JP2003279148A - Pressure reducing type fluid heating system - Google Patents

Pressure reducing type fluid heating system

Info

Publication number
JP2003279148A
JP2003279148A JP2003007217A JP2003007217A JP2003279148A JP 2003279148 A JP2003279148 A JP 2003279148A JP 2003007217 A JP2003007217 A JP 2003007217A JP 2003007217 A JP2003007217 A JP 2003007217A JP 2003279148 A JP2003279148 A JP 2003279148A
Authority
JP
Japan
Prior art keywords
gas component
container
gas
decompression
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003007217A
Other languages
Japanese (ja)
Other versions
JP3923017B2 (en
Inventor
Masatoshi Katayama
正敏 片山
Seisuke Ozawa
成介 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2003007217A priority Critical patent/JP3923017B2/en
Publication of JP2003279148A publication Critical patent/JP2003279148A/en
Application granted granted Critical
Publication of JP3923017B2 publication Critical patent/JP3923017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure reducing type fluid heating system for reducing the possibility of reducing a heating medium liquid by exhausting pressure- reduced steam together according to extraction of uncondensed gas. <P>SOLUTION: In this pressure reducing type fluid heating system X, a gas component staying vessel 5 for staying a gas component in a pressure reducing vessel 1 is arranged outside the pressure reducing vessel 1, a gas component transfer passage 4 is arranged for transferring the gas component to the gas component staying vessel 5 from the pressure reducing vessel 1, a condensed water circulating passage 6 is arranged for circulating condensed water stored in the gas component staying vessel 5 in the pressure reducing vessel 1, and a staying gas guiding part 7 is arranged for exhausting the gas component staying in the gas component staying vessel 5 in the atmosphere. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大気圧よりも低い
圧力に維持された減圧室内に熱媒液を収容した減圧容器
を設け、その減圧容器に対し、前記減圧室内の余白スペ
ースを経由するように配管される熱交換用の伝熱管、及
び、前記減圧室内の熱媒液を加熱するための熱媒液加熱
手段を取り付け、前記熱媒液の加熱により前記減圧室内
に発生する蒸気との熱交換で、前記伝熱管内を通流する
被加熱流体を加熱するように構成されている減圧式流体
加熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a decompression container containing a heat transfer liquid in a decompression chamber maintained at a pressure lower than atmospheric pressure, and the decompression container is passed through a blank space in the decompression chamber. A heat transfer tube for heat exchange piped as described above, and a heat medium liquid heating means for heating a heat medium liquid in the decompression chamber are attached, and with steam generated in the decompression chamber by heating the heat medium liquid. The present invention relates to a decompression type fluid heating device configured to heat a fluid to be heated flowing in the heat transfer tube by heat exchange.

【0002】[0002]

【従来の技術】このような減圧式流体加熱装置を使用す
る場合、前記減圧容器内において、前記熱媒液の加熱に
よって不凝縮ガスが発生したり、前記減圧容器の外部か
ら内部へ空気等の不凝縮ガスが漏れ込むようになる。そ
して、この不凝縮ガスを前記外部へ抽き出さないでその
ままにしておくと、前記熱交換の効率が、時間の経過に
つれて悪くなってしまう。そこで、従来は、図4に示す
ように、大気圧よりも低い圧力に維持された状態で熱媒
液Lを収容し、その熱媒液Lを加熱するための熱媒液加
熱手段3が取り付けられ、熱交換用の伝熱管2が余白ス
ペースを経由するように配管された減圧容器1の天井中
央部に開口部1aを形成し、その開口部1aに導管4を
経由して不凝縮ガス等のガスを溜めるガス溜室5や、前
記ガス溜室5に溜まったガスを外部へ排出するための抽
気ポンプ7d等から構成される滞留ガス案内部7を取り
付け、その滞留ガス案内部7を用いて、前記減圧容器1
内に滞留する不凝縮ガスを、前記減圧容器1の外部へ抽
気するようになっている減圧式流体加熱装置Xが提案さ
れていた(例えば、特許文献1参照)。
2. Description of the Related Art In the case of using such a decompression type fluid heating device, non-condensable gas is generated in the decompression container by heating the heating medium liquid, and air from the outside of the decompression container to the inside. Non-condensable gas will leak in. If the non-condensed gas is not extracted to the outside and is left as it is, the efficiency of the heat exchange deteriorates as time passes. Therefore, conventionally, as shown in FIG. 4, the heat medium liquid L is accommodated in a state where the pressure is lower than the atmospheric pressure, and the heat medium liquid heating means 3 for heating the heat medium liquid L is attached. The heat transfer tube 2 for heat exchange is provided with an opening 1a at the center of the ceiling of the decompression container 1 which is routed through the blank space, and a noncondensable gas or the like is passed through the conduit 4 at the opening 1a. Of the gas storage chamber 5 for storing the above gas and a bleeding pump 7d for discharging the gas stored in the gas storage chamber 5 to the outside are attached, and the staying gas guide unit 7 is used. The decompression container 1
A decompression-type fluid heating device X has been proposed in which the non-condensable gas staying inside is extracted to the outside of the decompression container 1 (see, for example, Patent Document 1).

【0003】また、上述の減圧式流体加熱装置Xを運転
制御する場合には、前記不凝縮ガスの抽気を行う時期
を、熱媒液Lの温度と、ガス溜室5におけるガスの温度
との温度差が所定値を超えた時期をもって決定してお
り、前記温度差が前記所定値を超えたときに抽気操作を
行い、前記温度差が前記所定値以下になるまでその抽気
操作を継続していた。この時、熱媒液Lの温度は温度測
定部8b、ガス溜室5におけるガスの温度は温度測定部
8c〜8dにより測定し、これらによる測定結果を制御
装置9に伝達して前記所定値を決定し、抽気の制御を行
っていた。
In the case of controlling the operation of the above decompression type fluid heating apparatus X, the timing of extracting the non-condensable gas is determined by the temperature of the heat transfer medium L and the temperature of the gas in the gas reservoir chamber 5. It is determined when the temperature difference exceeds a predetermined value, and the bleeding operation is performed when the temperature difference exceeds the predetermined value, and the bleeding operation is continued until the temperature difference becomes the predetermined value or less. It was At this time, the temperature of the heat transfer liquid L is measured by the temperature measuring unit 8b, and the temperature of the gas in the gas storage chamber 5 is measured by the temperature measuring units 8c to 8d, and the measurement results are transmitted to the control device 9 to set the predetermined value. It was decided and the bleeding was controlled.

【0004】しかし、上記構成の減圧式流体加熱装置に
おいては、熱媒液Lの加熱に伴って発生する不凝縮ガ
ス、及び、外部から前記減圧容器1内へ漏れ込む空気等
の不凝縮ガスが、前記滞留ガス案内部7によるガス抽き
出しにも拘らず、前記熱媒液Lの加熱により前記減圧室
内に発生する蒸気(以下、減圧蒸気という)の流れに随
伴して、前記伝熱管2の周りへ移動し、その付近に滞留
する傾向にあった。前記不凝縮ガスが前記伝熱管2の周
り付近に滞留すると、その伝熱管2周りに滞留する前記
不凝縮ガスの存在によって、前記減圧蒸気の伝熱管2周
りへの供給が妨害されて、前記伝熱管2内を通流する被
加熱流体に対する前記減圧蒸気からの伝熱が著しく阻害
されるようになる。
However, in the decompression-type fluid heating device having the above-described structure, the noncondensable gas generated by heating the heat transfer medium L and the noncondensable gas such as air leaking into the decompression container 1 from the outside are generated. Despite the gas extraction by the staying gas guide portion 7, the heat transfer tube 2 is accompanied by the flow of steam (hereinafter, referred to as reduced pressure steam) generated in the decompression chamber by heating the heat transfer medium L. Tended to move around and stay in the vicinity. When the non-condensable gas stays around the heat transfer tube 2, the presence of the non-condensed gas that stays around the heat transfer tube 2 hinders the supply of the reduced pressure steam around the heat transfer tube 2 to cause the transfer of the heat. The heat transfer from the reduced pressure steam to the heated fluid flowing in the heat pipe 2 is significantly hindered.

【0005】このように、不凝縮ガスが前記伝熱管2の
周りで滞留する傾向にあるため、前記ガス溜室5に不凝
縮ガスが集まり難くなり、そのため、滞留ガス案内部7
による不凝縮ガスの抽気効率が悪くなるという問題点が
あった。さらに、前記滞留ガス案内部7においては、前
記減圧容器1の外部からの不凝縮ガスの侵入を防止する
ための逆止弁7eを設けるため、この逆止弁7eが抽気
の際の抵抗となって十分な抽気能力を発揮できないとい
う問題点があった。
As described above, since the non-condensable gas tends to stay around the heat transfer tube 2, it becomes difficult for the non-condensable gas to collect in the gas storage chamber 5. Therefore, the stagnant gas guide portion 7 is provided.
However, there was a problem that the extraction efficiency of the non-condensable gas deteriorates. Further, since the staying gas guide portion 7 is provided with a check valve 7e for preventing inflow of non-condensable gas from the outside of the decompression container 1, the check valve 7e serves as resistance during extraction of air. There was a problem that it was not possible to exert sufficient bleeding ability.

【0006】このような問題点を解決するために、図5
に示すように、前記伝熱管2の周囲の一部をその管軸方
向に沿って、通流部A1を一部残存させつつ包み込む包
込体Aを設けると共に、その包込体A内に滞留する滞留
ガスを前記減圧容器1外へ案内自在な滞留ガス案内部7
を設けてある減圧式流体加熱装置Xが提案された(例え
ば、特許文献2参照)。
In order to solve such a problem, FIG.
As shown in FIG. 5, a part of the periphery of the heat transfer tube 2 is provided along the tube axis direction while wrapping the part while the flow-through part A1 is partially left, and is retained in the part A. Staying gas guide portion 7 that can freely guide the staying gas to the outside of the decompression container 1.
A decompression type fluid heating device X provided with is proposed (for example, refer to Patent Document 2).

【0007】このように構成することにより、前記伝熱
管2の周り付近に滞留する不凝縮ガスに、管軸方向に沿
った流れを惹起し、その流れに沿って移動しようとする
前記不凝縮ガスを、前記通流部A1経由で前記包込体A
の内部へ引き込むようになる。前記包込体A内に引き込
まれて滞留する前記不凝縮ガスは、前記減圧容器1外へ
案内自在な滞留ガス案内部7によって、前記減圧容器1
外へ案内されて外部へ有効に抽き出されるようになるの
である。
With this structure, the non-condensable gas that stays in the vicinity of the heat transfer tube 2 is caused to flow in the axial direction of the tube and moves along the flow. Through the flow-through portion A1
Will be pulled inside. The non-condensed gas that is drawn into the encapsulation body A and stays therein is retained by the staying gas guide portion 7 that is freely guided to the outside of the decompression container 1.
It is guided to the outside and effectively extracted to the outside.

【0008】これにより、前記包込体A内に滞留する不
凝縮ガスは、前記滞留ガス案内部7に集まり易くなり、
前記滞留ガス案内部7による不凝縮ガスの抽気効率の優
れた減圧式流体加熱装置を構成することが可能となって
いた。さらに、図5に示した特許文献2に記載の構成で
は、前記滞留ガス案内部7において三方弁7c等の電磁
弁を設けて前記減圧容器1の外部からの不凝縮ガスの侵
入を防止する為に抽気の際の抵抗となっていた逆止弁が
不要となり、これによって十分な抽気能力を発揮するこ
とができるのである。
As a result, the non-condensable gas staying in the encapsulation body A easily collects in the staying gas guide portion 7,
It has become possible to construct a decompression type fluid heating device having an excellent extraction efficiency of non-condensable gas by the staying gas guide portion 7. Further, in the configuration described in Patent Document 2 shown in FIG. 5, in order to prevent inflow of non-condensable gas from the outside of the decompression container 1 by providing a solenoid valve such as a three-way valve 7c in the stagnant gas guide portion 7. Therefore, the check valve, which has been a resistance during bleeding, is no longer necessary, and thus a sufficient bleeding ability can be exhibited.

【0009】[0009]

【特許文献1】特公昭52−47083号公報(第1
図)
[Patent Document 1] Japanese Patent Publication No. 52-47083 (first
(Figure)

【特許文献2】特開平9−119709号公報(図1)[Patent Document 2] Japanese Patent Laid-Open No. 9-119709 (FIG. 1)

【0010】[0010]

【発明が解決しようとする課題】上述したように、特許
文献1に記載の構成において、前記不凝縮ガスの抽気を
行う時期は、熱媒液の温度と、ガス溜室におけるガスの
温度との温度差が所定値を超えた時に抽気操作を行い、
前記温度差が前記所定値以下になるまでその抽気操作を
継続している。ここで、前記ガス溜室における温度セン
サー部位において、不凝縮ガスが前記温度センサー部位
を覆う状態になれば減圧蒸気の流動がなくなって温度が
低下して熱媒液の温度との温度差が発生してこの温度差
が所定値を越えた時に抽気操作が行われるのであるが、
抽気能力を上げるために前記温度差の設定幅を小さくす
ると前記抽気ポンプのオンオフの切替が頻繁になるハン
チング現象が起こる。また、前記温度差の設定幅を大き
くすると抽気の頻度が減少するために抽気効率が低下す
る。そのため、前記温度差の設定幅を大きくすると共に
前記温度差が所定値を超えるとタイマーにより所定時間
不凝縮ガスを強制的に排出する構成とすることが考えら
れる。しかし、この場合は、ハンチング現象が解消され
ると共に抽気効率も向上するが、不凝縮ガスと一緒に減
圧蒸気も排出してしまうため、熱媒液が減少するという
問題点があった。
As described above, in the structure described in Patent Document 1, the time for extracting the non-condensable gas is determined by the temperature of the heat transfer liquid and the temperature of the gas in the gas reservoir. When the temperature difference exceeds a predetermined value, perform bleed operation,
The extraction operation is continued until the temperature difference becomes equal to or less than the predetermined value. Here, when the non-condensable gas covers the temperature sensor part in the temperature sensor part in the gas reservoir, the pressure reducing steam stops flowing and the temperature decreases, causing a temperature difference from the temperature of the heat transfer liquid. And when this temperature difference exceeds a predetermined value, the bleeding operation is performed,
When the set width of the temperature difference is reduced in order to improve the extraction capacity, a hunting phenomenon occurs in which the extraction pump is frequently switched on and off. Further, when the setting range of the temperature difference is increased, the extraction efficiency is reduced because the extraction frequency is reduced. Therefore, it is conceivable that the setting range of the temperature difference is increased and the timer is configured to forcibly discharge the non-condensable gas for a predetermined time when the temperature difference exceeds a predetermined value. However, in this case, although the hunting phenomenon is eliminated and the extraction efficiency is improved, the reduced pressure steam is also discharged together with the non-condensed gas, so that there is a problem that the heat transfer liquid is reduced.

【0011】また、特許文献2に記載の構成では、前記
伝熱管2と前記滞留ガス案内部7との間に、ガス成分の
温度(第一温度)を測定する第一温度測定部8aを設け
るとともに、前記熱媒液の温度(第二温度)を測定する
第二温度測定部8bを設け、前記第一温度と前記第二温
度との温度差に基づいて、前記減圧容器1内からガスを
所定時間引き抜く抽気操作を行う制御装置9を設けた構
成となっている(図5参照)ため、上述したタイマーに
より所定時間不凝縮ガスを強制的に排出する構成と同様
の構成となり、この場合においても、不凝縮ガスと一緒
に減圧蒸気も排出してしまうため、熱媒液が減少すると
いう問題点があった。
Further, in the structure described in Patent Document 2, a first temperature measuring section 8a for measuring the temperature (first temperature) of the gas component is provided between the heat transfer tube 2 and the stagnant gas guide section 7. In addition, a second temperature measuring unit 8b that measures the temperature (second temperature) of the heat transfer liquid is provided, and gas is removed from the inside of the decompression container 1 based on the temperature difference between the first temperature and the second temperature. Since the control device 9 for performing the extraction operation for extracting for a predetermined time is provided (see FIG. 5), the configuration is the same as the configuration for forcibly discharging the non-condensed gas for a predetermined time by the timer described above. However, since the reduced pressure steam is also discharged together with the non-condensable gas, there is a problem that the heat transfer liquid is reduced.

【0012】このように、不凝縮ガスだけでなく内部の
減圧蒸気も排出されて減圧容器内の熱媒液量が減少する
と、熱媒液の補充が必要となったり、やがては空焚状態
になって減圧式流体加熱装置の熱焼損が発生する虞があ
る。
As described above, when not only the non-condensable gas but also the depressurized vapor inside is discharged and the amount of the heating medium liquid in the depressurization container decreases, it becomes necessary to replenish the heating medium liquid, and eventually it becomes an empty state. As a result, there is a risk that the decompression type fluid heating device will be burnt out.

【0013】従って、本発明の目的は、不凝縮ガスの抽
出に伴って減圧蒸気も一緒に排出されて熱媒液が減少し
てしまう虞の少ない減圧式流体加熱装置を提供すること
にある。
Accordingly, it is an object of the present invention to provide a decompression type fluid heating apparatus in which the reduced pressure vapor is discharged together with the extraction of the non-condensed gas and the heat medium liquid is reduced.

【0014】[0014]

【課題を解決するための手段】〔構成1〕この目的を達
成するため、請求項1に係る発明の特徴構成は、大気圧
よりも低い圧力に維持された減圧室内に熱媒液を収容し
た減圧容器を設け、その減圧容器に対し、前記減圧室内
の余白スペースを経由するように配管される熱交換用の
伝熱管、及び、前記減圧室内の熱媒液を加熱するための
熱媒液加熱手段を取り付け、前記熱媒液の加熱により前
記減圧室内に発生する蒸気との熱交換で、前記伝熱管内
を通流する被加熱流体を加熱するように構成されている
減圧式流体加熱装置であって、前記減圧容器内のガス成
分を滞留させるガス成分滞留容器を前記減圧容器外部に
設け、前記減圧容器から前記ガス成分滞留容器に前記ガ
ス成分を移送するガス成分移送路を設け、前記ガス成分
滞留容器に貯留される凝縮水を前記減圧容器内に循環さ
せる凝縮水循環路を設け、さらに、前記ガス成分滞留容
器に滞留した前記ガス成分を大気中へ排出する滞留ガス
案内部を設けてある点にあり、その作用効果は以下の通
りである。
[Means for Solving the Problems] [Structure 1] In order to achieve this object, the characterizing structure of the invention according to claim 1 is that a heat transfer liquid is contained in a decompression chamber maintained at a pressure lower than atmospheric pressure. A decompression container is provided, and for the decompression container, a heat transfer tube for heat exchange that is routed through a blank space in the decompression chamber, and a heating medium liquid heating for heating the heating medium liquid in the decompression chamber. A decompression type fluid heating device configured to heat the fluid to be heated flowing through the heat transfer tube by heat exchange with steam generated in the decompression chamber by heating the heating medium liquid. There, a gas component retention container for retaining the gas component in the decompression container is provided outside the decompression container, and a gas component transfer path for transferring the gas component from the decompression container to the gas component retention container is provided. Stored in ingredient retention container Is provided with a condensed water circulation path for circulating condensed water in the decompression container, and further a staying gas guide part for discharging the gas component staying in the gas component staying container into the atmosphere is provided. The effects are as follows.

【0015】〔作用効果1〕つまり、前記減圧容器内の
ガス成分を滞留させるガス成分滞留容器を前記減圧容器
外部に設けてあると、不凝縮ガス及び減圧蒸気といった
凝縮ガスから成るガス成分をガス成分滞留容器内で滞留
させることができる。また、前記減圧容器から前記ガス
成分滞留容器に前記ガス成分を移送するガス成分移送路
を設けてあると、前記ガス成分移送路により前記減圧容
器内のガス成分を前記減圧容器から前記ガス成分滞留容
器に移送することができる。
[Operation 1] That is, when a gas component retention container for retaining the gas component in the decompression container is provided outside the decompression container, a gas component composed of condensed gas such as non-condensed gas and decompressed vapor is gasified. It can be retained in the component retention container. In addition, when a gas component transfer path for transferring the gas component from the decompression container to the gas component retention container is provided, the gas component in the decompression container is retained from the decompression container by the gas component transfer path. It can be transferred to a container.

【0016】この時、ガス成分中に含まれる減圧蒸気の
一部は、前記ガス成分移送路を移流する際に前記ガス成
分移送路内で放熱して凝縮することにより凝縮水とな
り、さらに、残りの凝縮しない減圧蒸気は前記ガス成分
滞留容器内に移送された後、前記ガス成分滞留容器内の
壁面等で放熱して凝縮水となる。このようにして生成し
た凝縮水は前記ガス成分滞留容器に貯留される。依っ
て、前記ガス成分滞留容器に貯留される凝縮水を前記減
圧容器内に循環させる凝縮水循環路を設けてあると、前
記ガス成分滞留容器に貯留された凝縮水は前記凝縮水循
環路を経由して前記減圧容器内へ循環させることができ
る。
At this time, a part of the depressurized steam contained in the gas component becomes condensed water by radiating heat and condensing in the gas component transfer passage when advancing through the gas component transfer passage, and further remains. The non-condensed depressurized vapor is transferred into the gas component retention container and then radiates heat on the wall surface or the like in the gas component retention container to become condensed water. The condensed water thus generated is stored in the gas component retention container. Therefore, when a condensed water circulation path for circulating condensed water stored in the gas component retention container in the decompression container is provided, condensed water stored in the gas component retention container passes through the condensed water circulation path. And can be circulated into the reduced pressure container.

【0017】さらに、前記ガス成分滞留容器に滞留した
前記ガス成分を大気中へ排出する滞留ガス案内部を設け
てあると、前記ガス成分滞留容器内に滞留しているガス
成分を大気中へ排出することができる。この時、大気中
へ排出される前記ガス成分は、概ね不凝縮ガスである。
これは、上述したように凝縮ガスは前記ガス成分移送路
及び前記ガス成分滞留容器にて凝縮して凝縮水となるた
め、前記ガス成分滞留容器内ではガスとしては存在し難
くなるからである。従って、前記伝熱管における熱交換
効率の低下の原因となる不凝縮ガスを減圧式流体加熱装
置外部へと排出することができるため、前記伝熱管内を
通流する被加熱流体に対する前記減圧蒸気からの伝熱が
著しく阻害されるということが抑止されるようになる。
Further, when a staying gas guide portion for discharging the gas component staying in the gas component holding container into the atmosphere is provided, the gas component staying in the gas component holding container is discharged into the atmosphere. can do. At this time, the gas component discharged into the atmosphere is generally a non-condensable gas.
This is because, as described above, the condensed gas is condensed in the gas component transfer path and the gas component retention container to become condensed water, so that it is difficult for the condensed gas to exist as a gas in the gas component retention container. Therefore, since the non-condensable gas that causes a decrease in heat exchange efficiency in the heat transfer tube can be discharged to the outside of the decompression type fluid heating device, the decompressed steam for the heated fluid flowing in the heat transfer tube It becomes possible to prevent the heat transfer from being significantly hindered.

【0018】このように、不凝縮ガスや、減圧蒸気とい
った凝縮ガスから成るガス成分をガス成分滞留容器内で
滞留させ、凝縮ガスを凝縮水として前記減圧容器に循環
させ、さらに、大気中へ排出されるガス成分は概ね不凝
縮ガスであるため、減圧蒸気が大気中に排出される虞が
少なくなり、依って熱媒液が減少してしまう虞の少ない
減圧式流体加熱装置を提供することができる。このた
め、熱媒液を補充する頻度が減少し、空焚による熱焼損
の発生の虞が減少する。
As described above, the gas component composed of the condensed gas such as the non-condensed gas or the reduced pressure vapor is retained in the gas component retention container, the condensed gas is circulated as condensed water in the reduced pressure container, and further discharged into the atmosphere. Since the gas components to be generated are generally non-condensable gases, it is possible to provide a decompression-type fluid heating device in which there is little risk that the decompressed vapor will be discharged into the atmosphere, and therefore the heat medium liquid will lessen. it can. Therefore, the frequency of replenishing the heating medium liquid is reduced, and the risk of thermal burnout due to empty heating is reduced.

【0019】ここで、上述した特許文献1に記載の減圧
式流体加熱装置の構成では、前記ガス溜室で凝縮した凝
縮水を減圧容器に循環させる経路(導管)と、ガス成分
を減圧容器から前記ガス溜室へ移流させる経路(導管)
とは同じである。そのため、減圧容器に循環する際の凝
縮水が導管内に存在する場合は、ガス成分が前記ガス溜
室へ移流する際の抵抗となって抽気効率が低下する虞が
あるが、本発明の減圧式流体加熱装置の構成によれば、
凝縮水を減圧容器内に循環させる経路(凝縮水循環路)
と、前記減圧容器からガス成分が移流する経路(ガス成
分移送路)とは異なる経路となっているため、減圧容器
に循環する際の凝縮水が抵抗となって抽気効率が低下す
る虞はほとんどなくなるのである。
Here, in the structure of the decompression type fluid heating apparatus described in the above-mentioned Patent Document 1, a path (conduit) for circulating condensed water condensed in the gas reservoir chamber to the decompression container and a gas component from the decompression container. Path (conduit) for advancing to the gas storage chamber
Is the same as. Therefore, when condensed water is circulated in the decompression container in the conduit, the gas component may become a resistance when advancing to the gas reservoir and the extraction efficiency may be reduced. According to the configuration of the fluid heating device,
A route for circulating condensed water in the decompression container (condensed water circulation path)
Since it is a path different from the path (gas component transfer path) through which the gas component is advected from the decompression container, condensed water when circulating in the decompression container becomes a resistance, and the extraction efficiency is almost likely to be reduced. It will disappear.

【0020】〔構成2〕請求項2に係る発明の特徴構成
は、上記構成1において、前記ガス成分移送路を冷却す
る冷却手段を設けてある点にあり、その作用効果は以下
の通りである。
[Structure 2] The characteristic structure of the invention according to claim 2 is that in the above structure 1, a cooling means for cooling the gas component transfer path is provided, and the operation and effect thereof are as follows. .

【0021】〔作用効果2〕つまり、前記減圧容器から
ガス成分滞留容器にガス成分を移送するガス成分移送路
において、そのガス成分移送路を積極的に冷却する冷却
手段が設けてあれば、ガス成分中に含まれる減圧蒸気
は、ガス成分移送路を移流する際、より一層確実に効率
良く放熱して凝縮水となり、減圧蒸気が大気中に排出さ
れる虞はさらに減少する。また、ガス成分移送路におい
て減圧蒸気の凝縮が効率良く行われることは、言い換え
ると、ガス成分移送路の長さを短くすることが可能とな
ることである。ガス成分移送路の長さを短くすれば、そ
れだけコンパクトとなり、さらに、ガス成分移送路が短
くなれば、ガス成分移送路内に存在する不凝縮ガスを大
気中へ排出するための滞留ガス案内部もコンパクトにす
ることができ、装置全体を小型化することが可能とな
り、たとえ装置全体をケーシングで覆う場合にも、全体
を小型化することができる。
[Effect 2] That is, in the gas component transfer path for transferring the gas component from the decompression container to the gas component retention container, if a cooling means for positively cooling the gas component transfer path is provided, the The reduced pressure steam contained in the components more reliably and efficiently dissipates heat to be condensed water when advancing through the gas component transfer path, and the possibility that the reduced pressure steam is discharged into the atmosphere is further reduced. In addition, the fact that the depressurized vapor is efficiently condensed in the gas component transfer passage means that the length of the gas component transfer passage can be shortened. If the length of the gas component transfer path is shortened, it becomes compact, and further, if the gas component transfer path is shortened, a stagnant gas guide for discharging the non-condensable gas existing in the gas component transfer path to the atmosphere. Can be made compact, and the entire device can be downsized. Even when the entire device is covered with a casing, the entire device can be downsized.

【0022】〔構成3〕請求項3に係る発明の特徴構成
は、上記構成1または2において、前記凝縮水循環路
は、一端側が前記ガス成分滞留容器底部に連通接続して
あると共に、他端側が前記減圧容器内に開口し凝縮水を
放流可能な放流用端部を形成してあるU字管である点に
あり、その作用効果は以下の通りである。
[Structure 3] A characteristic structure of the invention according to claim 3 is that in the structure 1 or 2, one end side of the condensed water circulation passage is connected to the bottom portion of the gas component retention container and the other end side thereof is connected. It is a U-shaped tube which is formed in the decompression container and has a discharge end capable of discharging condensed water, and its action and effect are as follows.

【0023】〔作用効果3〕つまり、前記凝縮水循環路
は、一端側が前記ガス成分滞留容器底部に連通接続して
あると共に、他端側が前記減圧容器内に開口し凝縮水を
放流可能な放流用端部を形成してあるU字管であれば、
前記ガス成分滞留容器に貯留されている凝縮水を前記U
字管の一端側から流出させて他端側の放流用端部から前
記減圧容器内に排出することができる。
[Effect 3] That is, one end of the condensed water circulation path is connected to the bottom of the gas component retention container and the other end is opened into the decompression container for discharging the condensed water. If it is a U-shaped tube with an end formed,
The condensed water stored in the gas component retention container is supplied to the U
It can flow out from one end side of the character pipe and can be discharged into the decompression container from the discharge end portion on the other end side.

【0024】この時、前記放流用端部は、前記U字管の
最低部よりも上部で開口しているため、前記ガス成分滞
留容器から前記U字管に流入した凝縮水は前記U字管の
最低部から前記放流用端部の高さに至るまで凝縮水が溜
まることになる。そして、この状態で前記ガス成分滞留
容器から前記U字管に凝縮水が流入すると、他端側に形
成された放流用端部から凝集水が押出されるように前記
減圧容器内に排出されて凝縮水を前記減圧容器内に循環
させることができる。
At this time, since the discharge end is open above the lowest portion of the U-shaped pipe, the condensed water flowing into the U-shaped pipe from the gas component retention container is the U-shaped pipe. Condensed water is accumulated from the lowest part to the height of the discharge end. Then, when condensed water flows into the U-shaped tube from the gas component retention container in this state, the condensed water is discharged into the decompression container so as to be extruded from the discharge end formed on the other end side. Condensed water can be circulated in the decompression container.

【0025】また、この前記U字管の中に溜まる凝縮水
が蓋の役目を果たす為、前記減圧容器内のガス成分が前
記ガス成分移送路を経由しないで前記U字管を経て前記
ガス成分滞留容器に移送するのを防止できるため、減圧
蒸気を確実に前記ガス成分移送路へ移送して前記ガス成
分移送路内及び前記ガス成分滞留容器内で凝縮させるこ
とができ、この時得られた凝縮水は前記U字管を経て前
記減圧容器内へと循環させることができる。そのため、
減圧蒸気を凝縮水として確実に回収できるようになるた
め、熱媒水の減少の防止効果を高めることができる。
Further, since the condensed water accumulated in the U-shaped pipe serves as a lid, the gas component in the decompression container does not pass through the gas component transfer path but passes through the U-shaped pipe and the gas component. Since it can be prevented from being transferred to the retention container, the reduced pressure vapor can be reliably transferred to the gas component transfer path and condensed in the gas component transfer path and the gas component retention container. Condensed water can be circulated through the U-tube into the decompression container. for that reason,
Since the depressurized steam can be reliably recovered as condensed water, the effect of preventing the reduction of the heat transfer water can be enhanced.

【0026】[0026]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明するが、本発明は、これらによって限定
されるものではない。尚、図面において従来例と同一の
符号で表示した部分は同一又は相当の部分を示してい
る。この実施形態は、具体的には、旅館等で使用される
給湯装置として使用されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto. In the drawings, the portions denoted by the same reference numerals as the conventional example indicate the same or corresponding portions. Specifically, this embodiment is used as a hot water supply device used in an inn or the like.

【0027】図1に、本発明の減圧式流体加熱装置Xの
概略図を示す。減圧式流体加熱装置Xには、大気圧より
も低い圧力に維持された減圧室内に熱媒液L(具体的に
は、水)を収容した減圧容器1を設け、その減圧容器1
に対しては、前記減圧室内の余白スペースを経由するよ
うに配管される多数本の伝熱管2が、熱交換部として取
り付けられている。また、前記減圧容器1に対しては、
前記減圧室内の熱媒液Lを加熱するための熱媒液加熱手
段3(具体的には、前記熱媒液L内に沈むように配置さ
れる燃焼室内で、燃焼炎を発生するように構成されたバ
ーナー)が取り付けられている。そして、前記熱媒液加
熱手段3による熱媒液Lの加熱によって前記減圧室内に
発生する前記熱媒液Lの蒸気と、前記伝熱管2内を通流
する被加熱流体(具体的には、給湯用の水)との熱交換
によって前記被加熱流体が、冷水の状態から熱湯の状態
に加熱されるようになっている。
FIG. 1 shows a schematic diagram of a reduced pressure fluid heating apparatus X of the present invention. The decompression-type fluid heating device X is provided with a decompression container 1 containing a heat medium liquid L (specifically, water) in a decompression chamber maintained at a pressure lower than atmospheric pressure.
On the other hand, a large number of heat transfer tubes 2 that are routed through the blank space in the decompression chamber are attached as heat exchange sections. Further, for the decompression container 1,
Heat medium liquid heating means 3 for heating the heat medium liquid L in the decompression chamber (specifically, configured to generate a combustion flame in the combustion chamber arranged to be submerged in the heat medium liquid L). Burner) is installed. Then, the vapor of the heat medium liquid L generated in the decompression chamber by heating the heat medium liquid L by the heat medium liquid heating means 3 and the heated fluid flowing through the heat transfer tube 2 (specifically, The fluid to be heated is heated from the state of cold water to the state of hot water by heat exchange with hot water.

【0028】本実施例においては、前記減圧容器1は、
伝熱管2の取付部位において突出した筒状部11を形成
した構成を例示している。前記筒状部11には開口部1
aが形成され、その開口部1aと連通するように前記減
圧容器1に対して管台4aが取り付けられ、前記管台4
aと後述するガス成分滞留容器5とを連通接続する配管
4bを設けている。このようにして、前記減圧容器1か
ら前記ガス成分滞留容器5にガス成分を移送するガス成
分移送路4は前記管台4a及び前記配管4bから構成さ
れている。
In this embodiment, the decompression container 1 is
The structure which formed the cylindrical part 11 which protruded in the attachment part of the heat transfer tube 2 is illustrated. The cylindrical portion 11 has an opening 1
a is formed, and a nozzle 4a is attached to the decompression container 1 so as to communicate with the opening 1a.
A pipe 4b is provided for connecting and connecting a with a gas component retention container 5 described later. In this way, the gas component transfer path 4 for transferring the gas component from the decompression container 1 to the gas component retention container 5 is composed of the nozzle base 4a and the pipe 4b.

【0029】前記ガス成分移送路4から移送されてきた
前記ガス成分は、ガス成分滞留容器5内に一旦滞留させ
られる。前記ガス成分は、不凝縮ガスや、減圧蒸気とい
った凝縮ガスから成り、減圧蒸気は主に前記ガス成分移
送路4の前記配管4b内部や前記ガス成分滞留容器5の
壁面等で放熱して凝縮水となる。この時生成した凝縮水
は、前記ガス成分滞留容器5の底部に備えられた凝縮水
循環路6であるU字管6aにより、前記減圧容器1内に
返送して循環させることができる。この時、前記凝縮水
循環路6はU字管6aに限らず、前記ガス成分滞留容器
5に貯留される凝縮水を前記減圧容器1内に循環させる
構成であれば適用可能である。
The gas component transferred from the gas component transfer path 4 is once retained in the gas component retention container 5. The gas component is composed of a non-condensed gas or a condensed gas such as depressurized steam, and the depressurized steam dissipates heat mainly in the pipe 4b of the gas component transfer path 4 or on the wall surface of the gas component retention container 5 to condense water. Becomes The condensed water generated at this time can be returned and circulated in the decompression container 1 by a U-shaped pipe 6a which is a condensed water circulation path 6 provided at the bottom of the gas component retention container 5. At this time, the condensed water circulation path 6 is not limited to the U-shaped pipe 6a, but may be applied as long as the condensed water stored in the gas component retention container 5 is circulated in the decompression container 1.

【0030】前記ガス成分滞留容器5内で凝縮しないガ
ス成分(概ね不凝縮ガス)は、滞留ガス案内部7により
大気中へ排出される。この滞留ガス案内部7には構成要
素として、前記ガス成分滞留容器5内のガス成分を大気
中へ排出するための抽出ポンプ7dを設け、前記ガス成
分滞留容器5と前記抽出ポンプ7dとの間を接続する配
管7aの途中に二方電磁弁7b、三方電磁弁7cを介装
している。
The gas component that is not condensed in the gas component retention container 5 (generally non-condensed gas) is discharged into the atmosphere by the retention gas guide 7. The staying gas guide portion 7 is provided with an extraction pump 7d for discharging the gas component in the gas component staying container 5 to the atmosphere as a component, and is provided between the gas component staying container 5 and the extraction pump 7d. A two-way solenoid valve 7b and a three-way solenoid valve 7c are provided in the middle of a pipe 7a connecting the two.

【0031】また、前記伝熱管2と前記滞留ガス案内部
7との間に、前記ガス成分の温度(第一温度)を測定す
る第一温度測定部8aを設けると共に、前記熱媒液Lの
温度(第二温度)を測定する第二温度測定部8bを設
け、前記第一温度と前記第二温度との温度差に基づい
て、前記滞留ガス案内部7により前記減圧容器内からガ
スを所定時間引き抜く抽気操作を行う制御装置9を設け
てある。具体的には、前記第一温度測定部8aは前記管
台4aの上端部に設け、前記第二温度測定部8bは、前
記熱媒液Lの水面下になるように設けている。前記制御
装置9は、前記第一温度と前記第二温度との温度差に基
づいて前記ガス成分滞留容器5内部の不凝縮ガスを抽気
制御することができるように、前記二方電磁弁7b及び
三方電磁弁7cの開閉を制御すると共に、前記抽出ポン
プ7dの作動を制御すべく構成されている。
A first temperature measuring section 8a for measuring the temperature (first temperature) of the gas component is provided between the heat transfer tube 2 and the stagnant gas guide section 7, and the heat transfer medium L A second temperature measuring unit 8b for measuring a temperature (second temperature) is provided, and a gas is predetermined from the inside of the decompression container by the staying gas guide unit 7 based on the temperature difference between the first temperature and the second temperature. A control device 9 is provided for performing a bleeding operation for withdrawing time. Specifically, the first temperature measuring unit 8a is provided at the upper end of the nozzle stub 4a, and the second temperature measuring unit 8b is provided below the surface of the heat transfer liquid L. The control device 9 controls the two-way solenoid valve 7b and the two-way solenoid valve 7b so that the non-condensable gas inside the gas component retention container 5 can be extracted based on the temperature difference between the first temperature and the second temperature. It is configured to control the opening / closing of the three-way solenoid valve 7c and the operation of the extraction pump 7d.

【0032】ここで、上記構成を有する本発明の減圧式
流体加熱装置Xを運転した際のガス成分等の挙動につい
て詳述する。前記熱媒液加熱手段3により熱媒液Lを加
熱することにより、ガス成分である減圧蒸気や不凝縮ガ
スが発生する。この時発生したガス成分は、前記伝熱管
2の周りへ移動し、その付近に滞留する。ここで、一般
に前記ガス成分は、前記減圧容器1内における低圧部位
に集まる。この場合前記低圧部位は、前記伝熱管2にお
ける前記被加熱流体が流れ込む伝熱管入口部21付近で
ある。これは、前記伝熱管入口部21付近の前記被加熱
流体は、まだ熱交換があまり行われていない為に前記減
圧容器1内においては最も低温の部位となるからであ
り、依って、前記伝熱管入口部21付近の圧力は、前記
減圧容器1内において最も低圧部位となる。
Here, the behavior of the gas components and the like when the decompression type fluid heating apparatus X of the present invention having the above structure is operated will be described in detail. By heating the heat medium liquid L by the heat medium liquid heating means 3, a reduced pressure vapor or a non-condensable gas which is a gas component is generated. The gas component generated at this time moves around the heat transfer tube 2 and stays in the vicinity thereof. Here, in general, the gas component collects in the low-pressure region in the decompression container 1. In this case, the low-pressure portion is near the heat transfer tube inlet portion 21 into which the fluid to be heated flows in the heat transfer tube 2. This is because the fluid to be heated in the vicinity of the heat transfer tube inlet portion 21 is the coldest part in the decompression container 1 because heat exchange has not yet been performed so much, and therefore, the heat transfer is performed. The pressure in the vicinity of the heat pipe inlet 21 becomes the lowest pressure site in the decompression container 1.

【0033】前記伝熱管入口部21付近に集まった前記
ガス成分は、前記伝熱管入口部21付近よりさらに低温
(つまり低圧)となる前記管台4aへと移動する。つま
り、前記管台4aは、前記ガス成分を収集する部位とし
ての役割を果たすことになる。そして、前記管台4aの
上端部に設けられている前記第一温度測定部8aによっ
て測定された前記ガス成分の温度(第一温度)と、前記
熱媒液Lの水面下に設けられている前記第二温度測定部
8bによって測定された前記熱媒液Lの温度(第二温
度)とがある一定の温度差以上になれば前記制御装置9
の指令により前記滞留ガス案内部7にて前記ガス成分を
大気中へ排出する抽気が開始されるのであるが、この
時、前記ガス成分中に含まれる減圧蒸気の一部は、前記
配管4bを移流する際に前記配管4b内で放熱して凝縮
することにより凝縮水となり、さらに、残りの減圧蒸気
は前記ガス成分滞留容器5内に移送された後、前記ガス
成分滞留容器5の壁面等で放熱して凝縮水となる。この
ようにして生成した凝縮水は前記ガス成分滞留容器5に
貯留される。また、このように前記ガス成分滞留容器5
に貯留された凝縮水は前記U字管6aにより、前記減圧
容器1へと循環させることができるため、熱媒液Lの減
少を防止することができる。
The gas components collected in the vicinity of the heat transfer tube inlet 21 move to the nozzle stub 4a having a lower temperature (that is, lower pressure) than in the vicinity of the heat transfer tube inlet 21. That is, the nozzle 4a serves as a part for collecting the gas component. The temperature of the gas component (first temperature) measured by the first temperature measuring unit 8a provided at the upper end of the nozzle 4a and the temperature of the heat transfer liquid L are set below the water surface. If a temperature difference (second temperature) of the heat transfer liquid L measured by the second temperature measuring unit 8b exceeds a certain temperature difference, the control device 9
The bleed air for discharging the gas component into the atmosphere is started by the staying gas guide portion 7 according to the command of the above. At this time, a part of the reduced pressure steam contained in the gas component flows through the pipe 4b. When advancing, it radiates heat in the pipe 4b and condenses to become condensed water. Further, the remaining decompressed vapor is transferred to the gas component retention container 5 and then on the wall surface of the gas component retention container 5 or the like. It radiates heat and becomes condensed water. The condensed water thus generated is stored in the gas component retention container 5. In addition, as described above, the gas component retention container 5
Since the condensed water stored in (1) can be circulated to the decompression container 1 by the U-shaped pipe 6a, it is possible to prevent the heat medium liquid L from decreasing.

【0034】この時、前記U字管6aは、図2に示した
ように、一端側が前記ガス成分滞留容器5底部に連通接
続してあると共に、他端側が前記減圧容器1内に開口し
凝縮水を放流可能な放流用端部6bを形成してあり、前
記放流用端部6bは、前記U字管6aの最低部6cより
も上部で開口している。このため、前記ガス成分滞留容
器5から前記U字管6aに流入した凝縮水は前記U字管
6aの最低部6cから前記放流用端部6bの高さに至る
まで凝縮水が溜まることになる。そして、この状態で前
記ガス成分滞留容器5から前記U字管6aに凝縮水が流
入すると、他端側に形成された放流用端部6bから凝集
水が押出されるように前記減圧容器1内に排出されて凝
縮水を前記減圧容器1内に循環させることができるので
ある。
At this time, as shown in FIG. 2, the U-shaped pipe 6a has one end connected to the bottom of the gas component retention container 5 and the other end opened into the decompression container 1 for condensation. A discharge end 6b capable of discharging water is formed, and the discharge end 6b is open above the lowest portion 6c of the U-shaped pipe 6a. Therefore, the condensed water that has flowed into the U-shaped pipe 6a from the gas component retention container 5 accumulates from the lowest portion 6c of the U-shaped pipe 6a to the height of the discharge end 6b. . In this state, when condensed water flows from the gas component retention container 5 into the U-shaped pipe 6a, condensed water is extruded from the discharge end 6b formed on the other end side in the decompression container 1. The condensed water discharged to the inside can be circulated in the decompression container 1.

【0035】このように凝縮ガスである減圧蒸気が凝縮
して凝縮水となることで、前記ガス成分滞留容器5内に
滞留しているガス成分は概ね不凝縮ガスとなっている。
そのため、前記滞留ガス案内部7にて抽気を行うことに
より大気中に排出されるガス成分は概ね不凝縮ガスとな
り、減圧蒸気が大気中に排出される虞が少なくなって熱
媒液が減少してしまう虞が減少する。
Since the reduced pressure steam which is the condensed gas is condensed to condensed water in this manner, the gas component retained in the gas component retention container 5 is substantially a non-condensed gas.
Therefore, the gas component discharged into the atmosphere by extracting the gas in the staying gas guide portion 7 becomes a substantially non-condensed gas, the reduced pressure steam is less likely to be discharged into the atmosphere, and the heat transfer liquid is reduced. The risk of being lost is reduced.

【0036】この時、前記制御装置9による抽気の制御
方法としては、例えば、前記減圧容器1内の温度が75
℃以上で、かつ前記第一温度と前記第二温度との差が所
定温度(20℃)以上になったときに前記滞留ガス案内
部7にて30秒の抽気を行い、30秒の抽気終了後に再
度前記第一温度と前記第二温度との温度差を検出して所
定温度以上であれば、再度抽気を行う。これを繰り返し
て、前記第一温度と前記第二温度との温度差が所定温度
以下になると抽気を終了する。
At this time, as a method of controlling the extraction air by the control device 9, for example, the temperature inside the decompression container 1 is set to 75.
When the difference between the first temperature and the second temperature becomes equal to or higher than a predetermined temperature (20 ° C.) at a temperature equal to or higher than 0 ° C., the accumulated gas guide portion 7 performs the extraction for 30 seconds, and the extraction for 30 seconds ends. After that, if the temperature difference between the first temperature and the second temperature is detected again and the temperature is equal to or higher than the predetermined temperature, the air extraction is performed again. By repeating this, when the temperature difference between the first temperature and the second temperature becomes equal to or lower than the predetermined temperature, the extraction is ended.

【0037】つぎに、図3に基づいて、本発明の別の実
施形態による減圧式流体加熱装置Xについて説明する。
ただし、重複説明を避けるため、先の実施形態で説明し
た部分や同じ作用を有する部分については同一の符号を
付すことで説明を省略し、主として先の実施形態と異な
る構成について説明する。
Next, a decompression type fluid heating apparatus X according to another embodiment of the present invention will be described with reference to FIG.
However, in order to avoid redundant description, the parts described in the previous embodiment and the parts having the same operation are denoted by the same reference numerals, and the description thereof will be omitted. A configuration different from the previous embodiment will be mainly described.

【0038】この別の実施形態による減圧式流体加熱装
置Xでは、装置全体がケーシング22により覆われてい
て、熱媒液加熱手段3としてのバーナーに燃焼用空気を
供給するためのファン23が、その吸引口をケーシング
22内に開口する状態でケーシング22内に配置されて
いる。そのケーシング22において、ガス成分移送路4
を構成する配管4bの近傍に外気吸引開口部22aが設
けられ、ケーシング22外の外気が、外気吸引開口部2
2aからケーシング22内に吸引され、ガス成分移送路
4、特に配管4bを冷却しながら通流し、ファン23の
吸引口から吸引されるように構成されている。換言する
と、バーナーに燃焼用空気を供給するファン23やケー
シング22の外気吸引開口部22aなどにより空冷式の
冷却手段24が構成されて、ガス成分移送路4を積極的
に冷却して減圧蒸気の凝縮化を促進し、それによってガ
ス成分移送路4の短縮化を図っている。例えば、配管4
bの表面温度が86℃、配管4bの周囲温度が60℃で
あれば、配管1メートルあたりにおける凝縮水の発生量
は0.3リットル/分であるのに対し、配管4bの周囲
温度を20℃にまで冷却することにより、配管1メート
ルあたりの凝縮水の発生量は1.0リットル/分とな
り、冷却手段24を設けることによって3倍以上の凝縮
水の発生を期待することができる。
In the depressurization type fluid heating apparatus X according to this another embodiment, the entire apparatus is covered by a casing 22, and a fan 23 for supplying combustion air to a burner as a heating medium liquid heating means 3 is provided. The suction port is arranged in the casing 22 with the suction port opening into the casing 22. In the casing 22, the gas component transfer path 4
The outside air suction opening portion 22a is provided in the vicinity of the pipe 4b that constitutes the outside air suction opening portion 2
It is configured to be sucked into the casing 22 from 2a, to flow while cooling the gas component transfer path 4, particularly the pipe 4b, and to be sucked from the suction port of the fan 23. In other words, the air-cooling type cooling means 24 is constituted by the fan 23 that supplies combustion air to the burner, the outside air suction opening 22a of the casing 22, and the like, and actively cools the gas component transfer path 4 to generate the reduced pressure steam. Condensation is promoted, thereby shortening the gas component transfer path 4. For example, pipe 4
If the surface temperature of b is 86 ° C. and the ambient temperature of the pipe 4b is 60 ° C., the generated amount of condensed water per meter of the pipe is 0.3 liter / min, while the ambient temperature of the pipe 4b is 20 ° C. By cooling to 0 ° C., the amount of condensed water generated per meter of pipe becomes 1.0 liter / min. By providing the cooling means 24, it is possible to expect generation of condensed water three times or more.

【0039】この冷却手段24に関しては種々の改変が
可能であり、例えば、ファン23の吸引口をケーシング
22の外へ開口し、図3において仮想線で示すように、
ファン23の吐出口近傍に空冷用配管25を接続し、燃
焼用空気の一部をガス成分移送路4に導いてガス成分移
送路4を冷却するように構成することもできる。その場
合には、ファン23と空冷用配管25が空冷式の冷却手
段24を構成することになり、いずれの場合において
も、ガス成分移送路4を構成する配管4bや管台4aに
空冷用のフィンを設けることができる。また、冷却手段
24としては、特に空冷式に限るものではなく、例え
ば、水冷式の冷却装置を設けることもでき、本明細書に
おいては、空冷式や水冷式などの各種冷却装置を含めて
「冷却手段」と総称する。
Various modifications can be made to the cooling means 24. For example, the suction port of the fan 23 is opened to the outside of the casing 22, and as shown by a phantom line in FIG.
It is also possible to connect an air cooling pipe 25 near the discharge port of the fan 23 and guide a part of the combustion air to the gas component transfer passage 4 to cool the gas component transfer passage 4. In that case, the fan 23 and the air-cooling pipe 25 constitute an air-cooling type cooling means 24, and in any case, the pipe 4b or the nozzle base 4a constituting the gas component transfer path 4 is air-cooled. Fins can be provided. Further, the cooling means 24 is not particularly limited to an air cooling type, and for example, a water cooling type cooling device can be provided. In the present specification, various cooling devices such as an air cooling type and a water cooling type are included. "Cooling means".

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の減圧式流体加熱装置の断面概略図FIG. 1 is a schematic sectional view of a decompression type fluid heating apparatus of the present invention.

【図2】本発明の減圧式流体加熱装置の要部概略図FIG. 2 is a schematic view of a main part of a decompression type fluid heating device of the present invention.

【図3】本発明の別の実施形態による減圧式流体加熱装
置の断面概略図
FIG. 3 is a schematic cross-sectional view of a reduced pressure fluid heating device according to another embodiment of the present invention.

【図4】従来の減圧式流体加熱装置の断面概略図FIG. 4 is a schematic sectional view of a conventional decompression type fluid heating device.

【図5】従来の減圧式流体加熱装置の断面概略図FIG. 5 is a schematic sectional view of a conventional decompression type fluid heating device.

【符号の説明】[Explanation of symbols]

1 減圧容器 2 伝熱管 3 熱媒液加熱手段 4 ガス成分移送路 5 ガス成分滞留容器 6 凝縮水循環路 7 滞留ガス案内部 24 冷却手段 L 熱媒液 1 decompression container 2 heat transfer tubes 3 Heat medium liquid heating means 4 Gas component transfer path 5 Gas component retention container 6 Condensed water circuit 7 Retained gas guide 24 Cooling means L heat transfer liquid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大気圧よりも低い圧力に維持された減圧
室内に熱媒液を収容した減圧容器を設け、その減圧容器
に対し、前記減圧室内の余白スペースを経由するように
配管される熱交換用の伝熱管、及び、前記減圧室内の熱
媒液を加熱するための熱媒液加熱手段を取り付け、前記
熱媒液の加熱により前記減圧室内に発生する蒸気との熱
交換で、前記伝熱管内を通流する被加熱流体を加熱する
ように構成されている減圧式流体加熱装置であって、 前記減圧容器内のガス成分を滞留させるガス成分滞留容
器を前記減圧容器外部に設け、前記減圧容器から前記ガ
ス成分滞留容器に前記ガス成分を移送するガス成分移送
路を設け、前記ガス成分滞留容器に貯留される凝縮水を
前記減圧容器内に循環させる凝縮水循環路を設け、さら
に、前記ガス成分滞留容器に滞留した前記ガス成分を大
気中へ排出する滞留ガス案内部を設けてある減圧式流体
加熱装置。
1. A decompression container containing a heat transfer liquid is provided in a decompression chamber maintained at a pressure lower than atmospheric pressure, and heat is piped to the decompression container through a blank space in the decompression chamber. A heat transfer tube for exchange and a heat medium liquid heating means for heating the heat medium liquid in the decompression chamber are attached, and the heat transfer with the steam generated in the decompression chamber by heating the heat medium liquid causes the transfer of heat. A decompression type fluid heating device configured to heat a fluid to be heated flowing in a heat pipe, wherein a gas component retention container for retaining a gas component in the decompression container is provided outside the decompression container, A gas component transfer path for transferring the gas component from the decompression container to the gas component retention container is provided, and a condensed water circulation path for circulating condensed water stored in the gas component retention container in the decompression container is provided. Gas component retention The gas component staying in the container vacuum fluid heating device is provided with a residual gas guiding portion for discharging into the atmosphere.
【請求項2】 前記ガス成分移送路を冷却する冷却手段
を設けてある請求項1に記載の減圧式流体加熱装置。
2. The reduced pressure fluid heating apparatus according to claim 1, further comprising cooling means for cooling the gas component transfer passage.
【請求項3】 前記凝縮水循環路は、一端側が前記ガス
成分滞留容器底部に連通接続してあると共に、他端側が
前記減圧容器内に開口し凝縮水を放流可能な放流用端部
を形成してあるU字管である請求項1または2に記載の
減圧式流体加熱装置。
3. The condensed water circulation path has one end side connected to the bottom of the gas component retention container and the other end side that opens into the decompression container and forms a discharge end capable of discharging condensed water. The reduced pressure fluid heating apparatus according to claim 1 or 2, which is a U-shaped tube.
JP2003007217A 2002-01-16 2003-01-15 Depressurized fluid heating system Expired - Lifetime JP3923017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007217A JP3923017B2 (en) 2002-01-16 2003-01-15 Depressurized fluid heating system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002007386 2002-01-16
JP2002-7386 2002-01-16
JP2003007217A JP3923017B2 (en) 2002-01-16 2003-01-15 Depressurized fluid heating system

Publications (2)

Publication Number Publication Date
JP2003279148A true JP2003279148A (en) 2003-10-02
JP3923017B2 JP3923017B2 (en) 2007-05-30

Family

ID=29252923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007217A Expired - Lifetime JP3923017B2 (en) 2002-01-16 2003-01-15 Depressurized fluid heating system

Country Status (1)

Country Link
JP (1) JP3923017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183618B1 (en) 2010-11-30 2012-09-17 한국가스공사 non-condensed gas extracting device of gas heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183618B1 (en) 2010-11-30 2012-09-17 한국가스공사 non-condensed gas extracting device of gas heater

Also Published As

Publication number Publication date
JP3923017B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP4331689B2 (en) Combined air-cooled condenser
JP2006138744A (en) Reactor cooling device
US20080277097A1 (en) Hot-Water Supply System Having Dual Pipe
JP4812040B2 (en) Steam heat exchange system
KR101106106B1 (en) A boiler based on vacuum circulation
JP2008255944A (en) Warm up device in engine
JP2009074494A (en) Exhaust heat recovery device
JP2003279148A (en) Pressure reducing type fluid heating system
JP2007309555A (en) Absorption-type heat pump
JPH08184691A (en) Heat valve of heat exchange controller
JP2009036103A (en) Exhaust heat recovery device
JP2009109189A (en) Storage type water heater
KR20120059112A (en) non-condensed gas extracting device of gas heater and operation method of thereof
KR100406135B1 (en) condensing Gas boiler using cistern tank
JP4187867B2 (en) Heat exchanger
JP3868219B2 (en) Heat exchanger, heat exchange temperature control method, and heat supply device
KR102307564B1 (en) Containment cooling system having improved cooling performance
KR950003784B1 (en) Hot water circulating apparatus
JP7390185B2 (en) Vacuum water heater
JPH11118362A (en) Heat exchanger
JPH11118363A (en) Heat exchanger
JPH11118365A (en) Heat exchanger
JP2000320804A (en) Condensate recovery apparatus
JP5047425B2 (en) Steam heating device
JP2011191033A (en) Heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3923017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term