JP2003279400A - Tone quality estimating equipment and method therefor - Google Patents

Tone quality estimating equipment and method therefor

Info

Publication number
JP2003279400A
JP2003279400A JP2002080514A JP2002080514A JP2003279400A JP 2003279400 A JP2003279400 A JP 2003279400A JP 2002080514 A JP2002080514 A JP 2002080514A JP 2002080514 A JP2002080514 A JP 2002080514A JP 2003279400 A JP2003279400 A JP 2003279400A
Authority
JP
Japan
Prior art keywords
sound
level
envelope
fluctuation
quality evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002080514A
Other languages
Japanese (ja)
Other versions
JP3922061B2 (en
Inventor
Kazuhiro Nakajima
一博 中嶋
Katsu Sasaki
克 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002080514A priority Critical patent/JP3922061B2/en
Publication of JP2003279400A publication Critical patent/JP2003279400A/en
Application granted granted Critical
Publication of JP3922061B2 publication Critical patent/JP3922061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide tone quality estimating equipment and a tone quality estimating method which change a tone to be estimated to a physical quantity so as to fit to feeling in human acoustic sense, and enable tone quality estimation. <P>SOLUTION: The tone quality estimating equipment is constituted of a noise level calculating means 3 for measuring a noise level NLi of the tone to be estimated; an accumulated variation level calculating means 2 for measuring variation with time of a tone, summing a peak difference dBn of the variation level, and calculating an accumulated variation level CFLi; and an estimating means 4 for showing a relation of estimation points of a previously set noise level and the accumulated variation level. The accumulated variation level calculating means 2 consists of a converting means 1, an envelope converting means 11, a primary delay system response means 12, a variation level calculating means 13, and a variation level accumulating means 14. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、評価する音を採取
し、その音の騒音レベルおよび時間変動成分と周波数成
分を基に算出した累積変動レベルとから音質評価を行う
音質評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound quality evaluation apparatus that collects a sound to be evaluated and evaluates the sound quality from the noise level of the sound and a cumulative fluctuation level calculated based on a time fluctuation component and a frequency component.

【0002】[0002]

【従来の技術】従来、製品が発する音の音質を評価する
にあたり、評価する音の騒音レベルdB(A)を騒音計
で計測して騒音レベル評価を行うことがあるが、これで
はヒトの聴感でのフィーリングに十分に合う評価は得ら
れなかった。更に、製品が発する音の質を被験者の聴感
で評価するフィーリング評価(印象評価)やSD法での
評価を用いた場合、これらの評価法はヒトの好き嫌いを
ダイレクトに評価できるが、物理量と直接的に整合性が
取れない。このため製品開発の上での音質改善対策で、
改善点を見出すための指標として利用するには不適切で
あった。そこで、製品が発する音の質を評価するにあた
り、評価する音の周波数分析を行い、音質を改善するた
めに必要な周波数帯の情報を物理量として定量化し、こ
の物理量に沿って音質評価を行ことが成されている。な
お、従来の音質評価装置の一例が特開平10−2677
43号公報や、特開平07−306087号公報に開示
されている。
2. Description of the Related Art Conventionally, in evaluating the sound quality of a sound emitted from a product, the noise level dB (A) of the sound to be evaluated is sometimes measured by a sound level meter to evaluate the noise level. It was not possible to obtain an evaluation that was sufficiently suitable for the feeling at. Furthermore, when a feeling evaluation (impression evaluation) for evaluating the quality of sound produced by a product by a subject's hearing and an evaluation by SD method are used, these evaluation methods can directly evaluate the likes and dislikes of humans, but the physical quantity and There is no direct consistency. Therefore, as a sound quality improvement measure in product development,
It was unsuitable for use as an index for finding improvement points. Therefore, in evaluating the quality of the sound emitted by a product, frequency analysis of the sound to be evaluated is performed, the information of the frequency band necessary for improving the sound quality is quantified as a physical quantity, and the sound quality is evaluated according to this physical quantity. Has been done. An example of a conventional sound quality evaluation apparatus is disclosed in Japanese Patent Laid-Open No. 10-2677.
No. 43 and Japanese Patent Laid-Open No. 07-306087.

【0003】ここで、ヒトの聴感について、図13を用
いて概略説明する。一般に聴覚機構は外耳よりの音波を
内耳の鼓膜を介し耳小骨に振動として入力し、耳小骨の
振動を蝸牛内の基底膜に伝達し、この基底膜においてそ
の手前側より奥側の各位置の有毛細胞に対し、順次高周
波より低周波の振動を弁別してそれぞれ伝達し、各有毛
細胞が各周波数毎の振動を電気信号に変換して神経繊維
を介し脳に伝えている。ここでの有毛細胞は振動を電気
信号に変換する際に化学変化による時間遅れを発生して
いることが知られている。
Here, the human sense of hearing will be briefly described with reference to FIG. Generally, the auditory mechanism inputs sound waves from the outer ear into the ossicles as vibrations via the eardrum of the inner ear, transmits the vibrations of the ossicles to the basement membrane in the cochlea, and in this basement membrane, the positions of the front side to the back side are varied. Vibrations of lower frequencies than high frequencies are sequentially discriminated and transmitted to hair cells, and each hair cell converts the vibration of each frequency into an electric signal and transmits it to the brain via nerve fibers. It is known that the hair cells here generate a time delay due to a chemical change when converting vibration into an electric signal.

【0004】[0004]

【発明が解決しようとする課題】ところで上述の各従来
例では、音質評価のために、評価する音の周波数分析後
に、主に周波数領域毎の定量化を行い、音質を評価する
ものであった。このため、これら従来例では、時間的な
音質因子である、時間的変動感や滑らかさを評価するに
は不充分なものであった。即ち、図13を用いて概略説
明したように、ヒトの聴覚機構は、評価する音の振動の
周波数弁別に加えて時間遅れを含む。このような聴覚特
性を考慮した上で、音の音色、音質といったヒトの聴感
でのフィーリングに合うように音の質を定量化して評価
する必要があると推測される。
By the way, in the above-mentioned respective conventional examples, in order to evaluate the sound quality, after the frequency analysis of the sound to be evaluated, the sound quality is evaluated mainly by quantifying each frequency region. . Therefore, these conventional examples are insufficient to evaluate the temporal variation and smoothness, which are temporal sound quality factors. That is, as outlined with reference to FIG. 13, the human auditory mechanism includes a time delay in addition to the frequency discrimination of the vibration of the sound to be evaluated. It is presumed that it is necessary to quantify and evaluate the quality of the sound in consideration of such aural characteristics, so as to suit the human hearing feeling such as the timbre and sound quality of the sound.

【0005】このため、例えば、ディーゼルエンジンの
ディーゼル騒音の評価では、時間的に変動する音、即
ち、耳障りとなり易い「ガラガラ音」や、「カリカリ
音」と呼ばれている間欠音からなる騒音の音質を評価す
る場合、従来の騒音レベル評価のみ、或いは、周波数分
析を行い音を定量化しただけでは、ヒトが有する時間遅
れを含む聴覚機構と同様に、即ち、ヒトの聴感でのフィ
ーリングに十分に合うような音の音色、音質といった評
価はなされていなかった。
Therefore, for example, in the evaluation of diesel noise of a diesel engine, a time-varying sound, that is, a rattling sound that tends to be annoying and an intermittent sound called a "crispy sound" When evaluating sound quality, conventional sound level evaluation alone or frequency analysis to quantify sound is similar to the human hearing mechanism that includes a time delay, that is, human hearing. There was no evaluation of the tone and sound quality of the sound that would be adequately matched.

【0006】このため、音の質を物理量化する上で、ヒ
トが有する時間遅れを含む聴覚機構と同様に時間的変動
要素を考慮することが有効と推測される。本発明は、以
上のような課題に基づき、評価する音をヒトの聴感での
フィーリングに合うように物理量化し、音質評価を行う
ことのできる音質評価装置および音質評価方法を提供す
ることを目的とする。
For this reason, it is presumed that it is effective to consider the temporal variation element as in the case of the human auditory mechanism including the time delay, in order to make the sound quality into a physical quantity. An object of the present invention is to provide a sound quality evaluation apparatus and a sound quality evaluation method capable of performing sound quality evaluation by physically quantifying a sound to be evaluated so as to match a human hearing feeling based on the above problems. And

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、評価
する音の騒音レベルを計測する騒音レベル算出手段と、
上記音の時間変動を計測し、同音の時間変動相当の音の
強さの変動レベルを求め、同変動レベルのピーク差を合
計して累積変動レベルを算出した累積変動レベル算出手
段と、予め設定された騒音レベルと累積変動レベルとの
評価点の関係を示す評価手段とから構成されたことを特
徴とする。このように評価する音が時間的変動感を表す
累積変動レベルと騒音絶対値とに分析して求められ、そ
れら2つの物理量の大小に応じて評価手段が音質評価を
行うことができる。
According to a first aspect of the present invention, there is provided noise level calculation means for measuring the noise level of a sound to be evaluated,
A cumulative fluctuation level calculating means for measuring the time fluctuation of the above sound, obtaining the fluctuation level of the sound intensity corresponding to the time fluctuation of the same sound, calculating the cumulative fluctuation level by summing the peak differences of the same fluctuation level, and preset. It is characterized in that it is constituted by an evaluation means showing the relationship between the evaluated points of the noise level and the cumulative fluctuation level. The sound to be evaluated in this way is obtained by analyzing the cumulative fluctuation level indicating the temporal fluctuation feeling and the noise absolute value, and the evaluation unit can perform sound quality evaluation according to the magnitude of these two physical quantities.

【0008】請求項2の発明は、請求項1記載の音質評
価装置において、上記累積変動レベル算出手段は、上記
音を電気信号に変換する変換手段と、上記変換手段から
の信号を周波数バンド毎に分離して音圧時間信号を算出
し、上記音圧時間信号を用いて音の強さを表す包絡線を
抽出する包絡線変換手段と、上記包絡線を一次遅れ系の
応答として処理する一次遅れ系応答手段と、上記一次遅
れ系の応答として処理した音の強さの包絡線を対数表示
処理した変動レベル算出手段と、上記変動レベル算出手
段より算出された変動レベルのピーク差を合計して累積
変動レベルを算出する変動レベル累積手段とからなるこ
とを特徴とする。このように累積変動レベル算出手段
が、変換手段と包絡線変換手段と一次遅れ系応答手段と
変動レベル算出手段と変動レベル累積手段とからなるの
で、時間的変動感がヒトの聴感でのフィーリングに合う
ように確実に物理量化でき、音質評価を行うことができ
る。
According to a second aspect of the present invention, in the sound quality evaluation apparatus according to the first aspect, the cumulative fluctuation level calculating means converts the sound into an electric signal, and the signal from the converting means for each frequency band. To calculate the sound pressure time signal, to extract the envelope representing the strength of the sound using the sound pressure time signal, and the first order to process the envelope as a response of the first-order lag system The delay system response means, the fluctuation level calculation means that performs logarithmic display processing of the envelope of the sound intensity processed as the response of the first-order delay system, and the peak difference of the fluctuation levels calculated by the fluctuation level calculation means are totaled. And a fluctuation level accumulating means for calculating a cumulative fluctuation level. As described above, since the cumulative fluctuation level calculating means is composed of the converting means, the envelope converting means, the first-order lag system responding means, the fluctuation level calculating means and the fluctuation level accumulating means, the temporal fluctuation feeling is felt by human hearing. Therefore, the physical quantity can be surely met so that the sound quality can be evaluated.

【0009】請求項3の発明は、請求項2記載の音質評
価装置において、上記一次遅れ系応答手段は、音の強さ
の上記包絡線の一次系遅れ処理を、その包絡線振幅上昇
時の時定数よりも上記振幅の下降時の時定数が大となる
定数で処理したことを特徴とする。このように、一次遅
れ系処理を包絡線振幅上昇時の時定数よりも下降時の時
定数が大となる定数で処理するので、ヒトの聴感に適合
した累積変動レベルの算出に寄与できる。
According to a third aspect of the invention, in the sound quality evaluation apparatus according to the second aspect, the first-order lag system response means performs the first-order lag process of the envelope of the sound intensity when the envelope amplitude increases. It is characterized in that the processing is performed with a constant such that the time constant at the time of the decrease of the amplitude is larger than the time constant. In this way, since the first-order lag system processing is processed with a constant whose time constant when the envelope amplitude is decreasing is larger than the time constant when the envelope amplitude is increasing, it is possible to contribute to the calculation of the cumulative fluctuation level suitable for human hearing.

【0010】請求項4の発明は、請求項1記載の音質評
価装置において、上記累積変動レベルのオーバーオール
値と上記騒音レベルのオーバーオール値とに基づいて騒
音評価を行うことを特徴とする。このように、累積変動
レベルのオーバーオール値と騒音レベルのオーバーオー
ル値とに基づいて騒音評価を行うので、音質を適正に物
理量化し、音質評価を行うことができる。
According to a fourth aspect of the present invention, in the sound quality evaluation apparatus according to the first aspect, the noise evaluation is performed based on the overall value of the cumulative fluctuation level and the overall value of the noise level. In this way, since the noise evaluation is performed based on the overall value of the cumulative variation level and the overall value of the noise level, the sound quality can be appropriately physicalized and the sound quality can be evaluated.

【0011】請求項5の方法発明は、評価する音を採取
して電気信号に変換し、上記電気信号から騒音レベルを
算出し、かつ上記電気信号から音の時間変動を計測し、
同音の時間変動相当の音の強さの変動レベルのピーク差
を合計して累積変動レベルを算出し、上記騒音レベルと
上記累積変動レベルとで上記音の評価を行うことを特徴
とする。このように、評価する音を電気信号に変換して
から騒音レベルを算出し、かつ電気信号から音の時間変
動を計測し、同音の時間変動相当の音の強さの変動レベ
ルのピーク差を合計して累積変動レベルを算出し、騒音
レベルと累積変動レベルとで音質評価を行うことができ
る。
According to a fifth aspect of the present invention, a sound to be evaluated is sampled and converted into an electric signal, a noise level is calculated from the electric signal, and a time variation of the sound is measured from the electric signal.
It is characterized in that the cumulative difference level is calculated by summing the peak differences of the fluctuation levels of the sound intensity corresponding to the time fluctuation of the same sound, and the sound is evaluated by the noise level and the cumulative fluctuation level. In this way, the noise level is calculated after converting the sound to be evaluated into an electric signal, and the time fluctuation of the sound is measured from the electric signal, and the peak difference of the fluctuation level of the sound intensity corresponding to the time fluctuation of the same sound is calculated. It is possible to calculate the cumulative variation level by summing and perform sound quality evaluation based on the noise level and the cumulative variation level.

【0012】請求項6の方法発明は、請求項5記載の音
質評価方法において、上記変動レベルを算出するステッ
プは、上記音の時間変動から音の大きさを表す包絡線を
求め、上記音の大きさを表す包絡線から上記音の強さの
包絡線を算出するステップを有することを特徴とする。
このように、音の時間変動から音の大きさを表す包絡線
を求め、同包絡線から音の強さの包絡線を算出するの
で、ヒトの聴感に適合した累積変動レベルの算出に寄与
できる。
According to a sixth aspect of the present invention, in the sound quality evaluation method according to the fifth aspect, the step of calculating the fluctuation level obtains an envelope curve representing the loudness of the sound from the temporal fluctuation of the sound, It is characterized by including a step of calculating an envelope curve of the sound intensity from an envelope curve representing a loudness.
In this way, the envelope representing the loudness of the sound is obtained from the temporal variation of the sound, and the envelope of the sound intensity is calculated from the same envelope, which can contribute to the calculation of the cumulative variation level suitable for human hearing. .

【0013】請求項7の方法発明は、請求項6記載の音
質評価方法において、上記変動レベルを算出するステッ
プは、上記音の大きさを表す包絡線から上記音の強さの
包絡線を一次遅れ系の応答として処理するステップを有
することを特徴とする。このように、音の大きさを表す
包絡線から音の強さの包絡線を一次遅れ系の応答として
処理するので、ヒトの聴感に適合した累積変動レベルの
算出に寄与できる。
According to a seventh aspect of the present invention, in the sound quality evaluation method according to the sixth aspect, the step of calculating the fluctuation level is performed by first transforming the envelope of the sound intensity from the envelope representing the loudness of the sound. It is characterized in that it has a step of processing as a delay system response. In this way, since the envelope curve of the sound intensity is processed as the response of the first-order lag system from the envelope curve representing the loudness of the sound, it is possible to contribute to the calculation of the cumulative variation level adapted to the human auditory sense.

【0014】請求項8の発明は、請求項7記載の音質評
価方法において、上記変動レベルを算出するステップ
は、音の強さの上記包絡線の一次遅れ処理を、その包絡
線振幅上昇時の時定数よりも上記振幅の下降時の時定数
が大となる定数で処理したことを特徴とする。このよう
に、音の強さの包絡線の一次遅れ処理を、その包絡線振
幅上昇時の時定数よりも上記振幅の下降時の時定数が大
となる定数で処理するので、ヒトの聴感に適合した累積
変動レベルの算出に寄与できる。
According to an eighth aspect of the present invention, in the sound quality evaluation method according to the seventh aspect, the step of calculating the fluctuation level is performed by first-order lag processing of the envelope of the sound intensity when the envelope amplitude increases. It is characterized in that the processing is performed with a constant such that the time constant at the time of the decrease of the amplitude is larger than the time constant. In this way, the first-order lag processing of the envelope of the sound intensity is processed by a constant whose time constant when the envelope amplitude is decreasing is larger than the time constant when the envelope amplitude is increasing. It can contribute to the calculation of a suitable cumulative variation level.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施形態として
の音質評価装置Mを、例えば、ディーゼルエンジンの評
価にオーバーオール値を適用した場合について説明す
る。図1に示す音質評価装置Mは変換手段1を含む累積
変動レベル算出手段2と、騒音レベル算出手段3と、評
価手段4とを備え、これらの各機能は上述したヒトの聴
覚機能(図13参照)を再現することを考慮して構築さ
れた。累積変動レベル算出手段2は変換手段1に加え、
包絡線変換手段11と、一次遅れ系応答手段12と、変
動レベル算出手段13と、変動レベル累積手段14とを
備える。
BEST MODE FOR CARRYING OUT THE INVENTION A sound quality evaluation apparatus M as an embodiment of the present invention will be described below in which an overall value is applied to the evaluation of a diesel engine, for example. The sound quality evaluation apparatus M shown in FIG. 1 includes a cumulative fluctuation level calculation unit 2 including a conversion unit 1, a noise level calculation unit 3, and an evaluation unit 4, and these respective functions are the human hearing functions described above (see FIG. 13). Reference)). The cumulative fluctuation level calculation means 2 is in addition to the conversion means 1,
An envelope conversion unit 11, a first-order lag system response unit 12, a fluctuation level calculation unit 13, and a fluctuation level accumulation unit 14 are provided.

【0016】変換手段1は評価する音としてのディーゼ
ルエンジン(以後単にエンジン6と記す)の音波(音
圧)をアナログ信号に変換するマイクロホン7と、アナ
ログ信号をデジタル信号に変換するA/D変換器8とを
備える。マイクロホン7は被試験体であるエンジン6の
本体に対し評価するべき距離Lだけ離れた位置に配備さ
れ、ここではダミー9のヘッド901に取り付けられ
る。なお、エンジン6は例えば、ローアイドルで運転さ
れ、その際の騒音が評価する音としてマイクロホン7に
採取され電気信号化され、A/D変換器8と騒音レベル
算出手段3とにそれぞれ入力されている。なお、騒音レ
ベル算出手段3がマイクロホン7とは異なる専用のマイ
クロホン(図示せず)を別途に採用し、騒音信号(音圧
Pa波形)を検出するように構成しても良い。
The conversion means 1 includes a microphone 7 for converting a sound wave (sound pressure) of a diesel engine (hereinafter simply referred to as engine 6) as a sound to be evaluated into an analog signal, and an A / D conversion for converting the analog signal into a digital signal. And a container 8. The microphone 7 is provided at a position separated by a distance L to be evaluated with respect to the main body of the engine 6 which is the DUT, and is attached to the head 901 of the dummy 9 here. The engine 6 is operated at low idle, for example, and the noise at that time is sampled by the microphone 7 as a sound to be evaluated, converted into an electric signal, and input to the A / D converter 8 and the noise level calculation means 3, respectively. There is. The noise level calculating means 3 may be configured to separately employ a dedicated microphone (not shown) different from the microphone 7 to detect the noise signal (sound pressure Pa waveform).

【0017】A/D変換器8はマイクロホン7からの騒
音信号をデジタル化し、データ記録部5がそのデジタル
信号を所定のデータサンプリング周期毎に取り込み記憶
処理する。その際の時間軸に対する騒音信号(音圧Pa
波形)を図2に示す。データ記録部5の騒音信号は包絡
線変換手段11に入力される。包絡線変換手段11はデ
ータ記録部5からの騒音信号を周波数バンド毎に分離す
る周波数弁別部11aと、各周波数帯での音圧時間信号
Pi(Pa)を算出する音圧時間信号算出部11bと、
音圧時間信号Piを用いて音の強さを表す包絡線Pei
を抽出する包絡線演算部11cとを備える。
The A / D converter 8 digitizes the noise signal from the microphone 7, and the data recording section 5 takes in the digital signal at a predetermined data sampling cycle and stores it. Noise signal (sound pressure Pa
Waveform) is shown in FIG. The noise signal of the data recording unit 5 is input to the envelope conversion unit 11. The envelope converting means 11 includes a frequency discriminating unit 11a that separates the noise signal from the data recording unit 5 into frequency bands, and a sound pressure time signal calculating unit 11b that calculates the sound pressure time signal Pi (Pa) in each frequency band. When,
Envelope P ei representing the strength of sound using the sound pressure time signal Pi
And an envelope calculation unit 11c for extracting

【0018】周波数弁別部11aによる騒音を周波数バ
ンド毎に分離する処理は、上述したヒトの聴覚における
基底膜の周波数弁別機能に適合するものとして採用され
ている。このような周波数弁別処理の結果得られた信
号、例えば、中心周波数1kHzのバンドにおける音圧
時間信号Pi(1kHz)を図3に示した。音圧時間信
号算出部11bで各バンド毎に分離された音圧信号Pi
は包絡線演算部11cで音圧信号に対する包絡線Pei
の算出に使われる。この処理は、図4に示すように、実
線の音圧の波形における各ピークを順次連結して破線で
示す音圧の包絡線を求めるのと同様の処理が成されるこ
ととなる。
The process of separating the noise by the frequency discriminating unit 11a for each frequency band is adopted as adapted to the frequency discriminating function of the basilar membrane in human hearing described above. A signal obtained as a result of such frequency discrimination processing, for example, a sound pressure time signal Pi (1 kHz) in a band having a center frequency of 1 kHz is shown in FIG. The sound pressure signal Pi separated for each band by the sound pressure time signal calculation unit 11b
Is the envelope P ei for the sound pressure signal in the envelope calculation unit 11c.
Used to calculate. As shown in FIG. 4, this process is similar to the process of sequentially connecting the peaks in the sound pressure waveform of the solid line to obtain the sound pressure envelope shown by the broken line.

【0019】次に、一次遅れ系応答手段12は、音の大
きさ(音圧)を表す包絡線Peiを音の強さ(エネルギ
信号)の包絡線Iei(W/m)に変換するエネルギ
信号変換部12aと、ヒトの聴覚の特性を模擬するた
め、音の強さの包絡線を一次遅れ系の応答として処理す
る一次遅れ処理部12bを備える。音圧は大気圧に音圧
変動成分を上乗せしてなり、その音圧発生時の音の強さ
の変化成分をエネルギ信号変換部12aが抜き出す処理
を行うもので、音圧の包絡線Pei(Pa)を音の強さ
の包絡線に変換する、言い代えれば単位の換算を行うも
ので、式(1)により、算出している。例えば、中心周
波数1kHzのバンドにおける音の強さの包絡線Iei
(W/m)を図5に示した。
Next, the first-order lag system response means 12 converts the envelope P ei representing the loudness (sound pressure) of the sound into the envelope I ei (W / m 2 ) of the sound intensity (energy signal). The energy signal conversion unit 12a and the first-order lag processing unit 12b that processes the envelope of the sound intensity as a response of the first-order lag system in order to simulate the characteristics of human hearing. The sound pressure is obtained by adding a sound pressure fluctuation component to the atmospheric pressure, and the energy signal conversion unit 12a extracts the change component of the sound intensity when the sound pressure is generated. The sound pressure envelope P ei (Pa) is converted into an envelope of sound intensity, in other words, unit conversion is performed, and is calculated by the formula (1). For example, the envelope I ei of the sound intensity in the band with the center frequency of 1 kHz.
(W / m 2 ) is shown in FIG.

【0020】[0020]

【数1】 [Equation 1]

【0021】 ここで、Iei :音の強さの包絡線 W/m ρ :空気密度 kg/m c :音速 m/sec、である。Here, I ei is the envelope of sound intensity W / m 2 ρ is air density kg / m 3 c is the velocity of sound m / sec.

【0022】次いで、一次遅れ処理部12bは、図6に
示すように、破線で示した音の強さの振幅(mW/
)波形(入力信号)を一次遅れの応答として処理し
て実線で示す出力信号に変換し、即ち、振幅の立上がり
を早め、降下を遅れめの処理をして音の振幅にだれを持
った時間遅れ信号に変換する。このような一次遅れ系の
応答処理を行うべく、式(2)で表される一次遅れ系の
インパルス応答W(t)を導出する。即ち、入力信号であ
る強さの包絡線Iei(W/m)を、出力信号である
時間遅れ処理済の音の強さの包絡線Iei’(mW/m
)として導出し、これを図7に示した。
Next, the first-order delay processing section 12b, as shown in FIG. 6, shows the amplitude (mW / mW) of the sound intensity indicated by the broken line.
m 2 ) The waveform (input signal) is processed as a first-order lag response and converted into an output signal shown by a solid line, that is, the rise of the amplitude is accelerated and the fall is delayed, so that the amplitude of the sound has a droop. Converted to a time-delayed signal. In order to perform such response processing of the first-order lag system, the impulse response W (t) of the first-order lag system represented by the equation (2) is derived. That is, the envelope I ei (W / m 2 ) of the intensity which is the input signal is converted into the envelope I ei ′ (mW / m) of the intensity of the sound which has been subjected to the time delay processing which is the output signal.
2 ) and shown in FIG. 7.

【0023】[0023]

【数2】 [Equation 2]

【0024】 ここで、W(t) :一次遅れ系のインパルス応答 t :時間 T :時定数である。[0024] Where W (t): Impulse response of first-order lag system t: time T: Time constant.

【0025】この一次遅れ系の応答処理は、入力信号
(包絡線振幅Iei)をx(n)、出力信号(時間遅れ
信号Iei’)をy(n)、前回値をy(n−1)と
し、上昇時(x(n)≧y(n−1))の時定数Tup
(例えば10mmsec)、下降時(x(n)<y(n
−1))の時定数Tdown(例えば20mmsec)と
し、時間刻み幅Δtとすると、上昇時の一次遅れ系の応
答値y(n)が式(3a)として、下降時の一次遅れ系
の応答値y(n)が式(3b)として、nが2、3、4
・・・と経時的に変化するのに応じて、それぞれ算出で
きる。
In the response processing of the first-order lag system, the input signal (envelope amplitude I ei ) is x (n), the output signal (time lag signal I ei ') is y (n), and the previous value is y (n-). 1) and the time constant Tup when rising (x (n) ≧ y (n−1))
(For example, 10 mmsec), when descending (x (n) <y (n
−1)) time constant Tdown (for example, 20 mmsec) and time step width Δt, the response value y (n) of the first-order lag system at the time of rising is expressed by equation (3a), and the response value of the first-order lag system at the time of falling. y (n) is formula (3b) and n is 2, 3, 4
.. can be calculated according to the change over time.

【0026】[0026]

【数3】 [Equation 3]

【0027】このように、一次遅れ系処理を包絡線振幅
上昇時の時定数Tupよりも下降時の時定数Tdownが大と
なるよう設定したことによりヒトの聴覚における基底膜
の有毛細胞による振動を電気信号に変換する際の時間遅
れを模擬することができ、しかも、図7に示した時間遅
れ処理済の音の強さの包絡線Iei’(mW/m
は、「だれ」を持つことより、同音の強さの包絡線I
ei’(実線の時間遅れ信号として示した)がその下側
に位置する比較的小ピークの波形部位を覆うこととな
り、この点でもヒトの聴覚と同様の状況を再現できるこ
ととなる。変動レベル算出手段13は、式(4)に示す
ように、時間遅れ処理済の音の強さの包絡線Iei
(mW/m)を実効値IRMSi(W/m)で割っ
て正規化し、ヒトの耳の感度に合うように対数表示値に
処理し、これを変動レベルFL(dB)として求め
る。
As described above, by setting the first-order lag system processing so that the time constant Tdown at the time of falling is larger than the time constant Tup at the time of increasing the envelope amplitude, vibration of the basilar membrane by hair cells in human hearing. Of the sound intensity of the sound after the time delay processing shown in FIG. 7 can be simulated, and the envelope of the sound intensity I ei '(mW / m 2 ) shown in FIG. 7 can be simulated.
Is the envelope curve I of the strength of the same sound
ei '(shown as a time-delayed signal indicated by a solid line) covers a waveform portion having a relatively small peak located therebelow, and in this respect also, a situation similar to human hearing can be reproduced. The fluctuation level calculation means 13 uses the envelope curve I ei ′ of the sound intensity that has been subjected to the time delay processing, as shown in Expression (4).
(MW / m 2) was normalized by dividing the effective value I RMSi (W / m 2) , was treated in the logarithmic values to suit the sensitivity of the human ear, obtains this as fluctuation level FL i (dB) .

【0028】[0028]

【数4】 [Equation 4]

【0029】ここで、FL :変動レベル(F1uctuat
ion Level) dB Iei’ :耳の反応遅れを考慮した音の強さの包絡
線 W/mRMSi :音の強さの実効値 W/m、であ
る。
Here, FL i : fluctuation level (F1uctuat
ion Revell) dB I ei ′: envelope of sound intensity in consideration of ear reaction delay W / m 2 I RMSi : effective value W / m 2 of sound intensity.

【0030】このように、時間遅れ処理済の音の強さの
包絡線Iei’(mW/m)を中心周波数1kHzの
バンドにおける変動レベルFL(dB)としてデシベ
ル表示に変換した一例を、図8に示した。変動レベル累
積手段14では変動レベル算出手段13で算出された変
動レベルFLにおけるある評価時間(例えばエンジン
1サイクル)中に発生する極大値hnと極小値lnのピ
ーク差dBk、すなわち、(dB1+dB2・・・+d
Bn)を合計する。しかも、各バンドにおける音の大き
さのウエイト(騒音レベルのオーバーオール値LOA
と、図9に示すヒトの周波数嗜好パターンを考慮したウ
エイトWとを加算して累積変動レベルCFLとして
数値化する機能を備え、具体的には式(5)の演算処理
として実行される。
In this way, an example in which the envelope I ei '(mW / m 2 ) of the sound intensity after the time delay processing is converted into the decibel display as the fluctuation level FL i (dB) in the band with the center frequency of 1 kHz is shown. , Shown in FIG. In the fluctuation level accumulating means 14, the peak difference dBk between the maximum value hn and the minimum value ln occurring during a certain evaluation time (for example, one engine cycle) at the fluctuation level FL i calculated by the fluctuation level calculating means 13, that is, (dB1 + dB2 · .. + d
Sum the Bn). Moreover, the weight of the loudness of each band (overall value L OA of the noise level)
And a weight W i in consideration of the human frequency preference pattern shown in FIG. 9 are added to digitize as a cumulative fluctuation level CFL i . Specifically, it is executed as an arithmetic process of Expression (5). .

【0031】[0031]

【数5】 [Equation 5]

【0032】ここで、CFL :累積変動レベル(Cum
u1ative F1uctuation Leve1)dB i :周波数バンド番号 dBk :エンジン1サイクル中に発生する変動レベ
ルのピーク差 dB N :累積回数(1サイクル中の変動レベルのピ
ーク差の数) Li :各周波数バンドの騒音レベル dB LOA :騒音レベルのオーバーオール値 dB Wi :ヒトの周波数嗜好パターンを考慮したウェ
イト dB dBref :dBリファレンス dB、である。
Here, CFL i : cumulative fluctuation level (Cum
u1ative F1uctuation Leve1) dB i: frequency band number dBk: peak difference in fluctuation level generated during one engine cycle dB N: cumulative number of times (number of peak difference in fluctuation level during one cycle) Li: noise level in each frequency band dB LOA : overall value of noise level dB Wi: weight considering human frequency preference pattern dB dB ref : dB reference dB.

【0033】ここでは、図8に示すピーク差dBkの抽
出においては、極大値と極小値の候補のデータを予め採
り込み、フィルタ処理を行う。即ち、ここでの変動レベ
ルFL(dB)は極大値hnと極小値lnを繰り返す
が、その間にも比較的小レベルの極大値と極小値を生じ
ている。そこで、最小値の後の最大値が決定する毎に最
小値の点からx軸(時間軸)とy軸(変動レベル)にある
閾値を設けて、その閾値範囲内の極大値と極小値を排除
するというフィルタ処理を実行することになる。次に、
図9に示すヒトの周波数嗜好パターンを考慮したウエイ
トWの設定マップは、低域側と高域側を持ち上げた台
形型として設けた。この後、得られた累積変動レベルC
FLのオーバーオール値CFLは式(6)を用いて算
出し、騒音判定用物理量として適性化する。
Here, in the extraction of the peak difference dBk shown in FIG. 8, the data of the candidates of the maximum value and the minimum value are taken in advance and the filtering process is performed. That is, the fluctuation level FL i (dB) here repeats the local maximum value hn and the local minimum value ln, but the local maximum value and the local minimum value of a relatively small level are generated between them. Therefore, each time the maximum value after the minimum value is determined, a threshold is set on the x-axis (time axis) and the y-axis (variation level) from the point of the minimum value, and the maximum and minimum values within that threshold range are set. The filtering process of eliminating will be executed. next,
The setting map of the weight W i in consideration of the human frequency preference pattern shown in FIG. 9 is provided as a trapezoidal shape in which the low frequency side and the high frequency side are raised. After this, the obtained cumulative fluctuation level C
The overall value CFL of FL i is calculated using the equation (6), and is optimized as the physical quantity for noise determination.

【0034】[0034]

【数6】 [Equation 6]

【0035】ここで、CFL :累積変動レベルオー
バーオール dB i :周波数バンド番号、である。
Here, CFL: cumulative variation level overall dBi: frequency band number.

【0036】このようにして騒音の時間的変動感を表す
累積変動レベルオーバーオールCFLが評価判定用の物
理量の一つとして演算され、その分布は、例えば、図1
0に示すようになる。一方、騒音レベル算出手段3はマ
イクロホン7からの騒音信号(音圧Pa波形)をA特性
フィルタを用いて補正したデシベル値dB(A)に変換
して取り込み、データサンプリング周期毎にデシベル値
NLidB(A)のオーバーオール値NL(dB
(A))を騒音レベルとして算出し、これを評価判定用
の物理量の一つとする。
In this way, the cumulative variation level overall CFL representing the temporal variation of noise is calculated as one of the physical quantities for evaluation judgment, and its distribution is shown in FIG.
As shown in 0. On the other hand, the noise level calculation means 3 converts the noise signal (sound pressure Pa waveform) from the microphone 7 into a decibel value dB (A) corrected by using the A characteristic filter and takes in the decibel value NLidB (for each data sampling cycle. A) Overall value NL (dB
(A)) is calculated as a noise level, and this is used as one of the physical quantities for evaluation and determination.

【0037】次に、評価手段4は、累積変動レベル(d
B)と騒音レベル(dB(A))の2つの物理量から音
質を十段階に評価する。ここで評価手段4は図11に示
す音質評価処理マップm1を採用する。オーバーオール
評価の場合、音質評価処理マップm1は、横軸に累積変
動レベルCFL(dB)を、縦軸に騒音レベルNL(d
B(A))を取り、それぞれヒトが感じる騒音レベルに
対しての十段階の評価線(1〜10)を適宜設定する。
この場合、各評価線は評価基準を通る傾き1の直線とし
て設定され、評価域を区分している。ここでは、No.
7の評価線より騒音レベル値が小さい領域(左下側)が
音質対策良好、大きい領域(右上側)が音質対策不良と
判定するよう設定する。
Next, the evaluation means 4 determines the cumulative fluctuation level (d
B) and the sound level (dB (A)) are two physical quantities, and the sound quality is evaluated in 10 levels. Here, the evaluation means 4 adopts the sound quality evaluation processing map m1 shown in FIG. In the case of overall evaluation, the sound quality evaluation processing map m1 has a horizontal axis representing the cumulative fluctuation level CFL (dB) and a vertical axis representing the noise level NL (d).
B (A)) is taken, and ten evaluation lines (1 to 10) for the noise level perceived by humans are appropriately set.
In this case, each evaluation line is set as a straight line having an inclination of 1 passing through the evaluation standard, and divides the evaluation area. Here, No.
It is set to determine that the area where the noise level value is smaller than the evaluation line of 7 (lower left side) is good in sound quality control, and the area where the noise level value is large (upper right side) is poor sound quality control.

【0038】ここで各音質評価処理マップm1は、被試
験体であるエンジンの機種毎に評価レベルを異ならせた
ものも採用することが可能である。このような音質評価
装置Mを用いてエンジンの騒音評価を各々オーバーオー
ル値を用いて行う音質評価方法を順次説明する。
Here, as each sound quality evaluation processing map m1, it is also possible to adopt one in which the evaluation level is different for each model of the engine to be tested. A sound quality evaluation method for performing engine noise evaluation by using such a sound quality evaluation device M using overall values will be sequentially described.

【0039】まず、音質評価装置Mが騒音対策前のエン
ジン6にセットされる。次いで、エンジン6が、例えば
ローアイドルで運転され、その際の騒音がマイクロホン
7に採取されて電気信号(音圧Pa信号)化される。マ
イクロホン7の音圧Pa信号は、A/D変換器8と騒音
レベル算出手段3とにそれぞれ入力される。騒音レベル
算出手段3では騒音信号(音圧Pa波形)をデシベル値
dB(A)に変換し、データサンプリング周期毎のオー
バーオール値NL(dB(A))を騒音レベルとして導
出するステップを行う。この騒音レベルNL(dB
(A))は評価手段4による評価のステップで採用され
る。
First, the sound quality evaluation device M is set on the engine 6 before noise reduction. Next, the engine 6 is operated at low idle, for example, and the noise at that time is collected by the microphone 7 and converted into an electric signal (sound pressure Pa signal). The sound pressure Pa signal from the microphone 7 is input to the A / D converter 8 and the noise level calculation means 3, respectively. The noise level calculation means 3 converts the noise signal (sound pressure Pa waveform) into a decibel value dB (A) and derives the overall value NL (dB (A)) for each data sampling period as a noise level. This noise level NL (dB
(A)) is adopted in the step of evaluation by the evaluation means 4.

【0040】一方、累積変動レベル算出手段2では音の
時間変動を計測し、その変動レベルFL(dB)のピ
ーク差dBkを合計して累積変動レベルCFLを算出
するステップを行う。具体的には、まず、A/D変換器
8において音圧信号がデジタル信号に変換され、データ
記録部5に入力され記憶処理される。
On the other hand, the cumulative fluctuation level calculating means 2 measures the temporal fluctuation of the sound and sums the peak differences dBk of the fluctuation levels FL i (dB) to calculate the cumulative fluctuation level CFL i . Specifically, first, the sound pressure signal is converted into a digital signal in the A / D converter 8 and is input to the data recording unit 5 for storage processing.

【0041】次いで、包絡線変換手段11では、周波数
弁別部11aにより音圧信号を周波数バンド毎に分離す
るステップを行い、音圧時間信号算出部11bにより各
バンド毎に分離された音圧信号Piは包絡線演算部11
cにより各ピークを順次連結した音の大きさを表す包絡
線Peiを抽出する(図4参照)ステップを行う。次い
で、一次遅れ系応答手段12のエネルギ信号変換部12
aでは、音の大きさを表す包絡線Peiより音の強さの
包絡線Iei(W/m)を算出するステップを行う。
Next, in the envelope conversion means 11, the frequency discriminating unit 11a performs a step of separating the sound pressure signal for each frequency band, and the sound pressure time signal calculating unit 11b separates the sound pressure signal Pi for each band. Is the envelope calculation unit 11
The step of extracting the envelope P ei representing the loudness of the sound in which the respective peaks are sequentially connected by c (see FIG. 4) is performed. Next, the energy signal converter 12 of the first-order lag system response means 12
In a, a step of calculating the envelope curve I ei (W / m 2 ) of the sound intensity from the envelope curve P ei representing the loudness of the sound is performed.

【0042】次いで、一次遅れ処理部12bでは音の強
さの包絡線Iei(W/m)に対して上がり時定数T
upを、下がり時定数Tdownをそれぞれ用いて「だれ」を
持たせる処理行い、時間遅れ処理済の音の強さの包絡線
ei’(mW/m)を抽出するステップを行う。こ
れにより、上述したヒトの聴覚における耳の反応遅れ機
能に適合するようにする。次いで、変動レベル算出手段
13では時間遅れ処理済の音の強さの包絡線I ’を
実効値IRMSi(W/m)で割って、ヒトの耳の感
度に合うデシベル変換された変動レベルFL(dB)
とする(図8参照)。
Next, in the first-order delay processing section 12b, the rising time constant T is increased with respect to the envelope I ei (W / m 2 ) of the sound intensity.
The Stay up-, using respectively the down time constant Tdown performs processing to have a "Who", performs the step of extracting the intensity of the envelope I ei '(mW / m 2 ) of the time delay processed sound. This adapts to the above-mentioned function of delaying the ear response in human hearing. Next, in the fluctuation level calculating means 13, the envelope I e i ′ of the sound intensity after the time delay processing is divided by the effective value I RMSi (W / m 2 ) and the decibel conversion matching the sensitivity of the human ear is performed. Fluctuation level FL i (dB)
(See FIG. 8).

【0043】変動レベル累積手段14は累積変動レベル
算出部14aとして、式(4)で表示したようにして、
評価時間中に発生する変動レベルFLのピーク差dB
kを合計した値に、ヒトの周波数嗜好パターンを考慮し
たウエイトW等の各種付加値を加算して累積変動レベ
ルCFLとして求めるステップを行う。更に、オーバ
ーオール値算出部14bとして、累積変動レベルCFL
の累積変動レベルオーバーオール値CFLを式(5)
で表示したようにして求める。この後、評価手段4は、
図11に示す音質評価処理マップを用い、累積変動レベ
ルCFL(dB)と騒音レベルNL(dB(A))に相
当する評価値を十段階の中より導出する。
The fluctuation level accumulating means 14 serves as the accumulative fluctuation level calculating section 14a as indicated by the equation (4).
The peak difference dB of the fluctuation level FL i generated during the evaluation time
The step of obtaining the cumulative fluctuation level CFL i by adding various additional values such as the weight W i in consideration of the human frequency preference pattern to the total value of k is performed. Further, as the overall value calculation unit 14b, the cumulative fluctuation level CFL
The cumulative fluctuation level overall value CFL of i is calculated by the equation (5).
Ask as shown in. After this, the evaluation means 4
Using the sound quality evaluation processing map shown in FIG. 11, evaluation values corresponding to the cumulative fluctuation level CFL (dB) and the noise level NL (dB (A)) are derived from 10 levels.

【0044】この際、例えば、No.7の評価線より累
積変動レベル値、騒音レベル値が大きい領域(右上側)
の符号●印の対策前位置にあるとすると、このエンジン
6は音質対策が必要であるとの評価が成される。この評
価結果により、例えば、点火時期の調整処理や、エンジ
ン6の本体回りに遮蔽板を新設する等のエンジン6に対
策が成され、ディーゼル騒音で時間的に変動する間欠音
である、「ガラガラ音」や、「カリカリ音」の騒音の拡
散が抑えられたとする。
At this time, for example, in No. Area where the cumulative fluctuation level value and noise level value are larger than the evaluation line of 7 (upper right side)
It is evaluated that the engine 6 needs a sound quality countermeasure if it is in the position before the countermeasure indicated by the symbol. Based on this evaluation result, for example, countermeasures are taken for the engine 6 such as ignition timing adjustment processing and a shield plate is newly installed around the body of the engine 6, resulting in intermittent noise that fluctuates temporally due to diesel noise. It is assumed that the diffusion of noise such as "sound" and "crispy sound" is suppressed.

【0045】その上で、音質評価装置Mを再度用い、音
質対策前と同一条件で再度エンジン6の累積変動レベル
CFL(dB)と騒音レベルNL(dB(A))を算出
し、評価手段4が音質評価処理マップを用い、対策後の
累積変動レベルCFL(dB)と騒音レベルNL(dB
(A))に相当する対策後の評価値を導出する。この結
果、対策後の評価値が、例えば、No.7の評価線より
累積変動レベル値、騒音レベル値が小さい領域(左下
側)の符号○印の対策後位置に達したとすると、今回の
対策が有効であったことが物理量である評価値によって
的確に確認されたこととなる。なお、図12には対策前
のエンジンの変動レベル(dB)を破線で、対策後の変
動レベル(dB)を実線でそれぞれ示しており、対策後
に変動レベル(dB)が低下し、対策が適性であったこ
とを推測できる。
Then, the sound quality evaluation device M is used again to calculate the cumulative fluctuation level CFL (dB) and the noise level NL (dB (A)) of the engine 6 again under the same conditions as before the sound quality countermeasure, and the evaluation means 4 is calculated. Using the sound quality evaluation processing map, the cumulative fluctuation level CFL (dB) and the noise level NL (dB) after the measures are taken.
The evaluation value after the countermeasure corresponding to (A)) is derived. As a result, the evaluation value after the countermeasure is, for example, No. Assuming that the position after the countermeasure indicated by the symbol ○ in the area (lower left side) where the cumulative fluctuation level value and the noise level value are smaller than the evaluation line of 7 has been reached, the fact that this countermeasure was effective depends on the evaluation value that is a physical quantity. It was confirmed accurately. In addition, in FIG. 12, the fluctuation level (dB) of the engine before the countermeasure is shown by a broken line, and the fluctuation level (dB) after the countermeasure is shown by a solid line. The fluctuation level (dB) decreases after the countermeasure, and the countermeasure is appropriate. I can guess that it was.

【0046】このように音質評価装置Mを用いたことに
より、ヒトの聴感が時間遅れ反応するというヒトの聴覚
機構に適合した評価値を導出できるので、ヒトの聴感で
のフィーリングに合う音の質を定量化した評価値によっ
て騒音を的確に確認できる。上述のところにおいて、被
試験体はエンジン6として説明したが、本発明はその他
の各種エンジンはもとより、その他の産業機器の発する
各種の騒音対策においても、累積変動レベル(dB)と
騒音レベル(dB(A))を算出し、評価手段4が被試
験体に応じ設定される図示しない音質評価処理マップを
用い、物理量である評価値を算出し、騒音対策に有効に
利用できる。
By using the sound quality evaluation apparatus M as described above, it is possible to derive an evaluation value suitable for the human auditory mechanism that the human auditory sensation reacts with a time delay. Noise can be accurately confirmed by the evaluation value that quantifies the quality. Although the device under test is described as the engine 6 in the above description, the present invention is applicable not only to various types of engines but also to various types of noise generated by other industrial equipment, and the accumulated fluctuation level (dB) and noise level (dB). (A)) is calculated, an evaluation value which is a physical quantity is calculated by the evaluation means 4 using a sound quality evaluation processing map (not shown) set according to the device under test, and it can be effectively used as a noise countermeasure.

【0047】[0047]

【発明の効果】以上のように、請求項1の発明は、評価
する音が時間的変動感を表す累積変動レベルと騒音絶対
値とに分析して求められ、それら2つの物理量の大小に
応じて評価手段が音質評価を行うことができる。
As described above, according to the first aspect of the invention, the sound to be evaluated is obtained by analyzing the cumulative fluctuation level and the absolute noise value, which represent a feeling of temporal fluctuation, and is determined according to the magnitude of these two physical quantities. The evaluation means can perform sound quality evaluation.

【0048】請求項2の発明は、累積変動レベル算出手
段が、変換手段と包絡線変換手段と一次遅れ系応答手段
と変動レベル算出手段と変動レベル累積手段とからなる
ので、時間的変動感がヒトの聴感でのフィーリングに合
うように確実に物理量化でき、音質評価を行うことので
きる。
According to the second aspect of the present invention, since the cumulative fluctuation level calculating means includes the converting means, the envelope converting means, the first-order lag system responding means, the fluctuation level calculating means, and the fluctuation level accumulating means, the temporal fluctuation feeling is generated. The physical quantity can be surely made so as to match the feeling of human hearing, and the sound quality can be evaluated.

【0049】請求項3の発明は、一次遅れ系処理を包絡
線振幅上昇時の時定数よりも下降時の時定数が大となる
定数で処理するので、ヒトの聴感に適合した累積変動レ
ベルの算出に寄与できる。
According to the third aspect of the present invention, since the first-order lag system processing is performed with a constant having a larger time constant when the envelope amplitude rises than the time constant when the envelope amplitude rises, a cumulative fluctuation level suitable for human hearing is obtained. Can contribute to calculation.

【0050】請求項4の発明は、累積変動レベルのオー
バーオール値と騒音レベルのオーバーオール値とに基づ
いて騒音評価を行うので、音質を適正に物理量化し、音
質評価を行うことができる。
According to the fourth aspect of the present invention, since the noise evaluation is performed based on the overall value of the cumulative variation level and the overall value of the noise level, the sound quality can be appropriately converted into a physical quantity and the sound quality can be evaluated.

【0051】請求項5の方法発明は、評価する音を電気
信号に変換してから騒音レベルを算出し、かつ電気信号
から音の時間変動を計測し、同音の時間変動相当の音の
強さの変動レベルのピーク差を合計して累積変動レベル
を算出し、騒音レベルと累積変動レベルとで音質評価を
行うことができる。
According to a fifth aspect of the present invention, the sound level to be evaluated is converted into an electric signal, the noise level is calculated, and the time fluctuation of the sound is measured from the electric signal to determine the sound intensity corresponding to the time fluctuation of the same sound. The cumulative difference level can be calculated by summing the peak differences of the fluctuation levels, and the sound quality can be evaluated based on the noise level and the cumulative fluctuation level.

【0052】請求項6の方法発明は、音の時間変動から
音の大きさを表す包絡線を求め、同包絡線から音の強さ
の包絡線を算出するので、ヒトの聴感に適合した累積変
動レベルの算出に寄与できる。
According to the sixth aspect of the present invention, the envelope representing the loudness of the sound is obtained from the temporal variation of the sound, and the envelope of the sound intensity is calculated from the same envelope. It can contribute to the calculation of the fluctuation level.

【0053】請求項7の方法発明は、音の大きさを表す
包絡線から音の強さの包絡線を一次遅れ系の応答として
処理するので、ヒトの聴感に適合した累積変動レベルの
算出に寄与できる。
According to the seventh aspect of the present invention, the envelope of the sound intensity is processed as the response of the first-order lag system from the envelope representing the loudness of the sound, so that the cumulative fluctuation level suitable for human hearing can be calculated. Can contribute.

【0054】請求項8の発明は、音の強さの包絡線の一
次遅れ処理を、その包絡線振幅上昇時の時定数よりも上
記振幅の下降時の時定数が大となる定数で処理するの
で、ヒトの聴感に適合した累積変動レベルの算出に寄与
できる。
According to the eighth aspect of the present invention, the first-order lag processing of the envelope of the sound intensity is processed with a constant such that the time constant when the envelope amplitude rises is larger than the time constant when the envelope amplitude rises. Therefore, it can contribute to the calculation of the cumulative variation level that is suitable for human hearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態としての音質評価装置の概
略構成図である。
FIG. 1 is a schematic configuration diagram of a sound quality evaluation apparatus as an embodiment of the present invention.

【図2】図1の音質評価装置がエンジンの音圧波形を測
定した際の音圧波形図である。
FIG. 2 is a sound pressure waveform diagram when the sound quality evaluation apparatus of FIG. 1 measures a sound pressure waveform of an engine.

【図3】図1の音質評価装置がエンジンの音圧波形を周
波数弁別した際の弁別後の音圧波形図である。
FIG. 3 is a sound pressure waveform diagram after discrimination when the sound quality evaluation apparatus of FIG. 1 frequency-discriminates the sound pressure waveform of the engine.

【図4】図1の音質評価装置が有する音圧の包絡線算出
機能を説明する音圧波形図である。
FIG. 4 is a sound pressure waveform diagram illustrating a sound pressure envelope calculation function of the sound quality evaluation apparatus of FIG.

【図5】図1の音質評価装置が図3の音圧波形に基き算
出した音の強さの包絡線Ieiの波形図である。
5 is a waveform diagram of a sound intensity envelope I ei calculated by the sound quality evaluation apparatus of FIG. 1 based on the sound pressure waveform of FIG.

【図6】図1の音質評価装置が有する音圧波形の時間遅
れ処理機能を説明する音の強さの波形図である。
6 is a sound intensity waveform diagram for explaining the time delay processing function of the sound pressure waveform included in the sound quality evaluation apparatus of FIG. 1. FIG.

【図7】図1の音質評価装置が図5の音の強さの包絡線
eiに基き算出した時間遅れ処理後の波形図である。
FIG. 7 is a waveform diagram after the time delay processing calculated by the sound quality evaluation apparatus of FIG. 1 based on the sound intensity envelope I ei of FIG.

【図8】図1の音質評価装置が図7の時間遅れ処理後包
絡線に基き算出の波形図を変動レベルFLに変換した
状態の変動レベル波形図である。
8 is a fluctuation level waveform chart in a state in which the sound quality evaluation apparatus of FIG. 1 converts the waveform chart calculated based on the envelope after time delay processing of FIG. 7 into a fluctuation level FL i .

【図9】図1の音質評価装置が有する累積変動レベルの
算出で採用されるヒトの周波数嗜好パターンを考慮した
ウェイトマップの特性線図である。
9 is a characteristic diagram of a weight map in consideration of a human frequency preference pattern adopted in the calculation of the cumulative variation level included in the sound quality evaluation apparatus of FIG.

【図10】図1の音質評価装置が図8の音圧の包絡線に
基き算出した累積変動レベルの値をバンド別に表した線
図である。
10 is a diagram showing, for each band, a value of a cumulative fluctuation level calculated by the sound quality evaluation apparatus of FIG. 1 based on the sound pressure envelope of FIG.

【図11】図1の音質評価装置が用いるエンジン用の音
質評価処理マップの特性線図である。
11 is a characteristic diagram of an engine sound quality evaluation processing map used by the sound quality evaluation apparatus of FIG. 1;

【図12】図1の音質評価装置を用いて騒音対策前と対
策後にそれぞれ行った時間遅れ処理後包絡線に基き算出
の変動レベル波形図の評価事例の説明図である。
FIG. 12 is an explanatory diagram of an evaluation example of a fluctuation level waveform diagram calculated based on an envelope curve after time delay processing performed before and after noise countermeasures using the sound quality evaluation apparatus of FIG. 1;

【図13】ヒトの聴覚の各機能部毎の機能説明ブロック
図である。
FIG. 13 is a functional explanatory block diagram of each functional unit of human hearing.

【符号の説明】[Explanation of symbols]

1 変換手段 2 データ記録部 3 累積変動レベル算出手段 4 騒音レベル算出手段 5 評価手段 7 マイクロホン 8 A/D変換器 11 包絡線変換手段 12 一次遅れ系応答手段 13 変動レベル算出手段 14 変動レベル累積手段 M エンジン音質評価装置 1 conversion means 2 Data recording section 3 Cumulative fluctuation level calculation means 4 Noise level calculation means 5 Evaluation means 7 microphone 8 A / D converter 11 Envelope conversion means 12 Primary delay system response means 13 Fluctuation level calculation means 14 Fluctuation level accumulation means M engine sound quality evaluation device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】評価する音の騒音レベルを計測する騒音レ
ベル算出手段と、上記音の時間変動を計測し、同音の時
間変動相当の音の強さの変動レベルを求め、同変動レベ
ルのピーク差を合計して累積変動レベルを算出した累積
変動レベル算出手段と、予め設定された騒音レベルと累
積変動レベルとの評価点の関係を示す評価手段とから構
成されたことを特徴とする音質評価装置。
1. A noise level calculation means for measuring a noise level of a sound to be evaluated, a time fluctuation of the sound is measured, a fluctuation level of a sound intensity corresponding to the time fluctuation of the same sound is obtained, and a peak of the fluctuation level. Sound quality evaluation characterized by comprising a cumulative fluctuation level calculating means for calculating the cumulative fluctuation level by summing the differences, and an evaluating means for indicating the relationship between preset noise level and cumulative fluctuation level evaluation points. apparatus.
【請求項2】請求項1記載の音質評価装置において、 上記累積変動レベル算出手段は、上記音を電気信号に変
換する変換手段と、上記変換手段からの電気信号を周波
数バンド毎に分離して音圧時間信号を算出し、上記音圧
時間信号を用いて音の強さを表す包絡線を抽出する包絡
線変換手段と、上記包絡線を一次遅れ系の応答として処
理する一次遅れ系応答手段と、上記一次遅れ系の応答と
して処理した音の強さの包絡線を対数表示処理した変動
レベル算出手段と、上記変動レベル算出手段より算出さ
れた変動レベルのピーク差を合計して累積変動レベルを
算出する変動レベル累積手段とからなることを特徴とす
る音質評価装置。
2. The sound quality evaluation apparatus according to claim 1, wherein the cumulative fluctuation level calculation means separates the sound signal into an electric signal and the electric signal from the conversion means for each frequency band. Envelope conversion means for calculating a sound pressure time signal and extracting an envelope representing the strength of sound using the sound pressure time signal, and first-order lag system response means for processing the envelope as a first-order lag system response And a fluctuation level calculation means that performs logarithmic display processing of the envelope of the sound intensity processed as the response of the first-order lag system, and the peak difference of the fluctuation levels calculated by the fluctuation level calculation means are summed to obtain a cumulative fluctuation level. And a fluctuation level accumulating means for calculating.
【請求項3】請求項2記載の音質評価装置において、 上記一次遅れ系応答手段は、音の強さの上記包絡線の一
次系遅れ処理を、その包絡線振幅上昇時の時定数よりも
上記振幅の下降時の時定数が大となる定数で処理したこ
とを特徴とする音質評価装置。
3. The sound quality evaluation apparatus according to claim 2, wherein the first-order delay system response means performs the first-order system delay processing of the envelope of the sound intensity more than the time constant when the envelope amplitude increases. A sound quality evaluation device characterized by being processed with a constant such that the time constant when the amplitude falls is large.
【請求項4】請求項1記載の音質評価装置において、 上記累積変動レベルのオーバーオール値と上記騒音レベ
ルのオーバーオール値とに基づいて騒音評価を行うこと
を特徴とする音質評価装置。
4. The sound quality evaluation apparatus according to claim 1, wherein noise evaluation is performed based on the overall value of the cumulative fluctuation level and the overall value of the noise level.
【請求項5】評価する音を採取して電気信号に変換し、
上記電気信号から騒音レベルを算出し、かつ上記電気信
号から音の時間変動を計測し、同音の時間変動相当の音
の強さの変動レベルのピーク差を合計して累積変動レベ
ルを算出し、上記騒音レベルと上記累積変動レベルとで
上記音の評価を行うことを特徴とする音質評価方法。
5. A sound to be evaluated is collected and converted into an electric signal,
The noise level is calculated from the electric signal, and the time variation of the sound is measured from the electric signal, and the cumulative variation level is calculated by summing the peak differences of the variation levels of the sound intensity corresponding to the time variation of the same sound, A sound quality evaluation method, characterized in that the sound is evaluated based on the noise level and the cumulative variation level.
【請求項6】請求項5記載の音質評価方法において、 上記変動レベルを算出するステップは、上記音の時間変
動から音の大きさを表す包絡線を求め、上記音の大きさ
を表す包絡線から上記音の強さの包絡線を算出するステ
ップを有することを特徴とする音質評価方法。
6. The sound quality evaluation method according to claim 5, wherein in the step of calculating the fluctuation level, an envelope curve representing the loudness of the sound is obtained from the temporal fluctuation of the sound, and the envelope curve representing the loudness of the sound. From the above, there is a step of calculating an envelope curve of the above-mentioned sound intensity.
【請求項7】請求項6記載の音質評価方法において、 上記変動レベルを算出するステップは、上記音の大きさ
を表す包絡線から上記音の強さの包絡線を一次遅れ系の
応答として処理するステップを有することを特徴とする
音質評価方法。
7. The sound quality evaluation method according to claim 6, wherein in the step of calculating the fluctuation level, an envelope curve representing the loudness of the sound is processed as a response of a first-order lag system from an envelope curve representing the loudness of the sound. A sound quality evaluation method, comprising:
【請求項8】請求項7記載の音質評価方法において、 上記変動レベルを算出するステップは、音の強さの上記
包絡線の一次遅れ処理を、その包絡線振幅上昇時の時定
数よりも上記振幅の下降時の時定数が大となる定数で処
理したことを特徴とする音質評価方法。
8. The sound quality evaluation method according to claim 7, wherein in the step of calculating the fluctuation level, the first-order lag processing of the envelope of the sound intensity is performed more than the time constant when the envelope amplitude increases. A sound quality evaluation method, characterized in that the sound quality is evaluated by a constant having a large time constant when the amplitude decreases.
JP2002080514A 2002-03-22 2002-03-22 Sound quality evaluation apparatus and sound quality evaluation method Expired - Fee Related JP3922061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080514A JP3922061B2 (en) 2002-03-22 2002-03-22 Sound quality evaluation apparatus and sound quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080514A JP3922061B2 (en) 2002-03-22 2002-03-22 Sound quality evaluation apparatus and sound quality evaluation method

Publications (2)

Publication Number Publication Date
JP2003279400A true JP2003279400A (en) 2003-10-02
JP3922061B2 JP3922061B2 (en) 2007-05-30

Family

ID=29229516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080514A Expired - Fee Related JP3922061B2 (en) 2002-03-22 2002-03-22 Sound quality evaluation apparatus and sound quality evaluation method

Country Status (1)

Country Link
JP (1) JP3922061B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192620A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Method of evaluating tone quality of device, and apparatus for evaluating tone quality of device
JP2007205727A (en) * 2006-01-30 2007-08-16 Ricoh Co Ltd Sound quality evaluation method of image forming device, and image forming device
JP2013076596A (en) * 2011-09-30 2013-04-25 Isuzu Motors Ltd Derivation method and evaluation method of total evaluation value estimation formula, derivation apparatus and evaluation apparatus of total evaluation value estimation formula, and derivation program and evaluation program of total evaluation value estimation formula
WO2014164341A1 (en) * 2013-03-13 2014-10-09 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by analyzing sound pressure levels
US9094710B2 (en) 2004-09-27 2015-07-28 The Nielsen Company (Us), Llc Methods and apparatus for using location information to manage spillover in an audience monitoring system
US9118960B2 (en) 2013-03-08 2015-08-25 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by detecting signal distortion
US9191704B2 (en) 2013-03-14 2015-11-17 The Nielsen Company (Us), Llc Methods and systems for reducing crediting errors due to spillover using audio codes and/or signatures
US9217789B2 (en) 2010-03-09 2015-12-22 The Nielsen Company (Us), Llc Methods, systems, and apparatus to calculate distance from audio sources
US9264748B2 (en) 2013-03-01 2016-02-16 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by measuring a crest factor
KR101613922B1 (en) 2009-08-06 2016-04-20 엘지전자 주식회사 Calculation device for sound quality index and method using the same
US9680583B2 (en) 2015-03-30 2017-06-13 The Nielsen Company (Us), Llc Methods and apparatus to report reference media data to multiple data collection facilities
US9848222B2 (en) 2015-07-15 2017-12-19 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover
US9924224B2 (en) 2015-04-03 2018-03-20 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094710B2 (en) 2004-09-27 2015-07-28 The Nielsen Company (Us), Llc Methods and apparatus for using location information to manage spillover in an audience monitoring system
US9794619B2 (en) 2004-09-27 2017-10-17 The Nielsen Company (Us), Llc Methods and apparatus for using location information to manage spillover in an audience monitoring system
JP2007192620A (en) * 2006-01-18 2007-08-02 Ricoh Co Ltd Method of evaluating tone quality of device, and apparatus for evaluating tone quality of device
JP2007205727A (en) * 2006-01-30 2007-08-16 Ricoh Co Ltd Sound quality evaluation method of image forming device, and image forming device
KR101613922B1 (en) 2009-08-06 2016-04-20 엘지전자 주식회사 Calculation device for sound quality index and method using the same
US9217789B2 (en) 2010-03-09 2015-12-22 The Nielsen Company (Us), Llc Methods, systems, and apparatus to calculate distance from audio sources
US9250316B2 (en) 2010-03-09 2016-02-02 The Nielsen Company (Us), Llc Methods, systems, and apparatus to synchronize actions of audio source monitors
JP2013076596A (en) * 2011-09-30 2013-04-25 Isuzu Motors Ltd Derivation method and evaluation method of total evaluation value estimation formula, derivation apparatus and evaluation apparatus of total evaluation value estimation formula, and derivation program and evaluation program of total evaluation value estimation formula
US9264748B2 (en) 2013-03-01 2016-02-16 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by measuring a crest factor
US9118960B2 (en) 2013-03-08 2015-08-25 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by detecting signal distortion
US9332306B2 (en) 2013-03-08 2016-05-03 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by detecting signal distortion
WO2014164341A1 (en) * 2013-03-13 2014-10-09 The Nielsen Company (Us), Llc Methods and systems for reducing spillover by analyzing sound pressure levels
US9380339B2 (en) 2013-03-14 2016-06-28 The Nielsen Company (Us), Llc Methods and systems for reducing crediting errors due to spillover using audio codes and/or signatures
US9191704B2 (en) 2013-03-14 2015-11-17 The Nielsen Company (Us), Llc Methods and systems for reducing crediting errors due to spillover using audio codes and/or signatures
US9680583B2 (en) 2015-03-30 2017-06-13 The Nielsen Company (Us), Llc Methods and apparatus to report reference media data to multiple data collection facilities
US9924224B2 (en) 2015-04-03 2018-03-20 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US10735809B2 (en) 2015-04-03 2020-08-04 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US11363335B2 (en) 2015-04-03 2022-06-14 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US11678013B2 (en) 2015-04-03 2023-06-13 The Nielsen Company (Us), Llc Methods and apparatus to determine a state of a media presentation device
US9848222B2 (en) 2015-07-15 2017-12-19 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover
US10264301B2 (en) 2015-07-15 2019-04-16 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover
US10694234B2 (en) 2015-07-15 2020-06-23 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover
US11184656B2 (en) 2015-07-15 2021-11-23 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover
US11716495B2 (en) 2015-07-15 2023-08-01 The Nielsen Company (Us), Llc Methods and apparatus to detect spillover

Also Published As

Publication number Publication date
JP3922061B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3922061B2 (en) Sound quality evaluation apparatus and sound quality evaluation method
EP3166239B1 (en) Method and system for scoring human sound voice quality
KR101330923B1 (en) Method for sound quality analysis of vehicle noise using gammatone filter and apparatus thereof
JPH10267742A (en) Tone quality evaluating device and its method
JP5557286B2 (en) Knocking determination method and apparatus
JP2020186683A (en) Learning device and estimation device
CN108919962B (en) Auxiliary piano training method based on brain-computer data centralized processing
JPH11142231A (en) Noise analyzer
CN114358321A (en) Machine learning detection method for abnormal sound of motor
CN106710602A (en) Acoustic reverberation time estimation method and device
JPH10253440A (en) Device and method for evaluating sound quality
CN111855125B (en) Quantitative evaluation method for automobile door lock closing sound tremor degree
JP6485958B2 (en) Abnormal sound analyzer
JP4176127B2 (en) Exhaust sound quality analysis method
CN113567146A (en) Method for evaluating road noise based on masking effect
JP4590545B2 (en) Acoustic evaluation method and system
Fujii et al. Computer software for identification of noise source and automatic noise measurement
CN115040117B (en) Portable hearing test evaluation method and system
JPH06117912A (en) Method and device for evaluating tone
Gade Room acoustic properties of concert halls: quantifying the influence of size, shape, and absorption area
JP6491050B2 (en) Abnormal sound analyzer
Marshall et al. Metrics including time-varying loudness models to assess the impact of sonic booms and other transient sounds
CN117041847B (en) Adaptive microphone matching method and system for hearing aid
Sottek Improvements in calculating the loudness of time varying sounds
JP6959421B1 (en) Estimator and estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110302

LAPS Cancellation because of no payment of annual fees