JP2003277815A - Observation device of high temperature furnace - Google Patents

Observation device of high temperature furnace

Info

Publication number
JP2003277815A
JP2003277815A JP2002080154A JP2002080154A JP2003277815A JP 2003277815 A JP2003277815 A JP 2003277815A JP 2002080154 A JP2002080154 A JP 2002080154A JP 2002080154 A JP2002080154 A JP 2002080154A JP 2003277815 A JP2003277815 A JP 2003277815A
Authority
JP
Japan
Prior art keywords
filter
thin film
high temperature
temperature furnace
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002080154A
Other languages
Japanese (ja)
Other versions
JP3837435B2 (en
Inventor
Hidekazu Hashima
英和 橋間
Umihiko Mori
海彦 森
Akio Konishi
明男 小西
Hajime Wakabayashi
肇 若林
Toshihiko Hiejima
俊彦 比江島
Hisao Azuma
久雄 東
Akira Iwasaki
晃 岩崎
Masaki Makihara
正記 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Yamamura Glass Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2002080154A priority Critical patent/JP3837435B2/en
Publication of JP2003277815A publication Critical patent/JP2003277815A/en
Application granted granted Critical
Publication of JP3837435B2 publication Critical patent/JP3837435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and lightweight observation device of a high temperature furnace, and can use a cooling device whose size as comparatively small. <P>SOLUTION: In the observation device in the high temperature furnace provided with an image pickup unit, a reflection type filter at the front part of this image pickup unit and an infrared absorption filter at an interval between this reflection type filter and the image pickup unit, are provided. Further, this reflection type filter in the observation device in the high temperature furnace, is formed of a metallic film having the composition of 80-100 wt.% platinum on the one side surface or the both surfaces of a base board. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温炉内観察装置
に関し、特に、ガラス溶解炉内における溶融ガラスの観
察等に用いられる高温炉内観察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature furnace observation apparatus, and more particularly to a high temperature furnace observation apparatus used for observing molten glass in a glass melting furnace.

【0002】[0002]

【従来の技術】ガラスの製造は、珪砂、ソーダ灰、石灰
石等の原料を、ガラス溶解炉で1000〜1800℃の
高温で溶解して行われる。ガラス製造の工程管理のため
には、高温のガラス溶解炉内における溶融ガラスの連続
的な観察が必要となる。
2. Description of the Related Art Glass is manufactured by melting raw materials such as silica sand, soda ash, and limestone at a high temperature of 1000 to 1800 ° C. in a glass melting furnace. In order to control the glass manufacturing process, continuous observation of molten glass in a high temperature glass melting furnace is required.

【0003】運転中のガラス溶解炉内では、溶融ガラス
上の気相温度も1000〜1800℃の高温となってお
り、また、高温の溶融ガラスからは非常に強い熱線が放
射されている。一般の撮像装置としてCCDカメラなど
があるが、CCDカメラは使用可能温度が常温付近に限
られており、これを運転中のガラス溶解炉内に挿入等し
て溶融ガラスの観察に用いるには、高温の空気からCC
Dカメラを防護するのみならず、熱線によりCCDカメ
ラが障害を受けるのを防止する必要がある。
In the glass melting furnace in operation, the vapor phase temperature on the molten glass is as high as 1000 to 1800 ° C., and extremely strong heat rays are emitted from the high temperature molten glass. There is a CCD camera or the like as a general image pickup device, but the usable temperature of the CCD camera is limited to around room temperature, and in order to insert this into a glass melting furnace during operation and use it for observing molten glass, CC from hot air
Not only should the D-camera be protected, but it is also necessary to prevent the CCD camera from being hindered by heat rays.

【0004】このため、従来、ガラス溶解炉内の観察装
置としては、CCDカメラ等の撮像装置に強力な冷却を
行い、また、最少径に絞った絞りを備えたものを用いて
いた。しかしながら、これには大がかりな空冷や水冷の
冷却用装置の設置を必要とする。しかも、強力な冷却を
行うことによる炉の熱損失が、特に小型の溶解炉では無
視できず、温度調節も影響を受ける場合があった。ま
た、絞りによる光量の調整は難しく、絞りが不十分であ
れば撮像装置内が過熱する一方、絞り過ぎれば視野が暗
く且つ不明瞭となり、観察に支障をきたすことになる。
For this reason, conventionally, as an observation device in the glass melting furnace, an image pickup device such as a CCD camera which is cooled strongly and which is provided with a diaphragm having a minimum diameter is used. However, this requires the installation of extensive air-cooling and water-cooling equipment. Moreover, the heat loss of the furnace due to strong cooling cannot be ignored, especially in a small melting furnace, and the temperature control may be affected. Further, it is difficult to adjust the amount of light by the diaphragm. If the diaphragm is insufficient, the inside of the image pickup device is overheated. On the other hand, if the diaphragm is too large, the field of view becomes dark and unclear, which hinders observation.

【0005】[0005]

【発明が解決しようとする課題】このような問題に対処
する方法として、赤外線を吸収し可視光を通過させる赤
外吸収フィルターや、特に波長に関わりなく光量を減少
させる反射型フィルターの使用が考えられるが、ガラス
溶解炉内の観察のような高温で使用できる赤外吸収フィ
ルターや反射型フィルターは知られていなかった。
As a method for dealing with such a problem, use of an infrared absorption filter which absorbs infrared rays and transmits visible light, and a reflection type filter which particularly reduces the light quantity regardless of wavelength are considered. However, there is no known infrared absorption filter or reflection type filter that can be used at a high temperature such as observation in a glass melting furnace.

【0006】本発明は、この問題を解決し、運転中のガ
ラス溶解炉等の高温の炉内の観察などに用いることがで
き且つ冷却用装置を比較的小さなものですませることが
できる、小型で軽量の高温炉内観察装置を提供すること
を目的とする。
The present invention solves this problem and can be used for observing the inside of a high temperature furnace such as a glass melting furnace in operation, and the cooling device can be made relatively small and compact. It is an object of the present invention to provide a lightweight high temperature furnace observation device.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
の解決のため検討を重ねた結果、基板上に白金を主体と
する金属薄膜を形成した反射型フィルターを撮像装置の
前側に装備することにより、この課題が解決できること
を見出した。
As a result of repeated studies for solving the above-mentioned problems, the present inventors have installed a reflection type filter having a metal thin film mainly containing platinum formed on a substrate on the front side of an image pickup device. It was found that this problem can be solved by doing so.

【0008】すなわち本発明は、撮像装置を備えた高温
炉内観察装置であって、該撮像装置の前方に反射型フィ
ルターを有しており、該反射型フィルターが、基板の片
面又は両面に白金80〜100重量%の組成の金属薄膜
を形成してなるフィルターであることを特徴とする、高
温炉内観察装置を提供する。該反射型フィルターの使用
により、撮像装置に到達する熱線量を十分に抑制しつ
つ、優れた視認性を確保することが容易となる。
That is, the present invention is a high-temperature furnace observation apparatus equipped with an image pickup device, which has a reflection type filter in front of the image pickup device, and the reflection type filter is provided on one side or both sides of a substrate with platinum. Provided is a high temperature furnace observation device, which is a filter formed by forming a metal thin film having a composition of 80 to 100% by weight. By using the reflection type filter, it becomes easy to secure excellent visibility while sufficiently suppressing the heat dose reaching the imaging device.

【0009】本発明は更に、撮像装置を備えた高温炉内
観察装置であって、該撮像装置の前方に反射型フィルタ
ーを、及び該反射型フィルターと該撮像装置との間に赤
外吸収フィルターをそれぞれ有しており、且つ該反射型
フィルターが、基板の片面又は両面に白金80〜100
重量%の組成の金属薄膜を形成してなるフィルターであ
ることを特徴とする、高温炉内観察装置を提供する。該
反射型フィルター及び赤外フィルターの使用により、撮
像装置の視認性の更なる改善と、撮像装置に到達する熱
線から撮像装置のより確実な保護とが達成できる。
The present invention further provides a high temperature furnace observation apparatus equipped with an image pickup device, wherein a reflective filter is provided in front of the image pickup device, and an infrared absorption filter is provided between the reflective filter and the image pickup device. And each of the reflection type filters has platinum of 80 to 100 on one surface or both surfaces of the substrate.
Provided is a high-temperature furnace observation device, which is a filter formed by forming a metal thin film having a composition of wt%. By using the reflection type filter and the infrared filter, it is possible to further improve the visibility of the image pickup device and more reliably protect the image pickup device from heat rays reaching the image pickup device.

【0010】本発明は更に、撮像装置を備えた高温炉内
観察装置であって、該撮像装置の前方に反射型フィルタ
ーを有しており、該反射型フィルターが、赤外吸収フィ
ルターを基板とし、該基板のの片面又は両面に白金80
〜100重量%の組成の金属薄膜を形成してなるもので
あることを特徴とする、高温炉内観察装置を提供する。
このような構成とすることにより、ごく単純化された構
造を以って、撮像装置の視認性の改善と熱線からの撮像
装置のより確実な保護とが可能となる。
The present invention further provides a high-temperature furnace observation apparatus equipped with an image pickup device, which has a reflection type filter in front of the image pickup device, and the reflection type filter uses an infrared absorption filter as a substrate. , Platinum 80 on one or both sides of the substrate
Provided is an apparatus for observing inside a high-temperature furnace, which is formed by forming a metal thin film having a composition of -100% by weight.
With such a configuration, it is possible to improve the visibility of the image pickup device and more reliably protect the image pickup device from heat rays with a very simplified structure.

【0011】本発明は更に、上記各構成において該反射
型フィルターの該金属薄膜上にガラス薄膜が形成されて
いることを更に特徴とする高温炉内観察装置をも提供す
る。そのような構成にすることにより、金属薄膜の耐久
性を高めることができる。
The present invention further provides an apparatus for observing inside a high temperature furnace further characterized in that in each of the above-mentioned constitutions, a glass thin film is formed on the metal thin film of the reflection type filter. With such a structure, the durability of the metal thin film can be improved.

【0012】上記各構成において、該基板はガラス基板
であってよい。また、該金属薄膜は白金80重量%以上
100重量%未満且つロジウム20重量%以下の組成の
ものであってもよい。
In each of the above structures, the substrate may be a glass substrate. The metal thin film may have a composition of 80% by weight or more of platinum and less than 100% by weight of platinum and 20% by weight or less of rhodium.

【0013】[0013]

【発明の実施の形態】反射型フィルターの基板として
は、可視領域において光透過率が高く、耐熱性のあるも
のであれば特に制限はない。基板の材料としては、例え
ば、石英ガラス、シリカ系ガラス、ソーダ石灰ガラス、
アルミノほう珪酸塩ガラス、ほう珪酸塩ガラス、アルミ
ノ珪酸塩ガラス等のガラスのほか、結晶として、サファ
イア、水晶、酸化マグネシウム等が挙げられる。これら
のうち、耐熱性の点から取分け好ましいのは、石英ガラ
スである。
BEST MODE FOR CARRYING OUT THE INVENTION The substrate of the reflection type filter is not particularly limited as long as it has a high light transmittance in the visible region and is heat resistant. As the material of the substrate, for example, quartz glass, silica glass, soda lime glass,
In addition to glass such as aluminoborosilicate glass, borosilicate glass, and aluminosilicate glass, examples of crystals include sapphire, crystal, and magnesium oxide. Of these, quartz glass is particularly preferable from the viewpoint of heat resistance.

【0014】基板の厚みに特に限定はなく、強度及び冷
却効率を考慮して適宜の厚みのものを選べよい。
The thickness of the substrate is not particularly limited, and one having an appropriate thickness may be selected in consideration of strength and cooling efficiency.

【0015】基板に形成される金属薄膜の組成は、白金
80〜100重量%とするのがよく、更に好ましくは白
金90〜100重量%とするのがよい。白金を80重量
%以上とするのは、80重量%未満では、金属薄膜の耐
熱性が不十分となりやすいためである。白金が80重量
%以上100重量%未満の場合、組成の残り部分として
は、金、銀、ロジウム等の金属、1重量%以下の酸化イ
ットリウムや酸化ジルコニアなどの金属酸化物を使用す
ることができる。これらのうち、坩堝等に使用され、耐
熱性に秀でているという点で、ロジウムが特に好まし
い。従って、例えば、白金80以上100重量%未満と
ロジウム20重量%以下の併用、更に好ましくは、白金
90重量%以上100重量%未満とロジウム10重量%
以下との併用とすることができる。
The composition of the metal thin film formed on the substrate is preferably 80 to 100% by weight of platinum, and more preferably 90 to 100% by weight of platinum. The reason why the amount of platinum is 80% by weight or more is that if it is less than 80% by weight, the heat resistance of the metal thin film tends to be insufficient. When platinum is 80% by weight or more and less than 100% by weight, a metal such as gold, silver or rhodium, and 1% by weight or less of a metal oxide such as yttrium oxide or zirconia can be used as the rest of the composition. . Of these, rhodium is particularly preferable because it is used for crucibles and the like and has excellent heat resistance. Accordingly, for example, a combination of 80% or more and less than 100% by weight of platinum and 20% by weight or less of rhodium is used, and more preferably 90% by weight or more and less than 100% by weight of platinum and 10% by weight of rhodium.
It can be used in combination with the following.

【0016】金属薄膜は、波長400〜1500nmの
範囲の光の平均透過率が30%以下、好ましくは、20
%以下、更に好ましくは10%以下となるように、基板
上に形成される。金属薄膜の形成方法によって、その厚
みと光透過率との関係は異なるが、何れの方法を用いる
場合も、波長400〜1500nmの範囲の光の上記平
均透過率に基いて、厚みを適宜設定すればよい。
The metal thin film has an average transmittance of 30% or less, preferably 20 for light in the wavelength range of 400 to 1500 nm.
% Or less, and more preferably 10% or less. The relationship between the thickness and the light transmittance differs depending on the method of forming the metal thin film, but in any method, the thickness can be set appropriately based on the average transmittance of light in the wavelength range of 400 to 1500 nm. Good.

【0017】金属薄膜は、基板の片面又は両面に形成す
ることができる。基板の片面に金属薄膜を形成した場
合、金属薄膜を形成した側は、高温炉側に向けて用いて
も又はその反対側に向けて用いてもよい。但し、金属薄
膜が表面に露出しているタイプの反射型フィルターの場
合には、金属薄膜の形成された側を高温炉の反対側に向
けて用いる方が、金属薄膜の耐久性を維持するという点
では、幾分好ましい。
The metal thin film can be formed on one side or both sides of the substrate. When the metal thin film is formed on one surface of the substrate, the side on which the metal thin film is formed may be used toward the high temperature furnace side or the opposite side. However, in the case of a reflection type filter in which the metal thin film is exposed on the surface, it is said that the durability of the metal thin film is maintained by using the side where the metal thin film is formed facing the opposite side of the high temperature furnace. In terms of points, it is somewhat preferable.

【0018】金属薄膜の形成方法に特に制限はなく、ス
パッタリング法(高周波マグネトロンスパッタ法、直流
スパッタ法)、蒸着法、イオンプレーティグ法等のPV
D法(物理蒸着法)や、無電解メッキ法等を使用するこ
とができる。
The method for forming the metal thin film is not particularly limited, and PV such as sputtering method (high frequency magnetron sputtering method, DC sputtering method), vapor deposition method, ion plating method, etc.
The D method (physical vapor deposition method), the electroless plating method, or the like can be used.

【0019】また、基板上に形成した金属薄膜上に、更
にガラス薄膜を形成することによって、金属薄膜をガラ
ス内に密封した形態の反射フィルターとしてもよい。そ
のようにすることで、金属薄膜の耐久性を増大させるこ
とができる。金属薄膜がガラス内に密封された形態の反
射型フィルターの場合、金属薄膜及びガラス薄膜を形成
した側は、高温炉側に向けて又はその反対側に向けて用
いることができる。特に、ガラス薄膜により金属薄膜が
密封され、耐久性が増大していることから、金属薄膜及
びガラス薄膜を形成した側を高温炉側に向けて用いるこ
とに、何ら不利な点はない。
Further, by forming a glass thin film on the metal thin film formed on the substrate, a reflection filter in which the metal thin film is sealed in glass may be used. By doing so, the durability of the metal thin film can be increased. In the case of a reflection type filter in which the metal thin film is sealed in glass, the side on which the metal thin film and the glass thin film are formed can be used toward the high temperature furnace side or the opposite side. In particular, since the metal thin film is sealed by the glass thin film and the durability is increased, there is no disadvantage in using the side on which the metal thin film and the glass thin film are formed facing the high temperature furnace side.

【0020】ガラス薄膜を形成するためのガラスとして
は、例えば、石英ガラス、シリカ系ガラス、ソーダ石灰
ガラス、アルミノほう珪酸塩ガラス、ほう珪酸塩ガラ
ス、アルミノ珪酸塩ガラス等のガラスが挙げられる。こ
れらのうち、耐熱性の点から取分け好ましいのは、石英
ガラスである。
Examples of the glass for forming the glass thin film include quartz glass, silica glass, soda lime glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass and the like. Of these, quartz glass is particularly preferable from the viewpoint of heat resistance.

【0021】ガラス薄膜の形成方法に特に制限はなく、
例えばスパッタリング法等、適宜の方法を用いることが
できる。
The method for forming the glass thin film is not particularly limited,
For example, an appropriate method such as a sputtering method can be used.

【0022】反射型フィルターは、複数枚を組み合わせ
て使用してもよい。複数枚を組み合わせることにより、
単独での使用に比して熱線の遮蔽効率及び冷却効率を高
めることができる。複数の反射型フィルターを使用する
場合、設置した全ての反射型フィルターが全体として前
記の平均透過率の範囲になるものであればよく、従っ
て、個々の反射型フィルターは、より透過性の高いもの
であっても差し支えない。
A plurality of reflective filters may be used in combination. By combining multiple sheets,
The heat ray shielding efficiency and the cooling efficiency can be improved as compared with the case of using it alone. When using a plurality of reflective filters, it is sufficient that all installed reflective filters fall within the range of the average transmittance as a whole, and therefore each reflective filter has a higher transmissivity. But it doesn't matter.

【0023】金属薄膜を形成した反射型フィルターと赤
外吸収フィルターとを組み合わせて用いれば、高温炉内
からの光のうち、可視光を相対的に多く通過させる事が
でき、高温炉内の視認性を高めつつ、熱線をよりよく遮
蔽することが可能となる。赤外フィルターは、赤外線吸
収により過熱するのを防止するため、反射型フィルター
より後方に設置するのが好ましい。
If a reflection type filter formed with a metal thin film and an infrared absorption filter are used in combination, a relatively large amount of visible light out of the light from the inside of the high temperature furnace can be transmitted, and the visible inside of the high temperature furnace can be visually recognized. It is possible to shield the heat ray better while improving the property. The infrared filter is preferably installed behind the reflective filter in order to prevent overheating due to infrared absorption.

【0024】本発明において、赤外吸収フィルターは、
波長400〜700nmの範囲の平均の透過率に対する
波長700〜1500nmの範囲の平均の透過率が、1
/2以下のもの、より好ましくは、1/3以下のもの、
特に好ましくは1/4以下のものをいう。赤外線フィル
ターの厚みは特に限定されず、強度と冷却効率を考慮し
て適宜の厚みのものを選べばよい。また、赤外吸収フィ
ルターは、複数枚を併用することができ、冷却効率の点
では、そうする方が好ましい。
In the present invention, the infrared absorption filter is
The average transmittance in the wavelength range of 700 to 1500 nm is 1 with respect to the average transmittance in the wavelength range of 400 to 700 nm.
/ 2 or less, more preferably 1/3 or less,
Particularly preferably, it means one-fourth or less. The thickness of the infrared filter is not particularly limited, and an appropriate thickness may be selected in consideration of strength and cooling efficiency. Further, a plurality of infrared absorption filters can be used in combination, and in terms of cooling efficiency, it is preferable to do so.

【0025】また、反射型フィルターとしては、基板と
して赤外吸収フィルターを使用し、その片面又は両面に
白金80〜100重量%の組成の金属薄膜を形成したも
のを用いることもできる。その場合、片面に金属薄膜を
形成したフィルターでは、赤外吸収フィルターでもある
基板の過熱を避けるため、金属薄膜側を炉内に向けて設
置することが好ましい。
As the reflection type filter, an infrared absorption filter may be used as the substrate, and a metal thin film having a composition of 80 to 100% by weight of platinum may be formed on one surface or both surfaces of the infrared absorption filter. In that case, in a filter having a metal thin film formed on one surface, it is preferable to install the filter so that the metal thin film side faces the inside of the furnace in order to avoid overheating of the substrate which is also an infrared absorption filter.

【0026】撮像装置としては、例えばCCDカメラを
用いることができる。
As the image pickup device, for example, a CCD camera can be used.

【0027】反射型フィルター又はこれに更に赤外吸収
フィルターを有する本発明の高温炉内観察装置は、炉と
の位置関係に応じて、空冷及び/又は水冷による冷却系
を含んだ装置とすることができる。
The high temperature in-furnace observation apparatus of the present invention having a reflection type filter or an infrared absorption filter further, should be an apparatus including a cooling system by air cooling and / or water cooling depending on the positional relationship with the furnace. You can

【0028】[0028]

【実施例】以下、典型的な実施例を挙げて本発明を更に
具体的に説明するが、本発明がそれらの実施例に限定さ
れることは意図しない。
EXAMPLES The present invention will be described in more detail with reference to typical examples, but the present invention is not intended to be limited to these examples.

【0029】<実施例1>22mm×22mm、厚さ2
mmの石英ガラス基板上に、高周波マグネトロンスパッ
タ法により、白金ターゲットを用い、アルゴンガス分圧
0.8Pa、基板温度300℃、高周波電力50W、成
膜時間30秒の条件で、膜厚約15nmの白金薄膜を形
成することにより、反射型フィルターを作成した。この
フィルターの透過曲線を図1に示す。このフィルター
は、波長400〜700nmの範囲における光の平均の
透過率が7.5%、波長700〜1500の範囲におけ
る光の平均透過率が4.5%であった。別に、厚さ2m
mの赤外吸収フィルター(その透過曲線を図2に示
す。)を用意した。この赤外吸収フィルターは、波長4
00〜700nmの範囲における光の平均の透過率が3
5%、波長700〜1500nmの範囲における光の平
均透過率が8%であった。上記で作成した反射型フィル
ター1枚と、上記市販の赤外吸収フィルター3枚とを用
い、高温炉内観察装置1の筒状の冷却装置2の枠内に、
図3に概要断面図で示すように設置した。すなわち、高
温炉内観察装置1の中央付近に下に向けて備えられたC
CDカメラ5の下方に、下から、反射型フィルター3、
赤外吸収フィルター4a、4b、4cの順に互いに隙間
をあけて、積層するように取り付けた。このとき、反射
型フィルター3は、その白金薄膜6の表面が上方を向く
よう配置した。このように構成した組み合わせフィルタ
ーの波長400〜1500nmの範囲における光の透過
曲線を図4に示す。この組み合わせフィルターの波長4
00〜700nmの範囲における光の平均の透過率は
0.3%、波長700〜1500nmの範囲におけるそ
れは0.002%であった。
<Example 1> 22 mm x 22 mm, thickness 2
On a quartz glass substrate having a thickness of 15 mm, a platinum target is used by a high frequency magnetron sputtering method, a partial pressure of argon gas is 0.8 Pa, a substrate temperature is 300 ° C., a high frequency power is 50 W, and a film forming time is 30 seconds. A reflective filter was prepared by forming a platinum thin film. The transmission curve of this filter is shown in FIG. This filter had an average light transmittance of 7.5% in the wavelength range of 400 to 700 nm, and an average light transmittance of 4.5% in the wavelength range of 700 to 1500. Separately, the thickness is 2m
m infrared absorption filter (the transmission curve is shown in FIG. 2) was prepared. This infrared absorption filter has a wavelength of 4
The average light transmittance in the range of 00 to 700 nm is 3
The average transmittance of light in the range of 5% and wavelength 700 to 1500 nm was 8%. In the frame of the tubular cooling device 2 of the observation device 1 for high temperature furnace, using one reflection type filter prepared above and three commercially available infrared absorption filters,
It was installed as shown in the schematic cross-sectional view in FIG. That is, the C provided downward near the center of the high temperature furnace observation device 1
Below the CD camera 5, from below, the reflective filter 3,
The infrared absorption filters 4a, 4b, and 4c were attached in this order so as to be laminated with a gap therebetween. At this time, the reflection type filter 3 was arranged so that the surface of the platinum thin film 6 faced upward. FIG. 4 shows the light transmission curve of the thus-configured combination filter in the wavelength range of 400 to 1500 nm. Wavelength 4 of this combination filter
The average light transmittance in the range of 00 to 700 nm was 0.3%, and that in the wavelength range of 700 to 1500 nm was 0.002%.

【0030】該冷却装置のウォータージャケット7は、
下端で相互に連通した内側流路8と外側流路9とを備え
ており、これに冷却用の工業用水を、矢印で示したよう
に内側流路8から外側流路9へと、10L/分の流速で
流した。また、該ウォータージャケット7内を通るよう
に備えられた冷却空気流入路10に矢印で示したように
冷却空気を送り込み、冷却空気流入路10の下端付近に
設けられた開口を通して冷却空気を各フィルター間の隙
間に沿って、それぞれ約10L/分の流速で流し、これ
を、冷却空気流出路11の下端付近に設けられた開口を
通して冷却空気流出路11内に流入させ、この流路を通
じて排気した。冷却空気の一部(約10L/分)を、冷
却空気流入路10の下端に設けられた開口から反射型フ
ィルター3の下面に沿うようにして吹き付け、これによ
り、ガラス溶解炉内の蒸発物が反射型フィルター3に付
着するのを防いだ。また、CCDカメラ5の周囲にも、
下端で連通した冷却空気流路12、13を通して冷却空
気を同様に流した。こうして構成した高温炉内観察装置
1を、ガラス溶解炉の上部に設けた開口内に挿入設置し
て、ガラス溶解炉内をケーブル14(電源及び画像信号
伝送用)を通じてCCDカメラ5により24時間連続で
観察したが、何れのフィルターも破損することはなく、
またCCDカメラ5も正常に作動し、炉内の画像を提供
し続けた。このときの溶解炉内の装置1付近の気相温度
は約1400℃であった。
The water jacket 7 of the cooling device is
It is provided with an inner flow path 8 and an outer flow path 9 that communicate with each other at the lower end, and industrial water for cooling is supplied to the inner flow path 8 from the inner flow path 8 to the outer flow path 9 by 10 L / Flowed at a flow rate of minutes. Further, cooling air is sent to the cooling air inflow passage 10 provided so as to pass through the water jacket 7 as shown by an arrow, and the cooling air is passed through the openings provided near the lower end of the cooling air inflow passage 10 to each filter. Flowing at a flow rate of about 10 L / min along the space between them, the cooling current was made to flow into the cooling air outflow passage 11 through an opening provided in the vicinity of the lower end of the cooling air outflow passage 11, and exhausted through this passage. . A part (about 10 L / min) of the cooling air is blown from the opening provided at the lower end of the cooling air inflow path 10 along the lower surface of the reflection type filter 3, whereby the evaporate in the glass melting furnace is blown out. Prevented from adhering to the reflective filter 3. Also, around the CCD camera 5,
Cooling air was likewise made to flow through the cooling air channels 12 and 13 communicating at the lower end. The high-temperature furnace observing device 1 thus configured is inserted and installed in the opening provided in the upper part of the glass melting furnace, and the inside of the glass melting furnace is continuously operated for 24 hours by the CCD camera 5 through the cable 14 (for power supply and image signal transmission). Observed with, but neither filter was damaged,
The CCD camera 5 also operated normally and continued to provide images of the inside of the furnace. At this time, the gas phase temperature in the vicinity of the apparatus 1 in the melting furnace was about 1400 ° C.

【0031】<実施例2>成膜時間を50秒とした以外
は、実施例1と同じ条件及び材料でスパッタリングを行
い、膜厚約25nmの白金薄膜を有する反射型フィルタ
ーを作製した。このフィルターは、波長400〜700
nmの範囲における光の平均の透過率が1.6%、波長
700〜1500nmの範囲における光の平均透過率が
0.8%であった。別に、実施例1と同じ赤外吸収フィ
ルターを2枚用意した。作成した反射型フィルター1枚
と、赤外吸収フィルター2枚とを用いたほかは、実施例
1と同様にして高温炉内観察装置を組立て、冷却水、冷
却空気を流した。組み合わせフィルター全体についての
波長400〜700nmの範囲における光の平均の透過
率は0.2%、波長700〜1500nmの範囲におけ
るそれは0.005%であった。高温炉内観察装置1
を、運転中のガラス溶解炉の上部に設けた開口内に挿入
設置して、ガラス溶解炉内をCCDカメラ5により24
時間連続で観察したが、何れのフィルターも破損するこ
とはなく、またCCDカメラ5も正常に作動し、炉内の
画像を提供し続けた。このときの溶解炉内の装置1付近
の気相温度は約1200〜1450℃であった。
<Example 2> Sputtering was performed under the same conditions and materials as in Example 1 except that the film formation time was 50 seconds, to produce a reflective filter having a platinum thin film with a film thickness of about 25 nm. This filter has a wavelength of 400-700
The average light transmittance in the range of nm was 1.6%, and the average light transmittance in the wavelength range of 700 to 1500 nm was 0.8%. Separately, the same two infrared absorption filters as in Example 1 were prepared. A high temperature furnace observation apparatus was assembled in the same manner as in Example 1 except that the prepared reflection type filter and two infrared absorption filters were used, and cooling water and cooling air were passed. The average transmittance of light in the wavelength range of 400 to 700 nm for the entire combination filter was 0.2%, and that in the wavelength range of 700 to 1500 nm was 0.005%. High temperature furnace observation device 1
Is inserted into the opening provided in the upper part of the glass melting furnace in operation, and the inside of the glass melting furnace is moved by the CCD camera 5
After continuous observation for a period of time, none of the filters were damaged, and the CCD camera 5 also operated normally and continued to provide images inside the furnace. At this time, the gas phase temperature in the vicinity of the apparatus 1 in the melting furnace was about 1200 to 1450 ° C.

【0032】<実施例3>22mm×22mm、厚さ2
mmの石英ガラス基板上に、直流スパッタ法により、白
金ターゲットを用い、窒素ガス分圧12Pa、酸素ガス
分圧3Pa、基板加熱なし、放電電流15mA、成膜時
間15分の条件で、膜厚約65nmの白金薄膜を形成す
ることにより、反射型フィルターを作成した。このフィ
ルターは、波長400〜700nmの範囲における光の
平均の透過率が4.5%、波長700〜1500の範囲
における光の平均透過率が6.4%であった。別に、実
施例1と同じ赤外吸収フィルターを2枚用意した。作成
した反射型フィルター1枚と、赤外吸収フィルター2枚
とを用いたほかは、実施例1と同様にして高温炉内観察
装置を組立て、冷却水、冷却空気を流した。組み合わせ
フィルター全体についての波長400〜700nmの範
囲における光の平均の透過率は0.6%、波長700〜
1500nmの範囲におけるそれは0.04%であっ
た。高温炉内観察装置1を、運転中のガラス溶解炉の上
部に設けた開口内に設置して、ガラス溶解炉内を24時
間連続でCCDカメラ5により観察したが、何れのフィ
ルターも破損することはなく、またCCDカメラ5も正
常に作動し、炉内の画像を提供し続けた。このときの溶
解炉内の装置1付近の気相温度は約1200℃であっ
た。
<Embodiment 3> 22 mm × 22 mm, thickness 2
Using a platinum target on a quartz glass substrate of mm by DC sputtering, the partial pressure of nitrogen gas is 12 Pa, the partial pressure of oxygen gas is 3 Pa, the substrate is not heated, the discharge current is 15 mA, and the film formation time is 15 minutes. A reflective filter was prepared by forming a 65 nm platinum thin film. This filter had an average light transmittance of 4.5% in the wavelength range of 400 to 700 nm, and an average light transmittance of 6.4% in the wavelength range of 700 to 1500. Separately, the same two infrared absorption filters as in Example 1 were prepared. A high temperature furnace observation apparatus was assembled in the same manner as in Example 1 except that the prepared reflection type filter and two infrared absorption filters were used, and cooling water and cooling air were passed. The average transmittance of light in the wavelength range of 400 to 700 nm for the entire combination filter is 0.6%, and the wavelength of 700 to
It was 0.04% in the 1500 nm range. The high-temperature furnace observing device 1 was installed in the opening provided in the upper part of the glass melting furnace in operation, and the inside of the glass melting furnace was observed with the CCD camera 5 for 24 hours continuously, but any filter was damaged. No, and the CCD camera 5 also worked normally and continued to provide images of the inside of the furnace. At this time, the gas phase temperature in the vicinity of the apparatus 1 in the melting furnace was about 1200 ° C.

【0033】<実施例4>実施例1の反射型フィルター
の金属薄膜上に高周波マグネトロンスパッタ法により、
石英ガラスターゲットを用いて、アルゴンガス圧0.7
2Pa、酸素ガス圧0.08Pa、基板温度300℃、
高周波電力50W、成膜時間20分の条件で、膜厚約5
0nmの石英ガラス薄膜を作製し、白金薄膜の保護膜と
した。実施例1の反射型フィルターの代わりにこのフィ
ルターを用いた以外は実施例1と同様に、運転中のガラ
ス溶解炉内を24時間連続で観察したが、何れのフィル
ターも破損することはなく、またCCDカメラ5も正常
に作動し、炉内の画像を提供し続けた。このときの溶解
炉内の装置1付近の気相温度は約1400℃であった。
<Embodiment 4> By a high frequency magnetron sputtering method on the metal thin film of the reflection type filter of Embodiment 1,
Argon gas pressure 0.7 using quartz glass target
2 Pa, oxygen gas pressure 0.08 Pa, substrate temperature 300 ° C.,
Film thickness of about 5 at 50 W of high frequency power and 20 minutes of film formation time
A 0 nm quartz glass thin film was prepared and used as a platinum thin film protective film. In the same manner as in Example 1 except that this filter was used instead of the reflective filter in Example 1, the inside of the glass melting furnace in operation was observed continuously for 24 hours, but neither filter was damaged. The CCD camera 5 also operated normally and continued to provide images of the inside of the furnace. At this time, the gas phase temperature in the vicinity of the apparatus 1 in the melting furnace was about 1400 ° C.

【0034】<比較例1>反射型フィルター3を省略し
たことを除いて実施例1と同様にして装置を組立て、冷
却水と冷却空気を通じながら、運転中のガラス溶解炉の
上部に設けた開口上に挿入配置したところ、溶解炉側の
赤外吸収フィルターが、熱線の吸収によりほぼ瞬時に割
れ、装置は使用不能となった。
<Comparative Example 1> An apparatus was assembled in the same manner as in Example 1 except that the reflective filter 3 was omitted, and an opening provided in the upper portion of the glass melting furnace in operation while passing cooling water and cooling air. When it was inserted and arranged above, the infrared absorption filter on the melting furnace side cracked almost instantaneously due to the absorption of heat rays, and the apparatus became unusable.

【0035】[0035]

【発明の効果】本発明の高温炉内観察装置によれば、ガ
ラス溶解炉内等の高温炉内の連続観察が可能である。ま
た、高温に強い材料である白金を金属薄膜の基本材料と
して用いているため、最も高温炉内側に位置する反射型
フィルターの耐熱性が高く、従って観察装置の冷却系統
に高い能力を必要としない。またこのため、観察装置の
冷却系統が炉内の温度分布に与える影響が、特に小型の
炉において少なくなる。加えて、本発明によれば高温炉
内観察装置の冷却系統を小型・軽量化できるため、可搬
性に優れ、必要な時に炉の必要な場所に挿入して手軽に
高温炉内を観察することが可能となる。またフィルター
系に反射板を用いていないため、画像の反転の問題もな
く、装置の構造も単純なものですむ。
According to the apparatus for observing the inside of a high temperature furnace of the present invention, continuous observation inside the high temperature furnace such as a glass melting furnace is possible. In addition, since platinum, which is a material resistant to high temperatures, is used as the basic material of the metal thin film, the reflective filter located inside the high temperature furnace has the highest heat resistance, and therefore does not require a high capacity for the cooling system of the observation device. . Therefore, the influence of the cooling system of the observation device on the temperature distribution in the furnace is reduced particularly in a small furnace. In addition, according to the present invention, the cooling system of the high-temperature furnace observation device can be made smaller and lighter, so that it has excellent portability and can be inserted into a required place of the furnace at a necessary time to easily observe the inside of the high-temperature furnace. Is possible. Also, since no reflector is used in the filter system, there is no problem of image inversion and the structure of the device is simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の反射型フィルターの光透過率曲線FIG. 1 is a light transmittance curve of the reflective filter of Example 1.

【図2】 使用した赤外吸収フィルターの光透過率曲線[Figure 2] Light transmittance curve of the infrared absorption filter used

【図3】 高温炉内観察装置の概断面要図[Fig. 3] Schematic cross-sectional view of high-temperature furnace observation device

【図4】 実施例1の組み合わせフィルターの光透過率
曲線
FIG. 4 is a light transmittance curve of the combination filter of Example 1.

【符号の説明】[Explanation of symbols]

1=高温炉内観察装置、2=冷却装置、3=反射型フィ
ルター、4a、4b及び4c=赤外吸収フィルター、5
=CCDカメラ、6=白金薄膜、7=ウォータージャケ
ット、8=内側流路、9=外側流路、10=冷却空気流
入路、11=冷却空気流出路、12=冷却空気流路、1
3=冷却空気流路、14=ケーブル
1 = High temperature furnace observation device, 2 = Cooling device, 3 = Reflective filter, 4a, 4b and 4c = Infrared absorption filter, 5
= CCD camera, 6 = Platinum thin film, 7 = Water jacket, 8 = Inner channel, 9 = Outer channel, 10 = Cooling air inflow channel, 11 = Cooling air outflow channel, 12 = Cooling air channel, 1
3 = cooling air flow path, 14 = cable

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 5/04 C22C 5/04 C23C 30/00 C23C 30/00 A F27D 21/02 F27D 21/02 (72)発明者 森 海彦 兵庫県西宮市浜松原町2番21号 日本山村 硝子株式会社内 (72)発明者 小西 明男 兵庫県西宮市浜松原町2番21号 日本山村 硝子株式会社内 (72)発明者 若林 肇 兵庫県西宮市浜松原町2番21号 日本山村 硝子株式会社内 (72)発明者 比江島 俊彦 大阪府堺市学園町1番1号 大阪府立大学 内 (72)発明者 東 久雄 大阪府堺市学園町1番1号 大阪府立大学 内 (72)発明者 岩崎 晃 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 牧原 正記 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4G059 AA08 AA11 AB01 AC06 AC08 AC19 DA03 DB02 DB04 GA01 GA04 GA14 4K015 KA01 4K044 AA11 AA12 AA13 AB10 BA08 BA12 BB01 BC11 BC14 CA13 CA15 4K056 AA05 CA10 FA23 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 5/04 C22C 5/04 C23C 30/00 C23C 30/00 A F27D 21/02 F27D 21/02 (72 ) Inventor Umihiko Mori 2-21 Hamamatsubara-cho, Nishinomiya-shi, Hyogo Japan Yamamura Glass Co., Ltd. (72) Inventor Akio Konishi 2-21 Hamamatsubara-cho Nishinomiya-shi, Hyogo Japan Yamamura Glass Co., Ltd. (72) Inventor Wakabayashi Hajime 2-21 Hamamatsubara-cho, Nishinomiya-shi, Hyogo Prefecture Japan Yamamura Glass Co., Ltd. (72) Inventor Toshihiko Hiejima No. 1 Gakuencho, Sakai City, Osaka Prefecture (72) Hisao Higashi, Sakai City, Osaka Prefecture Gakuencho No. 1-1 Osaka Prefectural University (72) Inventor Akira Iwasaki 1-1-1 Higashi, Tsukuba, Ibaraki Prefecture Independent Administrative Law, National Institute of Advanced Industrial Science and Technology Tsukuba Center (72) Inventor Masashi Makihara 1-1-1 Higashi Tsukuba, Ibaraki Independent Administrative Law F-term in the Tsukuba Center, National Institute of Advanced Industrial Science and Technology (reference) 4G059 AA08 AA11 AB01 AC06 AC08 AC19 DA03 DB02 DB04 GA01 GA04 GA14 4K015 KA01 4K044 AA11 AA12 AA13 AB10 BA08 BA12 BB01 BC11 BC14 CA13 CA15 4K056 AA05 CA10 FA23

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】撮像装置を備えた高温炉内観察装置であっ
て、該撮像装置の前方に反射型フィルターを有してお
り、該反射型フィルターが、基板の片面又は両面に白金
80〜100重量%の組成の金属薄膜を形成してなるフ
ィルターであることを特徴とする、高温炉内観察装置。
1. A high temperature furnace observation apparatus equipped with an imaging device, comprising a reflective filter in front of the imaging device, the reflective filter comprising platinum 80-100 on one or both sides of a substrate. An apparatus for observing inside a high-temperature furnace, which is a filter formed by forming a metal thin film having a composition of wt%.
【請求項2】撮像装置を備えた高温炉内観察装置であっ
て、該撮像装置の前方に反射型フィルターを、及び該反
射型フィルターと該撮像装置との間に赤外吸収フィルタ
ーをそれぞれ有しており、且つ該反射型フィルターが、
基板の片面又は両面に白金80〜100重量%の組成の
金属薄膜を形成してなるフィルターであることを特徴と
する、高温炉内観察装置。
2. A high temperature in-furnace observation apparatus equipped with an imaging device, wherein a reflection filter is provided in front of the imaging device, and an infrared absorption filter is provided between the reflection filter and the imaging device. And the reflective filter
An apparatus for observing inside a high-temperature furnace, which is a filter formed by forming a metal thin film having a composition of 80 to 100% by weight of platinum on one or both sides of a substrate.
【請求項3】撮像装置を備えた高温炉内観察装置であっ
て、該撮像装置の前方に反射型フィルターを有してお
り、該反射型フィルターが、赤外吸収フィルターを基板
とし、該基板の片面又は両面に白金80〜100重量%
の組成の金属薄膜を形成してなるものであることを特徴
とする、高温炉内観察装置。
3. A high temperature in-furnace observation apparatus equipped with an imaging device, comprising a reflective filter in front of the imaging device, the reflective filter using an infrared absorption filter as a substrate. 80-100% by weight of platinum on one or both sides of
An apparatus for observing in-high-temperature furnaces, characterized in that it is formed by forming a metal thin film having the composition of.
【請求項4】該基板がガラス基板である請求項1又は2
に記載の高温炉内観察装置。
4. The substrate according to claim 1, which is a glass substrate.
The high-temperature furnace observation device according to item 1.
【請求項5】該金属薄膜上にガラス薄膜が形成されてい
ることを特徴とする、請求項1ないし4の何れかに記載
の高温炉内観察装置。
5. The high temperature furnace observation apparatus according to claim 1, wherein a glass thin film is formed on the metal thin film.
【請求項6】該金属薄膜が、白金80重量%以上100
重量%未満且つロジウム20重量%以下の組成のもので
ある、請求項1ないし5の何れかに記載の高温炉内観察
装置。
6. The metal thin film comprises 80% by weight or more of platinum and 100% by weight.
The high temperature furnace observation device according to any one of claims 1 to 5, which has a composition of less than 20% by weight and 20% by weight or less of rhodium.
JP2002080154A 2002-03-22 2002-03-22 High-temperature furnace observation device Expired - Lifetime JP3837435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080154A JP3837435B2 (en) 2002-03-22 2002-03-22 High-temperature furnace observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080154A JP3837435B2 (en) 2002-03-22 2002-03-22 High-temperature furnace observation device

Publications (2)

Publication Number Publication Date
JP2003277815A true JP2003277815A (en) 2003-10-02
JP3837435B2 JP3837435B2 (en) 2006-10-25

Family

ID=29229304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080154A Expired - Lifetime JP3837435B2 (en) 2002-03-22 2002-03-22 High-temperature furnace observation device

Country Status (1)

Country Link
JP (1) JP3837435B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138985A (en) * 2006-12-05 2008-06-19 Nippon Steel Corp Heat shielding device and furnace monitoring device
JP2011520247A (en) * 2008-04-09 2011-07-14 アプライド マテリアルズ インコーポレイテッド Apparatus including a heat source reflection filter for high temperature measurements
WO2014065187A1 (en) * 2012-10-24 2014-05-01 三菱重工環境・化学エンジニアリング株式会社 Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
KR101767068B1 (en) 2009-10-09 2017-08-10 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method for improved control of heating and cooling of substrates
KR20200103428A (en) * 2019-02-25 2020-09-02 원용대 Camera housing
DE102022122153A1 (en) 2022-09-01 2024-03-07 Schott Ag Mobile image recording device for use in high-temperature environments

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183133A (en) * 1985-02-08 1986-08-15 Matsushita Electric Ind Co Ltd Die for press-forming optical glass element
JPH01142384A (en) * 1987-11-30 1989-06-05 Tanaka Kikinzoku Kogyo Kk Platinum vessel for high temperature
JPH05133686A (en) * 1991-11-11 1993-05-28 Harima Ceramic Co Ltd Observation device for inside of high-temperature furnace
JPH05141878A (en) * 1991-11-16 1993-06-08 Kurosaki Refract Co Ltd Observation device for inside of furnace equipped with filter
JPH07126636A (en) * 1993-08-11 1995-05-16 Nishi Nippon Sekkei Kogyo Kk Apparatus for observing inner wall of carbonization chamber of coke oven
JPH1088221A (en) * 1996-09-06 1998-04-07 Nkk Corp Probe for observing inner part of metallurgical furnace and method for observing inner part of metallurgical furnace
JP2000295502A (en) * 1999-04-06 2000-10-20 Asahi Glass Co Ltd Furnace-inside observation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183133A (en) * 1985-02-08 1986-08-15 Matsushita Electric Ind Co Ltd Die for press-forming optical glass element
JPH01142384A (en) * 1987-11-30 1989-06-05 Tanaka Kikinzoku Kogyo Kk Platinum vessel for high temperature
JPH05133686A (en) * 1991-11-11 1993-05-28 Harima Ceramic Co Ltd Observation device for inside of high-temperature furnace
JPH05141878A (en) * 1991-11-16 1993-06-08 Kurosaki Refract Co Ltd Observation device for inside of furnace equipped with filter
JPH07126636A (en) * 1993-08-11 1995-05-16 Nishi Nippon Sekkei Kogyo Kk Apparatus for observing inner wall of carbonization chamber of coke oven
JPH1088221A (en) * 1996-09-06 1998-04-07 Nkk Corp Probe for observing inner part of metallurgical furnace and method for observing inner part of metallurgical furnace
JP2000295502A (en) * 1999-04-06 2000-10-20 Asahi Glass Co Ltd Furnace-inside observation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138985A (en) * 2006-12-05 2008-06-19 Nippon Steel Corp Heat shielding device and furnace monitoring device
JP2011520247A (en) * 2008-04-09 2011-07-14 アプライド マテリアルズ インコーポレイテッド Apparatus including a heat source reflection filter for high temperature measurements
KR101767068B1 (en) 2009-10-09 2017-08-10 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and method for improved control of heating and cooling of substrates
WO2014065187A1 (en) * 2012-10-24 2014-05-01 三菱重工環境・化学エンジニアリング株式会社 Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
JP2014085069A (en) * 2012-10-24 2014-05-12 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd High-temperature furnace monitoring device and high-temperature furnace monitoring system including the same
US9657995B2 (en) 2012-10-24 2017-05-23 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
EA029310B1 (en) * 2012-10-24 2018-03-30 Мицубиси Хэви Индастриз Инвайронментал Энд Кемикал Инджиниринг Ко., Лтд. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
KR20200103428A (en) * 2019-02-25 2020-09-02 원용대 Camera housing
KR102169065B1 (en) * 2019-02-25 2020-10-22 원용대 Camera housing
DE102022122153A1 (en) 2022-09-01 2024-03-07 Schott Ag Mobile image recording device for use in high-temperature environments

Also Published As

Publication number Publication date
JP3837435B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US20190169061A1 (en) Controlled crystallization of glass ceramics for electronic devices
TW562866B (en) Temperature measuring apparatus and method for molten metal
JP2003277815A (en) Observation device of high temperature furnace
JP4242586B2 (en) Skull crucible for melting or refining inorganic materials
AU2003266262A1 (en) Furnace, method and monitoring system for monitoring its condition
JP2007197310A (en) Crystallized glass, reflection mirror base material and reflection mirror using the same
US9957186B2 (en) Electric glory hole video camera assembly
EP1518838A1 (en) Glass article
JP3157626B2 (en) Ceramic welding method and apparatus
EP1363074A2 (en) Window member for a combustion apparatus, excellent in appearance even after long-time use
CN110872176B (en) Glass substrate and method for manufacturing the same
JP2005084367A (en) Monitor camera and monitor camera system
WO1989009918A1 (en) Inspection apparatus for hot furnace
WO2012139484A1 (en) Tantalum-material multilevel distillation crucible and distillation process
JP6044349B2 (en) Magnesium refining apparatus and magnesium refining method
DE50203089D1 (en) COOLING ELEMENT FOR COOLING A METALLURGICAL OVEN
JP2004266474A (en) Water-cooled camera case
JP5449645B2 (en) A method of manufacturing a silicon plate for heat treatment.
KR20120012029A (en) Continuous glass melting furnace for glass
JP2005070734A (en) Transparent substrate for liquid crystal panel
JP5005326B2 (en) Thermal shielding device and in-furnace monitoring device
JP2008097014A (en) Transparent substrate for liquid crystal panel
JP4959214B2 (en) High-temperature furnace observation device
JP2008185233A (en) Top plate for cooker
Ren et al. Joining MgAl2O4 ceramics using ZnO–Al2O3–SiO2 glass ceramic with precipitated ZnAl2O4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Ref document number: 3837435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term