JP2003279190A - Device and method for dehumidifying gas - Google Patents

Device and method for dehumidifying gas

Info

Publication number
JP2003279190A
JP2003279190A JP2002076574A JP2002076574A JP2003279190A JP 2003279190 A JP2003279190 A JP 2003279190A JP 2002076574 A JP2002076574 A JP 2002076574A JP 2002076574 A JP2002076574 A JP 2002076574A JP 2003279190 A JP2003279190 A JP 2003279190A
Authority
JP
Japan
Prior art keywords
evaporator
dehumidifying
temperature
air
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002076574A
Other languages
Japanese (ja)
Inventor
Hideo Nishikawa
日出男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2002076574A priority Critical patent/JP2003279190A/en
Publication of JP2003279190A publication Critical patent/JP2003279190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for dehumidifying gas capable of keeping relative humidity of gas after dehumidification in 20-30% level and capable of continuously dehumidifying without changing over flow passage of gas (air or the like). <P>SOLUTION: This device is a heat pump type dehumidifying device including an evaporator of coolant, a compressor, a condenser and a restriction mechanism. The condenser, the evaporator, and a dehumidified gas sending out opening are provided in order from a suction opening along an air flow passage. After temperature of air from the suction opening is raised by heat exchange in the condenser, the air keeps contact on surface of the evaporator to prevent frost formation and is blown out from the sending out opening with humidity in the air condensed and removed. This method is to continuously dehumidify without changing an air flow passage with keeping temperature of coolant in the evaporator 0°C or less with using the device. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被除湿気体たとえ
ば空気を、相対湿度:20%〜30%にまで除湿するこ
とができかつ、空気流通経路を切り換えることなく着霜
を抑えて連続運転が可能な、気体の除湿装置およびそれ
を用いる除湿方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is capable of dehumidifying an object to be dehumidified, such as air, to a relative humidity of 20% to 30%, and suppresses frost formation without switching the air flow path to allow continuous operation. The present invention relates to a gas dehumidifying device and a dehumidifying method using the same.

【0002】[0002]

【従来の技術】冷媒の圧縮機、凝縮器、絞り機構(膨張
弁)、および蒸発器を有するヒートポンプ方式の除湿装
置が知られている。このヒートポンプ方式の除湿装置に
あっては、被除湿気体たとえば空気を冷媒の蒸発器にお
いて冷却して空気が含有する水分を凝縮させて除去する
過程を採る。蒸発器において多湿空気と熱交換して高温
となった冷媒は圧縮機によって圧縮され、次いで、凝縮
器において、蒸発器で冷却され低温となった除湿後の空
気によって冷却・凝縮され、絞り機構(膨張弁)におい
て膨張せしめられ温度降下し蒸発器で多湿空気と熱交換
し気化するサイクルを採る。
2. Description of the Related Art A heat pump type dehumidifying device having a refrigerant compressor, a condenser, a throttle mechanism (expansion valve), and an evaporator is known. In this heat pump type dehumidifying device, a process of cooling the dehumidified object such as air in a refrigerant evaporator to condense and remove water contained in the air is taken. The refrigerant that has become high temperature by exchanging heat with the humid air in the evaporator is compressed by the compressor, and then is cooled and condensed by the dehumidified air that has been cooled by the evaporator and becomes low temperature in the condenser. The expansion valve) causes the temperature to drop and the evaporator to exchange heat with humid air to vaporize.

【0003】この従来の除湿装置においては、被除湿気
体たとえば空気中の水分を凝縮(液化)・除去する蒸発
器表面に空気中の水分が霜なって付着し或いは液化され
た(結露)水分が氷結して蒸発器における熱交換能を低
下させるから、除霜のための電気ヒーターを装備した
り、冷媒の循環経路を切り換えて圧縮機からの高温冷媒
を直接蒸発器に送給し除霜するなどの手段が採られてい
た。また、空気の流通経路を逆転させて、凝縮器で空気
を昇温しこの高温空気によって一定時間蒸発器の除霜を
行うことも知られている。
In this conventional dehumidifier, moisture in the air is frosted and adheres to the surface of an evaporator for condensing (liquefying) / removing moisture in the dehumidified substance, for example, liquefied (condensed) moisture. Since it freezes and reduces the heat exchange capacity in the evaporator, it is equipped with an electric heater for defrosting, or the circulating path of the refrigerant is switched to feed the hot refrigerant from the compressor directly to the evaporator for defrosting. Etc. were adopted. It is also known that the air flow path is reversed, the temperature of the air is raised by the condenser, and the hot air defrosts the evaporator for a certain period of time.

【0004】[0004]

【発明が解決しようとする課題】電気ヒーター等の熱源
によって蒸発器表面の霜や氷を融解する除霜手段を採る
場合、電気ヒーター等の機器を装備する必要があり、除
湿装置の構造が複雑になるのみならずコストを上昇せし
めるとともにエネルギー効率の低下を招く。また、被除
湿気体たとえば空気の流通経路を逆転させて蒸発器表面
の霜や氷を融解する除霜手段を採るときは、空気の流通
経路を逆転させて除霜を行っている間は除湿能力が低下
するので、連続して安定した除湿を行うことができない
問題がある。
When the defrosting means for melting the frost or ice on the surface of the evaporator is adopted by the heat source such as the electric heater, it is necessary to equip the equipment such as the electric heater and the dehumidifying device has a complicated structure. Not only does this increase cost, but it also leads to lower energy efficiency. When the dehumidifying means for melting the frost or ice on the surface of the evaporator by reversing the flow path of the object to be dehumidified, such as air, is used, the dehumidifying capacity is maintained while the air flow path is reversed and defrosting is performed. Is decreased, there is a problem that continuous and stable dehumidification cannot be performed.

【0005】さらに、従来技術における共通した問題と
して、除湿後の相対湿度:50%〜60%が除湿限界で
あるという問題がある。これは、蒸発器に着霜の問題が
あるので、運転中に頻繁に除霜運転を介在させないため
に、蒸発器における冷媒温度を低く設定できないことに
起因している。
Further, as a common problem in the prior art, there is a problem that the relative humidity after dehumidification: 50% to 60% is the dehumidification limit. This is because the evaporator has a problem of frost formation, and the defrosting operation is not frequently interposed during the operation, so that the refrigerant temperature in the evaporator cannot be set low.

【0006】本発明は、簡潔な装置構成にして、除湿後
の相対湿度を20%〜30%のレベルにすることができ
しかも、被除湿気体たとえば空気の流通経路を切り換え
ることなく連続運転可能な、気体の除湿装置およびそれ
を用いる除湿方法を提供することを目的とする。
According to the present invention, the relative humidity after dehumidification can be set to a level of 20% to 30% with a simple device configuration, and the continuous operation can be performed without switching the flow path of the dehumidified object such as air. An object of the present invention is to provide a gas dehumidifying device and a dehumidifying method using the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の請求項1に記載の発明は、冷媒の蒸発器、圧縮機、凝
縮器、および絞り機構を有するヒートポンプ方式の気体
の除湿装置であって、被除湿気体の吸込み口から被除湿
気体の流通経路に沿って順次、冷媒凝縮器、蒸発器、除
湿気体送出口を配設し、吸込み口からの被除湿気体を先
ず凝縮器で熱交換させて昇温せしめ、次いで、昇温後の
高温被除湿気体を蒸発器に導き、該蒸発器表面で接触さ
せて着霜を防止しつつ被除湿気体中の水分を凝縮・除去
した後送出口から吹出す、一定の気体流通経路で連続的
に除湿運転するよう構成してなる気体の除湿装置であ
る。
The invention according to claim 1 for solving the above-mentioned problems is a heat pump type gas dehumidifier having a refrigerant evaporator, a compressor, a condenser, and a throttle mechanism. Then, a refrigerant condenser, an evaporator, and a dehumidifying body outlet are sequentially arranged along the circulation path of the dehumidifying body from the suction port of the dehumidifying body, and the dehumidifying body from the suction port first exchanges heat with the condenser. To raise the temperature, and then guide the high-temperature moisture-removed object after temperature rise to the evaporator, and contact the surface of the evaporator to prevent frost formation and condense / remove water in the moisture-removed object, and then the outlet It is a gas dehumidifying device configured to continuously perform a dehumidifying operation in a constant gas flow path that is blown out from.

【0008】請求項2に記載の発明は、被除湿気体の吸
込み口から被除湿気体の流通経路に沿って順次冷媒凝縮
器、蒸発器、除湿気体送出口を配設し、吸込み口からの
被除湿気体を先ず凝縮器で熱交換させて昇温せしめ、次
いで、昇温後の高温被除湿気体を蒸発器に導き、該蒸発
器表面で接触させて着霜を防止しつつ被除湿気体中の水
分を凝縮・除去した後送出口から吹出す、一定の気体流
通経路で連続的に除湿運転するよう構成してなる気体の
除湿装置を用いる除湿方法であって、前記蒸発器におけ
る冷媒の温度を、除湿装置運転中常時0℃又はその近傍
の温度以下に維持して運転するようにしたことを特徴と
する気体の除湿方法である。
According to a second aspect of the present invention, a refrigerant condenser, an evaporator, and a dehumidifying body sending-out port are sequentially arranged from the suction port of the dehumidifying body along the flow path of the dehumidifying body, and the object from the suction port is arranged. The dehumidifying body is first heat-exchanged by the condenser to raise the temperature, and then the high-temperature dehumidified body after the temperature rise is guided to the evaporator, and the evaporator surface is contacted to prevent frost formation and prevent A method of dehumidifying using a gas dehumidifier configured to continuously dehumidify in a constant gas flow path after condensing and removing water and then blowing out from a delivery port, wherein the temperature of the refrigerant in the evaporator is The method for dehumidifying gas is characterized in that the dehumidifying device is operated while being maintained at a temperature of 0 ° C. or lower in the vicinity thereof at all times.

【0009】[0009]

【発明の実施の形態】以下、本発明をその好ましい実施
形態に則して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to its preferred embodiments.

【0010】以下の説明は、被除湿気体が空気である場
合について行う。ヒートポンプ方式の除湿装置によって
空気中の水分を取り除く場合、空気の絶対湿度Xkg-w
ater/1kg-airと、蒸発器表面温度を露点とした絶対湿
度Xkg-water/1kg-airとの差が大きいほど除湿が十
分に行われる。従って、蒸発器の表面温度を十分に低く
設定できない従来技術においては、除湿能力に限界があ
った。本発明においては、蒸発器表面温度を、運転サイ
クル中常時0℃或いはその近傍の温度以下に低く設定で
きるから、大きな除湿能力を有する除湿装置および除湿
方法を提供できる。
The following description will be given for the case where the removed moisture object is air. When removing moisture from the air using a heat pump type dehumidifier, the absolute air humidity X kg-w
The greater the difference between the ater / 1kg-air and the absolute humidity Xw kg-water / 1kg-air with the evaporator surface temperature as the dew point, the more sufficient dehumidification is performed. Therefore, in the prior art in which the surface temperature of the evaporator cannot be set sufficiently low, the dehumidifying capacity is limited. In the present invention, the evaporator surface temperature can be set to a low value of 0 ° C. or less in the operation cycle at all times, so that the dehumidifying device and the dehumidifying method having a large dehumidifying ability can be provided.

【0011】図1に、本発明の気体の除湿装置の構成を
示す。図1において、1は筐体であって、ヒートポンプ
を構成する圧縮機5、凝縮器3、絞り機構(膨張弁)
6、蒸発器4、およびこれらの間で冷媒を循環させる配
管を収納している。2は被除湿気体吸込み口であり、こ
の実施形態にあっては、多湿空気の吸込み口であって、
空気の流通経路でみて、凝縮器3の前段に設けられる。
7は除湿気体送出口であって、蒸発器4で熱交換して除
湿された低湿度の空気を吹き出す。
FIG. 1 shows the structure of the gas dehumidifying device of the present invention. In FIG. 1, reference numeral 1 denotes a housing, which is a compressor 5, a condenser 3, and a throttle mechanism (expansion valve) that constitute a heat pump.
6, an evaporator 4, and a pipe for circulating a refrigerant between them are housed. Denoted at 2 is a suction port for the moisture to be removed, and in this embodiment, it is a suction port for humid air,
It is provided upstream of the condenser 3 as viewed in the air flow path.
Dehumidifying body sending-out port 7 blows out low-humidity air dehumidified by heat exchange in the evaporator 4.

【0012】8は送風機であり、被除湿気体吸込み口2
から除湿気体送出口7に至る空気の流通経路を形成せし
めるべく機能する。9は水受け皿であり、蒸発器4表面
で空気中の水分が凝縮(結露)し滴下した水を受容し外
部に排出する。
Reference numeral 8 denotes a blower, which is a suction port 2 for the moisture to be removed.
It functions to form a flow path of air from the dehumidifier outlet 7. Reference numeral 9 denotes a water tray, which receives the water that has condensed in the air on the surface of the evaporator 4 (condensation) and drops, and discharges it to the outside.

【0013】なお、この実施形態においては、絞り機構
6は、図1に示すように、弁としその開閉度によって絞
り度を調節する構成としているけれども、複数のキャピ
ラリーチューブを配設し、温度に応じて切り換える構成
とすることもできる。
In this embodiment, as shown in FIG. 1, the throttling mechanism 6 is formed of a valve and the throttling degree is adjusted by the opening / closing degree of the valve. However, a plurality of capillary tubes are provided to control the temperature. It is also possible to adopt a configuration in which the switching is performed depending on the situation.

【0014】上記構成になる本発明の気体の除湿装置の
動作は、以下の如くである。冷媒の圧縮機5、凝縮器
3、絞り機構6、蒸発器4、およびこれらを連結する配
管によって冷凍サイクルが形成され、この系の中を冷媒
が循環する。冷媒は蒸発器4表面において空気と熱交換
して昇温・気化して圧縮機5に入り昇圧・昇温せしめら
れて凝縮器3に送り込まれる。
The operation of the gas dehumidifying device of the present invention having the above structure is as follows. A refrigeration cycle is formed by the refrigerant compressor 5, the condenser 3, the expansion mechanism 6, the evaporator 4, and the pipes connecting them, and the refrigerant circulates in this system. The refrigerant exchanges heat with the air on the surface of the evaporator 4 to rise in temperature and vaporize into the compressor 5 to be pressurized and raised in temperature and fed into the condenser 3.

【0015】凝縮器3において、高圧・高温の冷媒は被
除湿気体吸込み口2からの多湿空気と熱交換して降温・
液化されてさらに絞り機構6で減圧されて温度降下し蒸
発器4に入る。蒸発器4表面において、凝縮器3で高温
の冷媒との熱交換によって昇温せしめられた空気と接
触、空気を降温して空気中の水分を凝縮(液化)させて
除湿する。蒸発器4で、空気との熱交換で昇温・気化し
た冷媒は、圧縮機5で圧縮されて冷凍サイクルが完結し
これが繰り返される。本発明の気体の除湿装置にあって
は、被除湿気体吸込み口2から除湿気体送出口7への空
気流通経路は切り換えられることなく、所定の冷凍サイ
クルで連続して除湿運転が遂行される。
In the condenser 3, the high-pressure and high-temperature refrigerant exchanges heat with the humid air from the intake port 2 for the moisture to be removed to lower the temperature.
It is liquefied and further decompressed by the throttling mechanism 6 to lower its temperature and enter the evaporator 4. On the surface of the evaporator 4, the condenser 3 comes into contact with the air whose temperature has been raised by heat exchange with the high-temperature refrigerant, and the temperature of the air is lowered to condense (liquefy) the moisture in the air to dehumidify it. The refrigerant whose temperature has been raised and vaporized by heat exchange with air in the evaporator 4 is compressed by the compressor 5 to complete the refrigeration cycle, which is repeated. In the gas dehumidifying device of the present invention, the dehumidifying operation is continuously performed in a predetermined refrigeration cycle without switching the air circulation path from the dehumidified body suction port 2 to the dehumidified body discharge port 7.

【0016】本発明の気体除湿装置における冷凍(除
湿)サイクルを、図2に示すモリエル線図(圧力P−エ
ンタルピーh線図)を用いて、従来技術におけるそれと
比較して説明する。従来の除湿装置にあっては、吸込み
口からの空気は先ず蒸発器表面と接触し、冷却されて空
気中の水分が凝縮(結露)、滴下して除去され、湿度を
低下せしめられる。圧縮機からの高圧・高温の冷媒は凝
縮器で、除湿後の低温空気によって冷却、液化される。
同時に、除湿空気は、冷媒との熱交換によって昇温せし
められる。
The freezing (dehumidifying) cycle in the gas dehumidifying apparatus of the present invention will be described using the Mollier diagram (pressure P-enthalpy h diagram) shown in FIG. 2 in comparison with that in the prior art. In the conventional dehumidifier, the air from the suction port first comes into contact with the surface of the evaporator and is cooled to condense (condensate) the moisture in the air and drop it to remove it, thereby lowering the humidity. The high-pressure, high-temperature refrigerant from the compressor is cooled in the condenser and liquefied by the low-temperature air after dehumidification.
At the same time, the dehumidified air is heated by heat exchange with the refrigerant.

【0017】この従来技術における冷凍(除湿)サイク
ルを第2図で見てみると、冷媒はa−b−c−dのサイ
クルを辿る。しかし、除湿対象の空気の温度が比較的低
い場合は、サイクルにおけるc−d(蒸発器)部分で蒸
発器表面の凝縮(結露)水分が氷結し、蒸発器での熱交
換能力を阻害する。そこで、温風を蒸発器表面に吹き付
けたり、電気ヒーター等で加熱して蒸発器表面に付着し
た霜や氷を融解すると、サイクルはa−b−c’−d’
に移行し、その間除湿能力が低下する。従って、従来技
術においては、霜や氷の融解過程が頻繁に生ずるのを避
けるためには、冷媒温度、蒸発器表面温度を十分に低く
採ることができなかった。
Looking at the freezing (dehumidifying) cycle in this prior art in FIG. 2, the refrigerant follows the cycle of abcd. However, when the temperature of the air to be dehumidified is relatively low, the condensed (condensed) moisture on the evaporator surface freezes at the cd (evaporator) portion in the cycle, which hinders the heat exchange capacity of the evaporator. Therefore, if hot air is blown onto the surface of the evaporator or it is heated with an electric heater or the like to melt frost or ice adhering to the surface of the evaporator, the cycle is ab-c'-d '.
, And the dehumidifying ability decreases during that time. Therefore, in the prior art, the refrigerant temperature and the evaporator surface temperature could not be made sufficiently low in order to avoid frequent frost and ice melting processes.

【0018】ヒートポンプ方式の除湿装置における空気
の除湿量は、空気の絶対湿度Xkg-water/1kg-air
と、蒸発器表面温度tに対応する飽和水蒸気が存在す
るとした場合の絶対湿度Xkg-water/1kg-airとの差
(X−X)に比例する。また、除湿後の空気の絶対
湿度は、Xに漸近する。従って、蒸発器における冷媒
の温度は、可及的に低く設定することが望ましい。上記
従来技術によるときは、冷媒の蒸発温度を十分に低くと
れないことに起因して、除湿後の空気の相対湿度を50
%〜60%以下とすることが困難である。
The dehumidifying amount of air in the heat pump type dehumidifying device is the absolute humidity of air X kg-water / 1 kg-air
When, proportional to the difference between the absolute humidity X w kg-water / 1kg- air when the saturated water vapor corresponding to the evaporator surface temperature t w is that there (X -X w). Moreover, the absolute humidity of the air after dehumidification is asymptotic to X w . Therefore, it is desirable to set the temperature of the refrigerant in the evaporator as low as possible. According to the above conventional technique, the relative humidity of the air after dehumidification is set to 50 due to the fact that the evaporation temperature of the refrigerant cannot be made sufficiently low.
% To 60% or less is difficult.

【0019】本発明の気体の除湿装置およびこれを用い
る除湿方法にあっては、被除湿気体吸込み口2からの空
気は、先ず凝縮器3で高温の冷媒と熱交換して昇温せし
められる。次いで、この高温多湿空気が蒸発器4の表面
で接触し、熱交換されて温度降下する。蒸発器4表面に
は絶えず高温の湿潤空気が吹き付けられ、従来技術によ
っては、蒸発器表面に霜や氷が付着するような条件下で
も、霜や氷は常に融解され蒸発器表面に付着することが
ない。従って、着霜或いは結露が氷結する可能性がある
低い蒸発器表面温度であっても、安定した連続除湿運転
が可能となる。第2図に示すモリエル線図で見ると、従
来技術におけるサイクルa−b−c−dよりも低い、e
−f−g−hのサイクルで連続運転が可能となる。
In the gas dehumidifying apparatus and the dehumidifying method using the same of the present invention, the air from the suction port 2 for the dehumidified substance is first heat-exchanged with the high-temperature refrigerant in the condenser 3 to be heated. Next, the hot and humid air comes into contact with the surface of the evaporator 4 and undergoes heat exchange to lower the temperature. The surface of the evaporator 4 is constantly blown with high-temperature moist air, and according to the conventional technique, the frost and ice are always melted and adhere to the surface of the evaporator even under the condition that frost or ice adheres to the surface of the evaporator. There is no. Therefore, a stable continuous dehumidifying operation can be performed even at a low evaporator surface temperature where frost or dew may freeze. As seen in the Mollier diagram shown in FIG. 2, e which is lower than the cycles a-b-c-d in the prior art.
Continuous operation becomes possible in the cycle of -f-g-h.

【0020】第3図に、本発明の気体の除湿装置におけ
る空気流通経路での空気温度の推移、蒸発器表面温度、
および蒸発器における冷媒温度を、従来技術におけるそ
れと対比して示す。
FIG. 3 shows the transition of the air temperature in the air flow path, the evaporator surface temperature, and the evaporator surface temperature in the gas dehumidifying apparatus of the present invention.
And the refrigerant temperature in the evaporator is shown in contrast to that in the prior art.

【0021】空気の温度は、蒸発器入口から出口に向か
って低下しているが、本発明の気体の除湿装置および除
湿方法によるときは、従来技術におけるよりも高い温度
水準で推移している。冷媒の温度は、第2図におけるc
−d(従来技術)およびg−h(本発明)に対応し、本
発明による場合の方が、冷媒温度を低くとることができ
る。本発明においては、冷媒温度を低く設定できるか
ら、従来の除湿装置におけるよりも蒸発器表面温度が低
温となる。本発明においては、既に説明したように、蒸
発器表面に霜や氷が付着しようとする場合も、常時、凝
縮器3からの高温空気が吹き付けられるから霜や氷が融
解され、着霜がない。
Although the temperature of the air decreases from the inlet to the outlet of the evaporator, it remains at a higher temperature level than in the prior art by the gas dehumidifying apparatus and method of the present invention. The temperature of the refrigerant is c in FIG.
Corresponding to -d (prior art) and gh (present invention), the refrigerant temperature can be lower in the case of the present invention. In the present invention, since the refrigerant temperature can be set low, the evaporator surface temperature becomes lower than that in the conventional dehumidifier. In the present invention, as already described, even when frost or ice is about to adhere to the surface of the evaporator, the high-temperature air from the condenser 3 is constantly blown so that the frost and ice are melted and there is no frost formation. .

【0022】その結果、蒸発器表面の温度tに対応す
る飽和蒸気圧およびその場合の絶対湿度Xkg-water/
1kg-airが低下し、空気の絶対湿度Xkg-water/1kg-a
irとの差が大きくなり、除湿能力が大きくなるとともに
除湿後の空気の湿度を大きく低下させ得る。
As a result, the saturated vapor pressure corresponding to the temperature t w of the evaporator surface and the absolute humidity in that case X w kg-water /
1kg-air decreases, absolute air humidity X kg-water / 1kg-a
The difference from ir becomes large, the dehumidification capacity becomes large, and the humidity of the air after dehumidification can be greatly reduced.

【0023】[0023]

【発明の効果】本発明によれば、簡潔な装置構成にし
て、従来技術によるときの到達相対湿度:50%〜60
%に対し、到達相対湿度:20%〜30%のレベルが可
能となる。また、大きな除湿能力および低湿度の空気送
出を維持した状態で、被除湿気体たとえば空気の流通経
路を切り換えることなく、連続除湿運転が可能である。
而して、相対湿度:20%〜30%の低湿度が要求され
る薬品製造、電子部品製造、コンピューター等の工場へ
の適用が可能である。さらに、冬期の洗濯物の乾燥にも
適用できる。
According to the present invention, the relative relative humidity reached by the prior art is 50% to 60 with a simple device configuration.
%, Reachable relative humidity: levels of 20% to 30% are possible. Further, continuous dehumidification operation can be performed without switching the distribution path of the object to be dehumidified, for example, air, while maintaining a large dehumidifying capacity and low-humidity air delivery.
Thus, the present invention can be applied to the manufacturing of chemicals, the manufacturing of electronic parts, the factories such as computers, which require a low relative humidity of 20% to 30%. Further, it can be applied to dry laundry in winter.

【0024】請求項2に記載の発明によるときは、蒸発
器における冷媒温度を常時0℃以下に設定することによ
り、被除湿気体(空気等)の絶対湿度Xkg-water/1k
g-airと、蒸発器表面温度tに対応する飽和水蒸気が
存在するとした場合の絶対湿度Xkg-water/1kg-air
との差を十分に大きくとることができ、大きな除湿能力
および低い相対湿度レベルの被除湿気体(空気等)の送
出下での連続除湿運転が可能となる。
According to the second aspect of the invention, the absolute humidity X kg-water / 1k of the object to be removed (air, etc.) is set by always setting the refrigerant temperature in the evaporator to 0 ° C. or lower.
g-air and the evaporator surface temperature t absolute humidity in the case where the saturated water vapor is present corresponding to w X w kg-water / 1kg -air
Can be sufficiently large, and continuous dehumidification operation can be performed while delivering a substance to be dehumidified (air or the like) having a large dehumidifying capacity and a low relative humidity level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気体の除湿装置の構成を示す模式図FIG. 1 is a schematic diagram showing the configuration of a gas dehumidifying device of the present invention.

【図2】本発明の気体の除湿装置による冷凍サイクル
を、従来技術によるそれと対比して示すモリエル線図
FIG. 2 is a Mollier diagram showing the refrigeration cycle of the gas dehumidifier of the present invention in comparison with that of the prior art.

【図3】本発明の気体の除湿装置による場合の空気温度
推移、蒸発器表面温度、および冷媒温度を、従来技術に
よるそれと対比して示すグラフ
FIG. 3 is a graph showing changes in air temperature, evaporator surface temperature, and refrigerant temperature in the case of using the gas dehumidifying device of the present invention, in comparison with those in the related art.

【符号の説明】[Explanation of symbols]

1 筐体 2 被除湿気体吸込み口 3 凝縮器 4 蒸発器 5 圧縮機 6 絞り機構 7 除湿気体送出口 8 送風機 9 水受け皿 1 case 2 Suction port for moisture to be removed 3 condenser 4 evaporator 5 compressor 6 Aperture mechanism 7 Dehumidifier outlet 8 blower 9 water saucer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の蒸発器、圧縮機、凝縮器、および
絞り機構を有するヒートポンプ方式の気体の除湿装置で
あって、被除湿気体の吸込み口から被除湿気体の流通経
路に沿って順次冷媒凝縮器、蒸発器、除湿気体送出口を
配設し、吸込み口からの被除湿気体を先ず凝縮器で熱交
換させて昇温せしめ、次いで、昇温後の高温被除湿気体
を蒸発器に導き、該蒸発器表面で接触させて着霜を防止
しつつ被除湿気体中の水分を凝縮・除去した後送出口か
ら吹出す、一定の気体流通経路で連続的に除湿運転する
よう構成してなる気体の除湿装置。
1. A heat pump type gas dehumidifying device having a refrigerant evaporator, a compressor, a condenser, and a throttle mechanism, wherein the refrigerant is sequentially drawn from a suction port of the dehumidified object along a flow path of the dehumidified object. A condenser, an evaporator, and a dehumidifying body outlet are provided, and the dehumidifying body from the suction port is first heat-exchanged by the condenser to raise the temperature, and then the high-temperature dehumidifying body after heating is guided to the evaporator. , Which is configured to be continuously dehumidified in a constant gas flow path after being condensed and removed from the moisture-removed object while being brought into contact with the surface of the evaporator to prevent frost formation and then blown out from the outlet. Dehumidifier for gas.
【請求項2】 被除湿気体の吸込み口から被除湿気体の
流通経路に沿って順次冷媒凝縮器、蒸発器、除湿気体送
出口を配設し、吸込み口からの被除湿気体を先ず凝縮器
で熱交換させて昇温せしめ、次いで、昇温後の高温被除
湿気体を蒸発器に導き、該蒸発器表面で接触させて着霜
を防止しつつ被除湿気体中の水分を凝縮・除去した後送
出口から吹出す、一定の気体流通経路で連続的に除湿運
転するよう構成してなる気体の除湿装置を用いる除湿方
法であって、前記蒸発器における冷媒の温度を、除湿装
置運転中常時実質的に0℃以下に維持して運転するよう
にしたことを特徴とする気体の除湿方法。
2. A refrigerant condenser, an evaporator, and a dehumidifying body outlet are sequentially arranged from the suction port of the dehumidifying unit along the flow path of the dehumidifying unit, and the dehumidifying unit from the suction port is first condensed by the condenser. After heat exchange to raise the temperature, then guide the high-temperature dehumidified object after temperature rise to an evaporator and condense / remove water in the dehumidified object while contacting the evaporator surface to prevent frost formation A dehumidifying method using a gas dehumidifier configured to continuously perform dehumidifying operation in a constant gas flow path, which is blown out from a delivery port, wherein the temperature of the refrigerant in the evaporator is substantially constant during dehumidifier operation. A method for dehumidifying gas, which is characterized in that it is operated while being maintained at 0 ° C or less.
JP2002076574A 2002-03-19 2002-03-19 Device and method for dehumidifying gas Pending JP2003279190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076574A JP2003279190A (en) 2002-03-19 2002-03-19 Device and method for dehumidifying gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076574A JP2003279190A (en) 2002-03-19 2002-03-19 Device and method for dehumidifying gas

Publications (1)

Publication Number Publication Date
JP2003279190A true JP2003279190A (en) 2003-10-02

Family

ID=29227795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076574A Pending JP2003279190A (en) 2002-03-19 2002-03-19 Device and method for dehumidifying gas

Country Status (1)

Country Link
JP (1) JP2003279190A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296276A (en) * 2014-09-01 2015-01-21 中国电器科学研究院有限公司 Environment room working condition adjusting system
CN104807108A (en) * 2015-04-25 2015-07-29 林智勇 Air energy dehumidification device
CN104819533A (en) * 2015-04-25 2015-08-05 林智勇 Intelligent dehumidifying device
CN104976698A (en) * 2014-04-14 2015-10-14 海尔集团公司 Portable air conditioner free of heat exhaustion
CN104296276B (en) * 2014-09-01 2017-01-04 中国电器科学研究院有限公司 A kind of environmental chamber regulating working conditions system
JP6349011B1 (en) * 2017-04-28 2018-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7266328B1 (en) 2022-01-11 2023-04-28 株式会社アースクリーン東北 water intake device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976698A (en) * 2014-04-14 2015-10-14 海尔集团公司 Portable air conditioner free of heat exhaustion
CN104976698B (en) * 2014-04-14 2018-04-27 海尔集团公司 A kind of moveable air conditioner for exempting from heat extraction
CN104296276A (en) * 2014-09-01 2015-01-21 中国电器科学研究院有限公司 Environment room working condition adjusting system
CN104296276B (en) * 2014-09-01 2017-01-04 中国电器科学研究院有限公司 A kind of environmental chamber regulating working conditions system
CN104807108A (en) * 2015-04-25 2015-07-29 林智勇 Air energy dehumidification device
CN104819533A (en) * 2015-04-25 2015-08-05 林智勇 Intelligent dehumidifying device
JP6349011B1 (en) * 2017-04-28 2018-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
WO2018198398A1 (en) * 2017-04-28 2018-11-01 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2018189254A (en) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7266328B1 (en) 2022-01-11 2023-04-28 株式会社アースクリーン東北 water intake device
JP2023102106A (en) * 2022-01-11 2023-07-24 株式会社アースクリーン東北 Water intake device

Similar Documents

Publication Publication Date Title
US7743621B2 (en) Multi-range composite-evaporator type cross-defrosting system
JP3118199B2 (en) Heat pump frost prevention device
CN100579632C (en) Compound high pressure air cooling dehumidification system
US11649974B2 (en) Pre-cooling device dehumidifier
JP2010054136A (en) Dry type desiccant device and air heat source heat pump device
JP2016159218A (en) Dehumidifying drying equipment
US20050066681A1 (en) Frostless heat exchanger and defrosting method thereof
CN107975958B (en) A kind of air-conditioner set and its hot fluoridation cream control method that dehumidifies
KR20180009439A (en) Low temperature dehumidifier
JP2003279190A (en) Device and method for dehumidifying gas
KR100796354B1 (en) The high-temperature dryer which uses Refrigerant cycle system
KR100614280B1 (en) A cooling dehumidification system for low dew point case and cooling dehumidification method
KR102081416B1 (en) A Dehumidifier for drying foods
JP2003279068A (en) Low-humidity dehumidifying device
JP3096673B2 (en) Cold air dryer
KR20130119655A (en) Dehumidified system and method for dehumidification using the system
KR102070685B1 (en) Plume abatement cooling tower and method for controlling thereof
JP2742389B2 (en) Refrigeration dehumidifier
JP2000258020A (en) Freezer/refrigerator
KR102538185B1 (en) cooling dehumidifier
KR100512037B1 (en) Air conditioner
KR20140095158A (en) Clothes dryer
CN218249436U (en) Three-pipe type hot gas bypass low-temperature working condition air-cooled condensation refrigeration dehumidification equipment
KR100474907B1 (en) defrosting method in the heating and cooling apparatus
KR100229651B1 (en) Defrosting method of cooling/heating separation type airconditioner