算した値を取る。また、約385Kから約5
30K(bの補償温度)までは図15に示したようなア
ンチパラレル結合となり、このアンチパラレル結合時に
見かけ上の磁化の温度特性cはTb−Fe−Co膜15
a(又は26a)の温度特性aとGd−Fe−Co膜1
5b(又は26b)の温度特性bとの差分値を取る。更
に、約530KからTb−Fe−Co膜15a(又は2
6a)のキュリー温度までは図17に示したようなTM
−rich膜のパラレル結合状態となり、このTM−r
ich膜のパラレル結合状態時に見かけ上の磁化の温度
特性cはTb−Fe−Co膜15a(又は26a)の温
度特性aとGd−Fe−Co膜15b(又は26b)の
温度特性bとを加算した値を取る。言い換えると、室温
で図16に示したRE−rich膜のパラレル結合とな
り、再生温度で図15に示したアンチパラレル結合とな
り、記録温度で図17に示したTE−rich膜のパラ
レル結合となる。
More specifically, in the third magnetic layer 15 (or the fourth magnetic layer 26), from room temperature near 300K to about 3K.
R up to 85 K (compensation temperature of a) as shown in FIG.
This is a parallel combination of E-rich films, and this RE-ri
Temperature characteristic of apparent magnetization when the ch films are coupled in parallel c
Is a value obtained by adding the temperature characteristic a of the Tb-Fe-Co film 15a (or 26a) and the temperature characteristic b of the Gd-Fe-Co film 15b (or 26b). Also, from about 385K to about 5
Up to 30 K (b compensation temperature), the anti-parallel coupling as shown in FIG. 15 is obtained, and the apparent temperature characteristic c of the magnetization at this anti-parallel coupling is Tb-Fe-Co film 15.
a (or 26a) temperature characteristic a and Gd-Fe-Co film 1
The difference value with the temperature characteristic b of 5b (or 26b) is taken. Further, from about 530K, the Tb-Fe-Co film 15a (or 2
Up to the Curie temperature of 6a) TM as shown in FIG.
-Rich film is in parallel connection state, and this TM-r
The apparent temperature characteristic c of the magnetization in the parallel coupled state of the ich film is obtained by adding the temperature characteristic a of the Tb-Fe-Co film 15a (or 26a) and the temperature characteristic b of the Gd-Fe-Co film 15b (or 26b). Take the value you did. In other words, at room temperature, the RE-rich film shown in FIG. 16 is connected in parallel, at the reproducing temperature, the anti-parallel film shown in FIG. 15 is formed, and at the recording temperature, the TE-rich film shown in FIG. 17 is formed in parallel.

【0095】そして、この図19に示した例でも、第1
磁性層13(又は23)内での磁壁移動により再生を行
う温度領域すなわち約430Kから約490Kでは、第
3磁性層15(又は第4磁性層26)の二層膜がアンチ
パラレル結合であるために、上記した見かけ上の磁化が
約20emu/cm以下と小さく抑えられていること
が図示から明らかである。従って、第1磁性層13(又
は23)内での磁壁移動により再生を行う温度領域(約
430K〜約490K)で、第3磁性層15(又は第4
磁性層26)の二層膜の磁化の方向が互いに逆向きの時
に安定となるアンチパラレル結合を保つことによって、
記録層から磁壁移動層に漏洩する浮遊磁界を小さくする
ことが可能になる。
Also in the example shown in FIG. 19, the first
In the temperature range in which reproduction is performed by moving the magnetic domain wall in the magnetic layer 13 (or 23), that is, in the range of about 430K to about 490K, the two-layer film of the third magnetic layer 15 (or the fourth magnetic layer 26) is an anti-parallel coupling. In addition, it is apparent from the drawing that the above-mentioned apparent magnetization is suppressed to a small value of about 20 emu / cm 3 or less. Therefore, in the temperature region (about 430K to about 490K) in which reproduction is performed by moving the domain wall in the first magnetic layer 13 (or 23), the third magnetic layer 15 (or the fourth magnetic layer 15).
By maintaining the anti-parallel coupling which becomes stable when the directions of magnetization of the two-layer film of the magnetic layer 26) are opposite to each other,
It is possible to reduce the stray magnetic field leaking from the recording layer to the domain wall displacement layer.

【0096】ここで、記録層となる第3磁性層15(又
は第4磁性層26)として、Tb−Fe−Co膜15a
(又は26a)とGd−Fe−Co膜15b(又は26
b)とによる二層膜を用いることにより、図20に示し
たように記録磁界の低減も同時に実現することも可能と
なる。即ち、図20では、記録磁界感度を光変調記録に
より検討した結果を示しており、横軸の記録外部磁界を
消去方向である負の側から記録方向である正の側へ変化
させた時、C/Nの立ち上がる負の磁界の絶対値とC/
Nが飽和する正の磁界の大きさがより小さくなること
で、磁界感度の向上が実現する。尚、上記した光変調記
録の場合には、一般的に、記録する方向に弱い直流の外
部磁界をかけ、これに信号の有無に応じてレーザー光を
あてて熱を加えると、保磁力が落ち、外部磁界の向きに
磁化が反転することから、この磁区の向きによって”
1”,”0”の情報の記録がなされるものである。
Here, as the third magnetic layer 15 (or the fourth magnetic layer 26) serving as the recording layer, the Tb-Fe-Co film 15a is formed.
(Or 26a) and the Gd-Fe-Co film 15b (or 26
By using the two-layer film according to (b), it is possible to simultaneously realize the reduction of the recording magnetic field as shown in FIG. That is, FIG. 20 shows the result of examination of the recording magnetic field sensitivity by the optical modulation recording. C / N rising negative magnetic field absolute value and C / N
The magnitude of the positive magnetic field with which N is saturated is further reduced, whereby the magnetic field sensitivity is improved. In the case of the optical modulation recording described above, generally, when a weak direct current external magnetic field is applied in the recording direction and a laser beam is applied to this to apply heat depending on the presence or absence of a signal, the coercive force drops. , The magnetization is reversed in the direction of the external magnetic field.
Information of 1 "and" 0 "is recorded.

【0097】そして、図20の結果から、第3磁性層1
5(又は第4磁性層26)中でアンチパラレル交換結合
二層膜の記録磁界感度は、約60Oeと大きく低減して
いることがわかる。通常、記録層として用いるTb−F
e−Co膜15a(又は26a)に比べ、アンチパラレ
ル交換結合させたGd−Fe−Co膜15b(又は26
b)は、垂直磁気異方性が小さく,補償温度からはずれ
た温度での保磁力が極めて小さいため、小さい外部磁界
で記録が可能となり、その記録された磁区が交換結合に
よりTb−Fe−Co膜15a(又は26a)に転写し
て安定に保存されるという記録メカニズムをたどること
になる。これにより、記録磁界感度が向上するものと考
えられる。
From the result of FIG. 20, the third magnetic layer 1
5 (or the fourth magnetic layer 26), the recording magnetic field sensitivity of the anti-parallel exchange coupling bilayer film is significantly reduced to about 60 Oe. Usually, Tb-F used as a recording layer
Compared with the e-Co film 15a (or 26a), the anti-parallel exchange coupled Gd-Fe-Co film 15b (or 26) is used.
In b), since the perpendicular magnetic anisotropy is small and the coercive force at a temperature deviating from the compensation temperature is extremely small, recording can be performed with a small external magnetic field, and the recorded magnetic domain is Tb-Fe-Co due to exchange coupling. It follows a recording mechanism of being transferred to the film 15a (or 26a) and being stably stored. It is considered that this improves the recording magnetic field sensitivity.

【0098】[0098]

【発明の効果】以上詳述した本発明に係る光磁気記録媒
体において、請求項1記載によると、磁性層を3層構造
に積層した際、とくに、磁壁移動層となる第1磁性層
は、磁壁駆動磁界を飽和磁化に基づいて規格化した規格
化磁界が1より大きくなるようにGd−Fe膜又はGd
−Fe−Co膜をベースとする材料で成膜し、且つ、G
dのFe又はFe−Coに対する元素濃度比(at.%
比)を28.0≦Gd≦29.0の範囲に設定し、記録
層となる第3磁性層は、Tb−Fe−Co膜又はDy−
Fe−Co膜をベースとする材料で成膜し、且つ、Tb
又はDyのFe−Coに対する元素濃度比(at.%
比)を23.5≦Tb≦25.5又は25.5≦Dy≦
28.5の範囲に設定すると共に、第1,第2,第3磁
性層の各キュリー温度Tc11,Tc12,Tc13が
Tc13>Tc11>Tc12になるように設定したた
め、再生時にレーザービームを照射した時に第1磁性層
内で発生する磁壁移動が迅速となり、再生信号特性の一
つであるジッター特性を大幅に改善することができ、よ
り高密度な光磁気記録媒体を提供することができる。
In the magneto-optical recording medium according to the present invention described in detail above, according to claim 1, when the magnetic layers are laminated in a three-layer structure, especially the first magnetic layer to be the domain wall displacement layer is Gd-Fe film or Gd so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is greater than 1.
-Fe-Co film is formed from a material based on
Element concentration ratio of Fe to Fe or Fe-Co (at%)
Ratio) is set in the range of 28.0 ≦ Gd ≦ 29.0, and the third magnetic layer serving as a recording layer is a Tb-Fe-Co film or a Dy- film.
The Fe-Co film is used as a base material, and Tb is used.
Or the element concentration ratio of Dy to Fe-Co (at.%
Ratio) to 23.5 ≦ Tb ≦ 25.5 or 25.5 ≦ Dy ≦
Since the Curie temperatures Tc11, Tc12, and Tc13 of the first, second, and third magnetic layers are set to Tc13>Tc11> Tc12 while being set to the range of 28.5, when the laser beam is irradiated during reproduction. The domain wall movement that occurs in the first magnetic layer becomes rapid, the jitter characteristic, which is one of the reproduction signal characteristics, can be significantly improved, and a higher density magneto-optical recording medium can be provided.

【0099】また、請求項2記載によると、磁性層を4
層構造に積層した際、とくに、磁壁移動層となる第1磁
性層は、磁壁駆動磁界を飽和磁化に基づいて規格化した
規格化磁界が1より大きくなるようにGd−Fe膜又は
Gd−Fe−Co膜をベースとする材料で成膜し、且
つ、GdのFe又はFe−Coに対する元素濃度比(a
t.%比)を28.0≦Gd≦29.0の範囲に設定
し、記録層となる第4磁性層は、Tb−Fe−Co膜又
はDy−Fe−Co膜をベースとする材料で成膜し、且
つ、Tb又はDyのFe−Coに対する元素濃度比(a
t.%比)を23.5≦Tb≦25.5又は25.5≦
Dy≦28.5の範囲に設定すると共に、第1,第2,
第3,第4磁性層の各キュリー温度Tc21,Tc2
2,Tc23,Tc24がTc24>Tc21>Tc2
2>Tc23になるように設定したため、再生時にレー
ザービームを照射した時に第1磁性層内で磁壁移動可能
な温度領域のレーザービームの移動方向前方からの磁壁
の移動のみが迅速となり、再生信号特性の一つであるジ
ッター特性をより一層大幅に改善することができ、より
一層高密度な光磁気記録媒体を提供することができる。
According to the second aspect, the magnetic layer is formed of 4
When laminated in a layered structure, the first magnetic layer, which will be the domain wall displacement layer, in particular, has a Gd-Fe film or a Gd-Fe film so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is greater than 1. -Co film is used as a base material, and the element concentration ratio of Gd to Fe or Fe-Co (a
t. % Ratio) is set within a range of 28.0 ≦ Gd ≦ 29.0, and the fourth magnetic layer serving as a recording layer is formed of a material based on a Tb-Fe-Co film or a Dy-Fe-Co film. And the element concentration ratio of Tb or Dy to Fe-Co (a
t. % Ratio) of 23.5 ≦ Tb ≦ 25.5 or 25.5 ≦
Dy ≦ 28.5 is set, and the first, second, and
Curie temperatures Tc21 and Tc2 of the third and fourth magnetic layers
2, Tc23 and Tc24 are Tc24>Tc21> Tc2
Since 2> Tc23 is set, when the laser beam is irradiated during reproduction, only the domain wall moves from the front in the moving direction of the laser beam in the temperature region where the domain wall can move in the first magnetic layer. It is possible to further greatly improve the jitter characteristic, which is one of the above, and to provide a higher density magneto-optical recording medium.

【0100】また、請求項3記載によると、磁性層を3
層構造に積層した際、とくに、磁壁移動層となる第1磁
性層は、磁壁駆動磁界を飽和磁化に基づいて規格化した
規格化磁界が1より大きくなるようにGd−Fe膜又は
Gd−Fe−Co膜をベースとする材料で成膜し、且
つ、GdのFe又はFe−Coに対する元素濃度比(a
t.%比)を28.0≦Gd≦29.0の範囲に設定
し、記録層となる第3磁性層は、Tb−Fe−Co膜と
Gd−Fe−Co膜とによる二層膜で成膜し、且つ、前
記第1磁性層内での磁壁移動により再生を行う温度領域
で前記二層膜の磁化の方向が互いに逆向きの時に安定と
なるアンチパラレル結合を保つようにしたため、記録層
となる第3磁性層から磁壁移動層となる第1磁性層に漏
洩する浮遊磁界を低減することで、再生信号の特性いわ
ゆるジッター特性をより改善し、同時に記録磁界感度向
上を実現することができ、より高密度な光磁気記録媒体
を提供することができる。
According to a third aspect of the present invention, the magnetic layer comprises three layers.
When laminated in a layered structure, the first magnetic layer, which will be the domain wall displacement layer, in particular, has a Gd-Fe film or a Gd-Fe film so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is greater than 1. -Co film is used as a base material, and the element concentration ratio of Gd to Fe or Fe-Co (a
t. % Ratio) is set in the range of 28.0 ≦ Gd ≦ 29.0, and the third magnetic layer serving as a recording layer is formed of a two-layer film including a Tb-Fe-Co film and a Gd-Fe-Co film. In addition, since the anti-parallel coupling, which becomes stable when the magnetization directions of the two-layer film are opposite to each other, is maintained in the temperature region where reproduction is performed by moving the domain wall in the first magnetic layer, the recording layer and By reducing the stray magnetic field leaking from the third magnetic layer to the first magnetic layer, which is the domain wall displacement layer, it is possible to further improve the reproduction signal characteristic, that is, the jitter characteristic, and at the same time, improve the recording magnetic field sensitivity. It is possible to provide a higher density magneto-optical recording medium.

【0101】更に、請求項4記載によると、磁性層を4
層構造に積層した際、とくに、磁壁移動層となる第1磁
性層は、磁壁駆動磁界を飽和磁化に基づいて規格化した
規格化磁界が1より大きくなるようにGd−Fe膜又は
Gd−Fe−Co膜をベースとする材料で成膜し、且
つ、GdのFe又はFe−Coに対する元素濃度比(a
t.%比)を28.0≦Gd≦29.0の範囲に設定
し、記録層となる第4磁性層は、Tb−Fe−Co膜と
Gd−Fe−Co膜とによる二層膜で成膜し、且つ、前
記第1磁性層内での磁壁移動により再生を行う温度領域
で前記二層膜の磁化の方向が互いに逆向きの時に安定と
なるアンチパラレル結合を保つようにしたため、記録層
となる第4磁性層から磁壁移動層となる第1磁性層に漏
洩する浮遊磁界を低減することで、再生信号の特性いわ
ゆるジッター特性をより改善し、同時に記録磁界感度向
上を実現することができ、より高密度な光磁気記録媒体
を提供することができる。
Further, according to the fourth aspect, the magnetic layer is formed into four layers.
When laminated in a layered structure, the first magnetic layer, which will be the domain wall displacement layer, in particular, has a Gd-Fe film or a Gd-Fe film so that the normalized magnetic field obtained by normalizing the domain wall drive magnetic field based on the saturation magnetization is greater than 1. -Co film is used as a base material, and the element concentration ratio of Gd to Fe or Fe-Co (a
t. % Ratio) within a range of 28.0 ≦ Gd ≦ 29.0, and the fourth magnetic layer serving as a recording layer is a two-layer film formed of a Tb-Fe-Co film and a Gd-Fe-Co film. In addition, since the anti-parallel coupling, which becomes stable when the magnetization directions of the two-layer film are opposite to each other, is maintained in the temperature region where reproduction is performed by moving the domain wall in the first magnetic layer, the recording layer and By reducing the stray magnetic field leaking from the fourth magnetic layer to the first magnetic layer, which is the domain wall displacement layer, it is possible to further improve the reproduction signal characteristic, that is, the jitter characteristic, and at the same time, improve the recording magnetic field sensitivity. It is possible to provide a higher density magneto-optical recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1の光磁気記録媒体の層構成を
模式的に示した断面図である。
FIG. 1 is a cross-sectional view schematically showing a layer structure of a first magneto-optical recording medium according to the present invention.

【図2】本発明に係る第2の光磁気記録媒体の層構成を
模式的に示した断面図である。
FIG. 2 is a sectional view schematically showing the layer structure of a second magneto-optical recording medium according to the present invention.

【図3】本発明に係る第1,第2の光磁気記録媒体にお
いて、第1磁性層(磁壁移動層)の磁壁移動を説明する
ための図である。
FIG. 3 is a diagram for explaining domain wall motion of the first magnetic layer (domain wall motion layer) in the first and second magneto-optical recording media according to the present invention.

【図4】本発明に係る光磁気記録媒体において、第1磁
性層(磁壁移動層)内での磁壁移動速度の変化と磁壁位
置の変化を時間に対してプロットした図である。
FIG. 4 is a diagram plotting a change in domain wall moving speed and a change in domain wall position in the first magnetic layer (domain wall moving layer) with respect to time in the magneto-optical recording medium according to the present invention.

【図5】本発明に係る光磁気記録媒体において、再生レ
ーザービームの中心近傍(−0.05μm,0.00μ
m,+0.05μm)に移動磁壁が到達するのに要する
時間の変化を、第1磁性層(磁壁移動層)中の重希土類
(Gd)の組成に対してプロットした結果を示した図で
ある。
FIG. 5 shows the magneto-optical recording medium according to the present invention, in the vicinity of the center of the reproducing laser beam (−0.05 μm, 0.00 μm).
(m, +0.05 μm) is a diagram showing a result of plotting a change in time required for the moving domain wall to reach the composition of heavy rare earth (Gd) in the first magnetic layer (domain wall moving layer). ..

【図6】本発明に係る第1,第2光磁気記録媒体におい
て、第3磁性層15又は第4磁性層26に含まれる重希
土類(Tb)の鉄族金属(Fe−Co)に対する元素濃
度比が27.5at.%の場合の浮遊磁界の変化を示し
た図である。
6 is an element concentration of heavy rare earth (Tb) contained in a third magnetic layer 15 or a fourth magnetic layer 26 with respect to an iron group metal (Fe—Co) in the first and second magneto-optical recording media according to the present invention. FIG. The ratio is 27.5 at. It is the figure which showed the change of the stray magnetic field in the case of%.

【図7】本発明に係る第1,第2光磁気記録媒体におい
て、第3磁性層15又は第4磁性層26に含まれる重希
土類(Tb)の鉄族金属(Fe−Co)に対する元素濃
度比が26.5at.%の場合の浮遊磁界の変化を示し
た図である。
FIG. 7 is an element concentration of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 with respect to the iron group metal (Fe—Co) in the first and second magneto-optical recording media according to the present invention. The ratio is 26.5 at. It is the figure which showed the change of the stray magnetic field in the case of%.

【図8】本発明に係る第1,第2光磁気記録媒体におい
て、第3磁性層15又は第4磁性層26に含まれる重希
土類(Tb)の鉄族金属(Fe−Co)に対する元素濃
度比が25.5at.%の場合の浮遊磁界の変化を示し
た図である。
FIG. 8 is an element concentration of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 with respect to the iron group metal (Fe—Co) in the first and second magneto-optical recording media according to the present invention. The ratio is 25.5 at. It is the figure which showed the change of the stray magnetic field in the case of%.

【図9】本発明に係る第1,第2光磁気記録媒体におい
て、第3磁性層15又は第4磁性層26に含まれる重希
土類(Tb)の鉄族金属(Fe−Co)に対する元素濃
度比が24.5at.%の場合の浮遊磁界の変化を示し
た図である。
FIG. 9 is an element concentration of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 with respect to the iron group metal (Fe—Co) in the first and second magneto-optical recording media according to the present invention. The ratio is 24.5 at. It is the figure which showed the change of the stray magnetic field in the case of%.

【図10】本発明に係る第1,第2光磁気記録媒体にお
いて、第3磁性層15又は第4磁性層26に含まれる重
希土類(Tb)の鉄族金属(Fe−Co)に対する元素
濃度比が23.5at.%の場合の浮遊磁界の変化を示
した図である。
FIG. 10 is an element concentration of the heavy rare earth (Tb) contained in the third magnetic layer 15 or the fourth magnetic layer 26 with respect to the iron group metal (Fe—Co) in the first and second magneto-optical recording media according to the present invention. The ratio is 23.5 at. It is the figure which showed the change of the stray magnetic field in the case of%.

【図11】本発明に係る光磁気記録媒体において、トラ
ック方向位置座標に対する磁壁駆動磁界を示した図であ
る。
FIG. 11 is a diagram showing a domain wall drive magnetic field with respect to position coordinates in the track direction in the magneto-optical recording medium according to the present invention.

【図12】本発明に係る光磁気記録媒体において、記録
層となる第3磁性層又は第4磁性層中に含まれる重希土
類(Tb)の鉄族金属(Fe−Co)に対する元素濃度
比を変化させた時に規格化Jitterを測定した結果
を示した図である。
FIG. 12 shows an element concentration ratio of heavy rare earth (Tb) contained in a third magnetic layer or a fourth magnetic layer, which is a recording layer, to an iron group metal (Fe—Co) in a magneto-optical recording medium according to the present invention. It is a figure showing the result of having measured standardized Jitter when changing.

【図13】本発明に係る第1の光磁気記録媒体を一部変
形させた変形例1の層構成を模式的に示した断面図であ
る。
FIG. 13 is a cross-sectional view schematically showing the layer structure of Modification 1 in which the first magneto-optical recording medium according to the present invention is partially modified.

【図14】本発明に係る第2の光磁気記録媒体を一部変
形させた変形例2の層構成を模式的に示した断面図であ
る。
FIG. 14 is a cross-sectional view schematically showing the layer structure of Modification 2 in which the second magneto-optical recording medium according to the present invention is partially modified.

【図15】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、第3磁性層(又は第4磁性
層)をTb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜した際に、二層膜の磁化の方向が互いに
逆向きの時に安定となるアンチパラレル結合を模式的に
示した図である。
FIG. 15 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2) in which the third magnetic layer (or the fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-Co film. FIG. 7 is a diagram schematically showing an antiparallel coupling that is stable when the magnetization directions of the two-layer film are opposite to each other when the two-layer film of FIG.

【図16】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、第3磁性層(又は第4磁性
層)をTb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜した際に、二層膜の磁化の方向が互いに
同じ向きの時に安定となる希土類優勢(RE−ric
h)のパラレル結合を模式的に示した図である。
16 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2) in which a third magnetic layer (or a fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-Co film. In the case of forming a two-layer film by the method, the rare-earth dominance (RE-ric) is stable when the magnetization directions of the two-layer film are the same.
It is the figure which showed the parallel coupling of h) typically.

【図17】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、第3磁性層(又は第4磁性
層)をTb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜した際に、二層膜の磁化の方向が互いに
同じ向きの時に安定となる鉄族優勢(TM−rich)
のパラレル結合を模式的に示した図である。
FIG. 17 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2) in which the third magnetic layer (or the fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-Co film. Iron group dominance (TM-rich), which is stable when the magnetization directions of the two-layer film are the same when the two-layer film is formed by
It is the figure which showed typically the parallel coupling of.

【図18】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、第3磁性層(又は第4磁性
層)をTb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜した際に、室温からキュリー温度まで常
にアンチパラレル結合を保つ二層膜の特性図である。
FIG. 18 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2) in which a third magnetic layer (or a fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-Co film. FIG. 6 is a characteristic diagram of a two-layer film in which antiparallel coupling is always maintained from room temperature to the Curie temperature when the two-layer film according to and is formed.

【図19】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、第3磁性層(又は第4磁性
層)をTb−Fe−Co膜とGd−Fe−Co膜とによ
る二層膜で成膜した際に、室温から約385K(aの補
償温度)まではRE−rich膜のパラレル結合、約3
85Kから約530K(bの補償温度)まではアンチパ
ラレル結合、約530Kからキュリー温度まではTM−
rich膜のパラレル結合となる二層膜の特性図であ
る。
FIG. 19 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2) in which a third magnetic layer (or a fourth magnetic layer) is a Tb-Fe-Co film and a Gd-Fe-Co film. When a two-layer film is formed by, the room temperature to about 385K (compensation temperature of a) is parallel coupling of the RE-rich film, about 3
Anti-parallel coupling from 85K to about 530K (b compensation temperature), TM- from about 530K to Curie temperature
FIG. 10 is a characteristic diagram of a two-layer film that is a parallel combination of rich films.

【図20】変形例1の光磁気記録媒体(又は変形例2の
光磁気記録媒体)において、Tb−Fe−Co膜とGd
−Fe−Co膜とによる第3磁性層(又は第4磁性層)
の記録磁界の低減結果を示した図である。
FIG. 20 is a magneto-optical recording medium of Modified Example 1 (or a magneto-optical recording medium of Modified Example 2), in which a Tb-Fe-Co film and a Gd are used.
-Fe-Co film and third magnetic layer (or fourth magnetic layer)
It is a figure showing the reduction result of the recording magnetic field of.

【図21】従来の光磁気記録媒体の一例を説明するため
の図である。
FIG. 21 is a diagram for explaining an example of a conventional magneto-optical recording medium.

【図22】従来の光磁気記録媒体の他例を説明するため
の図である。
FIG. 22 is a diagram for explaining another example of the conventional magneto-optical recording medium.

【符号の説明】[Explanation of symbols]

10A…第1の光磁気記録媒体、10B…第1の光磁気
記録媒体を一部変形させた光磁気記録媒体、11…光透
過性基板、12…第1誘電体層、13…第1磁性層、1
4…第2磁性層、15…第3磁性層、15a…Tb−F
e−Co膜、15b…Gd−Fe−Co膜、16…第2
誘電体層、17…保護層、20A…第2の光磁気記録媒
体、20B…第2の光磁気記録媒体を一部変形させた光
磁気記録媒体、21…光透過性基板、22…第1誘電体
層、23…第1磁性層、24…第2磁性層、25…第3
磁性層、26…第4磁性層、 26a…Tb−Fe−C
o膜、26b…Gd−Fe−Co膜、27…第2誘電体
層、28…保護層、Tc11,Tc12,Tc13…第
1,第2,第3磁性層13,14,15の各キュリー温
度、Tc21,Tc22,Tc23,Tc24…第1,
第2,第3,第4磁性層 23,24,25,26の各キュリー温度。
10A ... First magneto-optical recording medium, 10B ... Magneto-optical recording medium obtained by partially modifying the first magneto-optical recording medium, 11 ... Light transmissive substrate, 12 ... First dielectric layer, 13 ... First magnetism Layer, 1
4 ... 2nd magnetic layer, 15 ... 3rd magnetic layer, 15a ... Tb-F
e-Co film, 15b ... Gd-Fe-Co film, 16 ... Second
Dielectric layer, 17 ... Protective layer, 20A ... Second magneto-optical recording medium, 20B ... Magneto-optical recording medium obtained by partially deforming second magneto-optical recording medium, 21 ... Light transmissive substrate, 22 ... First Dielectric layer, 23 ... First magnetic layer, 24 ... Second magnetic layer, 25 ... Third
Magnetic layer, 26 ... Fourth magnetic layer, 26a ... Tb-Fe-C
o film, 26b ... Gd-Fe-Co film, 27 ... Second dielectric layer, 28 ... Protective layer, Tc11, Tc12, Tc13 ... Curie temperature of each of the first, second and third magnetic layers 13, 14, 15 , Tc21, Tc22, Tc23, Tc24 ... First,
Curie temperatures of the second, third and fourth magnetic layers 23, 24, 25 and 26.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザービームの照射側から第1,第
2,第3磁性層を順に成膜し、且つ、記録時に前記レー
ザービームを照射しながら外部磁界によって情報信号を
垂直な方向に磁化容易軸を持った前記第3磁性層に磁区
の形態で記録した後に前記磁区が前記第2磁性層を介し
て前記第1磁性層に交換結合され、再生時に前記レーザ
ービームの照射による昇温で前記第2磁性層の磁化が消
失されて前記第1磁性層内で交換結合した前記磁区を拡
大させるように磁壁移動を生じさせる光磁気記録媒体に
おいて、 前記第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて
規格化した規格化磁界が1より大きくなるようにGd−
Fe膜又はGd−Fe−Co膜をベースとする材料で成
膜し、且つ、GdのFe又はFe−Coに対する元素濃
度比(at.%比)を28.0≦Gd≦29.0の範囲
に設定し、 前記第2磁性層は、Tb−Fe膜又はDy−Fe膜をベ
ースとする材料を用いて、Al,Crなどの非磁性元素
やCoを添加して成膜し、 前記第3磁性層は、Tb−Fe−Co膜又はDy−Fe
−Co膜をベースとする材料で成膜し、且つ、Tb又は
DyのFe−Coに対する元素濃度比(at.%比)を
23.5≦Tb≦25.5又は25.5≦Dy≦28.
5の範囲に設定すると共に、各磁性層に対してCoや非
磁性元素の添加量を調節して前記第1,第2,第3磁性
層の各キュリー温度Tc11,Tc12,Tc13がT
c13>Tc11>Tc12になるように設定したこと
を特徴とする光磁気記録媒体。
1. A first magnetic layer, a second magnetic layer, and a third magnetic layer are sequentially formed from a laser beam irradiation side, and an information signal is easily magnetized in a perpendicular direction by an external magnetic field while irradiating the laser beam during recording. After recording in the form of magnetic domains in the third magnetic layer having an axis, the magnetic domains are exchange-coupled to the first magnetic layer through the second magnetic layer, and the temperature is increased by irradiation of the laser beam during reproduction. In a magneto-optical recording medium in which the magnetization of the second magnetic layer is lost to cause domain wall movement so as to expand the exchange-coupled magnetic domain in the first magnetic layer, the first magnetic layer saturates a domain wall driving magnetic field. Gd- is set so that the normalized magnetic field normalized based on the magnetization is greater than 1.
An Fe film or a Gd-Fe-Co film is used as a base material, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. The second magnetic layer is formed by using a material based on a Tb-Fe film or a Dy-Fe film and adding a nonmagnetic element such as Al and Cr or Co to form the second magnetic layer. The magnetic layer is a Tb-Fe-Co film or Dy-Fe film.
-Co film is used as a base material, and the element concentration ratio (at.% Ratio) of Tb or Dy to Fe-Co is 23.5≤Tb≤25.5 or 25.5≤Dy≤28. .
The Curie temperatures Tc11, Tc12, and Tc13 of the first, second, and third magnetic layers are set to T by adjusting the addition amount of Co and nonmagnetic elements to each magnetic layer.
A magneto-optical recording medium, which is set so that c13>Tc11> Tc12.
【請求項2】 レーザービームの照射側から第1,第
2,第3,第4磁性層を順に成膜し、且つ、記録時に前
記レーザービームを照射しながら外部磁界によって情報
信号を垂直な方向に磁化容易軸を持った前記第4磁性層
に磁区の形態で記録した後に前記磁区が前記第2,第3
磁性層を介して前記第1磁性層に交換結合され、再生時
に前記レーザービームの照射による昇温で少なくとも前
記第3磁性層の磁化が消失されて前記第1磁性層内で交
換結合した前記磁区を拡大させるように磁壁移動を生じ
させる光磁気記録媒体において、 前記第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて
規格化した規格化磁界が1より大きくなるようにGd−
Fe膜又はGd−Fe−Co膜をベースとする材料で成
膜し、且つ、GdのFe又はFe−Coに対する元素濃
度比(at.%比)を28.0≦Gd≦29.0の範囲
に設定し、 前記第2,第3磁性層は、Tb−Fe膜又はDy−Fe
膜をベースとする材料を用いて、Al,Crなどの非磁
性元素やCoを添加して成膜し、 前記第4磁性層は、Tb−Fe−Co膜又はDy−Fe
−Co膜をベースとする材料で成膜し、且つ、Tb又は
DyのFe−Coに対する元素濃度比(at.%比)を
23.5≦Tb≦25.5又は25.5≦Dy≦28.
5の範囲に設定すると共に、各磁性層に対してCoや非
磁性元素の添加量を調節して前記第1,第2,第3,第
4磁性層の各キュリー温度Tc21,Tc22,Tc2
3,Tc24がTc24>Tc21>Tc22>Tc2
3になるように設定したことを特徴とする光磁気記録媒
体。
2. A first direction, a second direction, a third direction, and a fourth magnetic layer are sequentially formed from a laser beam irradiation side, and an information signal is applied in a vertical direction by an external magnetic field while irradiating the laser beam during recording. After recording in the form of magnetic domains on the fourth magnetic layer having an easy axis of magnetization, the magnetic domains are recorded on the second and third magnetic layers.
The magnetic domains exchange-coupled in the first magnetic layer through exchange coupling with the first magnetic layer via the magnetic layer, and at least the magnetization of the third magnetic layer disappears due to a temperature rise due to irradiation of the laser beam during reproduction. In the magneto-optical recording medium in which the domain wall movement is generated so as to increase the magnetic field, the first magnetic layer has a normalized magnetic field obtained by normalizing the domain wall driving magnetic field based on the saturation magnetization so that Gd−
An Fe film or a Gd-Fe-Co film is used as the base material, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. And the second and third magnetic layers are formed of a Tb-Fe film or a Dy-Fe film.
A film-based material is used to form a film by adding a non-magnetic element such as Al or Cr or Co, and the fourth magnetic layer is a Tb-Fe-Co film or a Dy-Fe film.
-Co film is used as a base material, and the element concentration ratio (at.% Ratio) of Tb or Dy to Fe-Co is 23.5≤Tb≤25.5 or 25.5≤Dy≤28. .
The Curie temperatures Tc21, Tc22, Tc2 of the first, second, third and fourth magnetic layers are adjusted by adjusting the amount of Co or non-magnetic element added to each magnetic layer.
3, Tc24 is Tc24>Tc21>Tc22> Tc2
A magneto-optical recording medium characterized by being set to 3.
【請求項3】 レーザービームの照射側から第1,第
2,第3磁性層を順に成膜し、且つ、記録時に前記レー
ザービームを照射しながら外部磁界によって情報信号を
垂直な方向に磁化容易軸を持った前記第3磁性層に磁区
の形態で記録した後に前記磁区が前記第2磁性層を介し
て前記第1磁性層に交換結合され、再生時に前記レーザ
ービームの照射による昇温で前記第2磁性層の磁化が消
失されて前記第1磁性層内で交換結合した前記磁区を拡
大させるように磁壁移動を生じさせる光磁気記録媒体に
おいて、 前記第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて
規格化した規格化磁界が1より大きくなるようにGd−
Fe膜又はGd−Fe−Co膜をベースとする材料で成
膜し、且つ、GdのFe又はFe−Coに対する元素濃
度比(at.%比)を28.0≦Gd≦29.0の範囲
に設定し、 前記第2磁性層は、Tb−Fe膜又はDy−Fe膜をベ
ースとする材料を用いて、Al,Crなどの非磁性元素
やCoを添加して成膜し、 前記第3磁性層は、Tb−Fe−Co膜とGd−Fe−
Co膜とによる二層膜で成膜し、且つ、前記第1磁性層
内での磁壁移動により再生を行う温度領域で前記二層膜
の磁化の方向が互いに逆向きの時に安定となるアンチパ
ラレル結合を保つようにしたことを特徴とする光磁気記
録媒体。
3. A first magnetic layer, a second magnetic layer, and a third magnetic layer are sequentially formed from a laser beam irradiation side, and an information signal is easily magnetized in a perpendicular direction by an external magnetic field while irradiating the laser beam during recording. After recording in the form of magnetic domains on the third magnetic layer having an axis, the magnetic domains are exchange-coupled to the first magnetic layer through the second magnetic layer, and the temperature is increased by irradiation of the laser beam during reproduction. In a magneto-optical recording medium in which the magnetization of the second magnetic layer is lost to cause domain wall movement so as to expand the exchange-coupled magnetic domain in the first magnetic layer, the first magnetic layer saturates a domain wall driving magnetic field. Gd- is set so that the normalized magnetic field normalized based on the magnetization is greater than 1.
An Fe film or a Gd-Fe-Co film is used as the base material, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. The second magnetic layer is formed by using a material based on a Tb-Fe film or a Dy-Fe film and adding a nonmagnetic element such as Al or Cr or Co to form the third magnetic layer. The magnetic layer is composed of a Tb-Fe-Co film and a Gd-Fe-
Anti-parallel, which is stable when the directions of magnetization of the two-layer film are opposite to each other in a temperature region where the film is formed as a two-layer film including a Co film and reproduction is performed by moving the domain wall in the first magnetic layer. A magneto-optical recording medium characterized in that the coupling is maintained.
【請求項4】 レーザービームの照射側から第1,第
2,第3,第4磁性層を順に成膜し、且つ、記録時に前
記レーザービームを照射しながら外部磁界によって情報
信号を垂直な方向に磁化容易軸を持った前記第4磁性層
に磁区の形態で記録した後に前記磁区が前記第2,第3
磁性層を介して前記第1磁性層に交換結合され、再生時
に前記レーザービームの照射による昇温で少なくとも前
記第3磁性層の磁化が消失されて前記第1磁性層内で交
換結合した前記磁区を拡大させるように磁壁移動を生じ
させる光磁気記録媒体において、 前記第1磁性層は、磁壁駆動磁界を飽和磁化に基づいて
規格化した規格化磁界が1より大きくなるようにGd−
Fe膜又はGd−Fe−Co膜をベースとする材料で成
膜し、且つ、GdのFe又はFe−Coに対する元素濃
度比(at.%比)を28.0≦Gd≦29.0の範囲
に設定し、 前記第2,第3磁性層は、Tb−Fe膜又はDy−Fe
膜をベースとする材料を用いて、Al,Crなどの非磁
性元素やCoを添加して成膜し、 前記第4磁性層は、Tb−Fe−Co膜とGd−Fe−
Co膜とによる二層膜で成膜し、且つ、前記第1磁性層
内での磁壁移動により再生を行う温度領域で前記二層膜
の磁化の方向が互いに逆向きの時に安定となるアンチパ
ラレル結合を保つようにしたことを特徴とする光磁気記
録媒体。
4. The first, second, third and fourth magnetic layers are formed in this order from the laser beam irradiation side, and the information signal is perpendicularly applied by an external magnetic field while irradiating the laser beam during recording. After recording in the form of magnetic domains on the fourth magnetic layer having an easy axis of magnetization, the magnetic domains are recorded on the second and third magnetic layers.
The magnetic domains exchange-coupled in the first magnetic layer through exchange coupling with the first magnetic layer via the magnetic layer, and at least the magnetization of the third magnetic layer disappears due to a temperature rise due to irradiation of the laser beam during reproduction. In the magneto-optical recording medium in which the domain wall movement is generated so as to increase the magnetic field, the first magnetic layer has a normalized magnetic field obtained by normalizing the domain wall driving magnetic field based on the saturation magnetization so that Gd−
An Fe film or a Gd-Fe-Co film is used as the base material, and the element concentration ratio (at.% Ratio) of Gd to Fe or Fe-Co is in the range of 28.0≤Gd≤29.0. And the second and third magnetic layers are formed of a Tb-Fe film or a Dy-Fe film.
A film-based material is used to form a film by adding a non-magnetic element such as Al or Cr or Co, and the fourth magnetic layer is formed of a Tb-Fe-Co film and a Gd-Fe- film.
Anti-parallel, which is stable when the directions of magnetization of the two-layer film are opposite to each other in a temperature region where the film is formed as a two-layer film including a Co film and reproduction is performed by moving the domain wall in the first magnetic layer. A magneto-optical recording medium characterized in that the coupling is maintained.
JP2002309844A 2002-01-11 2002-10-24 Magneto-optical recording medium Pending JP2003281795A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002309844A JP2003281795A (en) 2002-01-18 2002-10-24 Magneto-optical recording medium
US10/337,297 US7092318B2 (en) 2002-01-11 2003-01-07 Magneto-optical recording medium having a plurality of magnetic layers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002010436 2002-01-18
JP2002-10436 2002-01-18
JP2002309844A JP2003281795A (en) 2002-01-18 2002-10-24 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JP2003281795A true JP2003281795A (en) 2003-10-03

Family

ID=29253008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309844A Pending JP2003281795A (en) 2002-01-11 2002-10-24 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2003281795A (en)

Similar Documents

Publication Publication Date Title
JPH0432450B2 (en)
JPS60177455A (en) Photomagnetic recording medium for curie point writing
EP0475446B1 (en) Overwrite-capable magnetooptical recording medium allowing enlarged margin of high level beam intensity
JPH04134741A (en) Overwritable magneto-optical recording medium having 4-layered film structure
JP2000187898A (en) Magnetic recording medium
JPS63316343A (en) Magneto-optical recording medium
JPH08273222A (en) Magneto-optical recording medium and its reproducing method
JPH11110839A (en) Magneto-optical recording medium
JP2003272263A (en) Magneto-optical recording medium
JPS61246946A (en) Photomagnetic recording medium
US7092318B2 (en) Magneto-optical recording medium having a plurality of magnetic layers
JP2003281795A (en) Magneto-optical recording medium
JP2008269789A (en) Thermomagnetic recording medium
JPWO2002027713A1 (en) Information recording medium, information recording device and recording method
JP3208275B2 (en) Magneto-optical recording medium
JP3168679B2 (en) Magneto-optical recording / reproducing method
JP2003203405A (en) Magneto-optical recording medium
JP2002197741A (en) Magneto-optical recording medium
JP2886199B2 (en) Magneto-optical recording method and magneto-optical recording medium
JP2001184746A (en) Magneto-optical recording medium
JP3126459B2 (en) Magneto-optical recording method and magneto-optical recording device
JP2624114B2 (en) Magneto-optical recording media
JP2005532651A (en) Magneto-optical recording medium having magnetic domain expansion double layer structure coupled antiferromagnetically
JP3381960B2 (en) Magneto-optical recording medium
JP2007115361A (en) Magneto-optical recording medium and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212